(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Interval abstract domain *) open Apron let equal_apron_typ = (* Apron.Texpr1.typ is a sum of nullary constructors *) Poly.equal (** Apron-managed map from variables to intervals *) type t = Box.t Abstract1.t let man = lazy (Box.manager_alloc ()) let join l r = Some (Abstract1.join (Lazy.force man) l r) let equal l r = Abstract1.is_eq (Lazy.force man) l r let is_false x = Abstract1.is_bottom (Lazy.force man) x let bindings (itv : t) = let itv = Abstract1.minimize_environment (Lazy.force man) itv in let box = Abstract1.to_box (Lazy.force man) itv in let vars = Environment.vars box.box1_env |> fun (i, r) -> Array.append i r in Array.combine_exn vars box.interval_array let sexp_of_t (itv : t) = let sexps = Array.fold_right (bindings itv) [] ~f:(fun (v, {inf; sup}) acc -> Sexp.List [ Sexp.Atom (Var.to_string v) ; Sexp.Atom (Scalar.to_string inf) ; Sexp.Atom (Scalar.to_string sup) ] :: acc ) in Sexp.List sexps let pp fs = let pp_pair a_pp b_pp fs (a, b) = Format.fprintf fs "@[(%a@,%a)@]" a_pp a b_pp b in bindings >> Array.pp "@," (pp_pair Var.print Interval.print) fs let report_fmt_thunk = Fun.flip pp let init _gs = Abstract1.top (Lazy.force man) (Environment.make [||] [||]) let apron_var_of_name = (fun nm -> "%" ^ nm) >> Apron.Var.of_string let apron_var_of_reg = Llair.Reg.name >> apron_var_of_name let rec apron_typ_of_llair_typ : Llair.Typ.t -> Texpr1.typ option = function | Pointer {elt= _} -> apron_typ_of_llair_typ Llair.Typ.siz | Integer {bits= _} -> Some Texpr1.Int | Float {bits= 32; enc= `IEEE} -> Some Texpr1.Single | Float {bits= 64; enc= `IEEE} -> Some Texpr1.Double | Float {bits= 80; enc= `Extended} -> Some Texpr1.Extended | Float {bits= 128; enc= `IEEE} -> Some Texpr1.Quad | t -> warn "No corresponding apron type for llair type %a " Llair.Typ.pp t () ; None let rec apron_texpr_of_llair_exp exp q = match (exp : Llair.Exp.t) with | Reg {name} | Global {name} | Function {name} -> Some (Texpr1.Var (apron_var_of_name name)) | Integer {data} -> Some (Texpr1.Cst (Coeff.s_of_int (Z.to_int data))) | Float {data} -> ( match Float.of_string_exn data with | f -> Some (Texpr1.Cst (Coeff.s_of_float f)) | exception Invalid_argument _ -> None ) | Ap1 (Signed {bits}, _, _) -> let n = Int.shift_left 1 (bits - 1) in Some (Texpr1.Cst (Coeff.i_of_int (-n) (n - 1))) | Ap1 (Unsigned {bits}, _, _) -> let n = Int.shift_left 1 (bits - 1) in Some (Texpr1.Cst (Coeff.i_of_int 0 n)) | Ap1 (Convert {src}, dst, x) -> let* src' = apron_typ_of_llair_typ src in let* dst' = apron_typ_of_llair_typ dst in let subtm = apron_texpr_of_llair_exp x q in if equal_apron_typ src' dst' then subtm else let+ t = subtm in Texpr1.Unop (Texpr1.Cast, t, dst', Texpr0.Rnd) | Ap2 (op, typ, x, y) -> ( let* typ' = apron_typ_of_llair_typ typ in let* x' = apron_texpr_of_llair_exp x q in let* y' = apron_texpr_of_llair_exp y q in (* abstract evaluation of boolean binary operation [te1 op te2] at [q] by translation to [te1 - te2 op 0] and intersection with [q] *) let bool_binop q op x' y' = let env = Abstract1.env q in let lhs = Texpr1.Binop (Texpr1.Sub, x', y', typ', Texpr0.Rnd) in let tcons = Tcons1.make (Texpr1.of_expr env lhs) op in let ea = Tcons1.array_make env 1 $> fun ea -> Tcons1.array_set ea 0 tcons in (* if meet of q with tree constraint encoding of binop is: (bottom -> binop definitely false); (unchanged from q -> binop definitely true); (else -> binop may be true or false) *) let meet = Abstract1.meet_tcons_array (Lazy.force man) q ea in if is_false meet then Some (Texpr1.Cst (Coeff.s_of_int 0)) else if equal meet q then Some (Texpr1.Cst (Coeff.s_of_int (-1))) else Some (Texpr1.Cst (Coeff.i_of_int (-1) 0)) in let arith_bop op x' y' = Some (Texpr1.Binop (op, x', y', typ', Texpr0.Rnd)) in match op with | Eq -> bool_binop q Tcons0.EQ x' y' | Dq -> bool_binop q Tcons0.DISEQ x' y' | Gt -> bool_binop q Tcons0.SUP x' y' | Ge -> bool_binop q Tcons0.SUPEQ x' y' | Lt -> bool_binop q Tcons0.SUP y' x' | Le -> bool_binop q Tcons0.SUPEQ y' x' | Ugt | Uge | Ult | Ule | Ord | Uno -> None | Add -> arith_bop Texpr1.Add x' y' | Sub -> arith_bop Texpr1.Sub x' y' | Mul -> arith_bop Texpr1.Mul x' y' | Div -> arith_bop Texpr1.Div x' y' | Rem -> arith_bop Texpr1.Mod x' y' | Udiv | Urem -> None | And | Or | Xor | Shl | Lshr | Ashr | Update _ -> None ) | Label _ |Ap1 ((Splat | Select _), _, _) |Ap3 (Conditional, _, _, _, _) |ApN (Record, _, _) -> None let assign reg exp q = [%Trace.call fun {pf} -> pf "{%a}@\n%a := %a" pp q Llair.Reg.pp reg Llair.Exp.pp exp] ; let lval = apron_var_of_reg reg in ( match apron_texpr_of_llair_exp exp q with | Some e -> let env = Abstract1.env q in let new_env = match ( Environment.mem_var env lval , apron_typ_of_llair_typ (Llair.Reg.typ reg) ) with | true, _ -> env | false, Some Texpr1.Int -> Environment.add env [|lval|] [||] | false, _ -> Environment.add env [||] [|lval|] in let man = Lazy.force man in let q = Abstract1.change_environment man q new_env true in Abstract1.assign_texpr man q lval (Texpr1.of_expr new_env e) None | _ -> q ) |> [%Trace.retn fun {pf} r -> pf "{%a}" pp r] (** block if [e] is known to be false; skip otherwise *) let exec_assume q e = match apron_texpr_of_llair_exp e q with | Some e -> let cond = Abstract1.bound_texpr (Lazy.force man) q (Texpr1.of_expr q.env e) in if Interval.is_zero cond then None else Some q | _ -> Some q (** existentially quantify killed register [r] out of state [q] *) let exec_kill r q = let apron_v = apron_var_of_reg r in if Environment.mem_var (Abstract1.env q) apron_v then Abstract1.forget_array (Lazy.force man) q [|apron_v|] false else q (** perform a series [move_vec] of reg:=exp moves at state [q] *) let exec_move move_vec q = let defs, uses = IArray.fold move_vec (Llair.Reg.Set.empty, Llair.Reg.Set.empty) ~f:(fun (r, e) (defs, uses) -> ( Llair.Reg.Set.add r defs , Llair.Exp.fold_regs ~f:Llair.Reg.Set.add e uses ) ) in if not (Llair.Reg.Set.disjoint defs uses) then todo "overwritten variables in Domain_itv" () ; IArray.fold ~f:(fun (r, e) q -> assign r e q) move_vec q let exec_inst i q = match (i : Llair.inst) with | Move {reg_exps; loc= _} -> Some (exec_move reg_exps q) | Store {ptr; exp; len= _; loc= _} -> ( match Llair.Reg.of_exp ptr with | Some reg -> Some (assign reg exp q) | None -> Some q ) | Load {reg; ptr; len= _; loc= _} -> Some (assign reg ptr q) | Nondet {reg= Some reg; msg= _; loc= _} -> Some (exec_kill reg q) | Nondet {reg= None; msg= _; loc= _} |Alloc _ | Memset _ | Memcpy _ | Memmov _ | Free _ -> Some q | Abort _ -> None | Intrinsic {reg= Some reg; _} -> Some (exec_kill reg q) | Intrinsic {reg= None; _} -> Some q (** Treat any intrinsic function as havoc on the return register [aret] *) let exec_intrinsic ~skip_throw:_ aret i _ pre = let name = Llair.Function.name i in if List.exists [ "malloc" ; "aligned_alloc" ; "calloc" ; "posix_memalign" ; "realloc" ; "mallocx" ; "rallocx" ; "xallocx" ; "sallocx" ; "dallocx" ; "sdallocx" ; "nallocx" ; "malloc_usable_size" ; "mallctl" ; "mallctlnametomib" ; "mallctlbymib" ; "malloc_stats_print" ; "strlen" ; "__cxa_allocate_exception" ; "_ZN5folly13usingJEMallocEv" ] ~f:(String.equal name) then let+ aret = aret in Some (exec_kill aret pre) else None type from_call = {areturn: Llair.Reg.t option; caller_q: t} [@@deriving sexp_of] let recursion_beyond_bound = `prune (** existentially quantify locals *) let post locals _ (q : t) = let locals = Llair.Reg.Set.fold locals [] ~f:(fun r a -> let v = apron_var_of_reg r in if Environment.mem_var q.env v then v :: a else a ) |> Array.of_list in Abstract1.forget_array (Lazy.force man) q locals false (** drop caller-local variables, add returned value to caller state *) let retn _ freturn {areturn; caller_q} callee_q = match (areturn, freturn) with | Some aret, Some fret -> let env_fret_only = match apron_typ_of_llair_typ (Llair.Reg.typ fret) with | None -> Environment.make [||] [||] | Some Texpr1.Int -> Environment.make [|apron_var_of_reg fret|] [||] | _ -> Environment.make [||] [|apron_var_of_reg fret|] in let env = Environment.lce env_fret_only (Abstract1.env caller_q) in let man = Lazy.force man in let callee_fret = (* drop all callee vars, scope to (caller + freturn) env *) Abstract1.change_environment man callee_q env_fret_only false |> fun q -> Abstract1.change_environment man q env false in let caller_q = Abstract1.change_environment man caller_q env false in let result = Abstract1.meet man callee_fret caller_q in Abstract1.rename_array man result [|apron_var_of_reg fret|] [|apron_var_of_reg aret|] | Some aret, None -> exec_kill aret caller_q | None, _ -> caller_q (** map actuals to formals (via temporary registers), stash constraints on caller-local variables. Note that this exploits the non-relational-ness of Box to ignore all variables other than the formal/actual params/ returns; this will not be possible if extended to a relational domain *) let call ~summaries ~globals:_ ~actuals ~areturn ~formals ~freturn:_ ~locals:_ q = if summaries then todo "Summaries not yet implemented for interval analysis" () else let mangle r = Llair.Reg.mk (Llair.Reg.typ r) ("__tmp__" ^ Llair.Reg.name r) in let args = IArray.combine_exn formals actuals in let q' = IArray.fold ~f:(fun (f, a) q -> assign (mangle f) a q) args q in let callee_env = IArray.fold formals ([], []) ~f:(fun f (is, fs) -> match apron_typ_of_llair_typ (Llair.Reg.typ f) with | None -> (is, fs) | Some Texpr1.Int -> (apron_var_of_reg (mangle f) :: is, fs) | _ -> (is, apron_var_of_reg (mangle f) :: fs) ) |> fun (is, fs) -> Environment.make (Array.of_list is) (Array.of_list fs) in let man = Lazy.force man in let q'' = Abstract1.change_environment man q' callee_env false in let q''' = Abstract1.rename_array man q'' (Array.map ~f:(mangle >> apron_var_of_reg) (IArray.to_array formals)) (Array.map ~f:apron_var_of_reg (IArray.to_array formals)) in (q''', {areturn; caller_q= q}) let dnf q = [q] let resolve_callee lookup ptr q = match Llair.Function.of_exp ptr with | Some callee -> (lookup callee, q) | None -> ([], q) type summary = t let pp_summary = pp let apply_summary _ _ = None let create_summary ~locals:_ ~formals:_ q = (q, q)