(* * Copyright (c) 2009-2013 Monoidics ltd. * Copyright (c) 2013- Facebook. * All rights reserved. *) (** Functions for Sets of Propositions with and without sharing *) open Utils (** {2 Sets of Propositions} *) (** Sets of propositions. The invariant is maintaned that Prop.prop_rename_primed_footprint_vars is called on any prop added to the set. *) type t (** Compare propsets *) val compare : t -> t -> int (** Singleton set. *) val singleton : Prop.normal Prop.t -> t (** Set membership. *) val mem : Prop.normal Prop.t -> t -> bool (** Set union. *) val union : t -> t -> t (** Set intersection *) val inter : t -> t -> t (** Add [prop] to propset. *) val add : Prop.normal Prop.t -> t -> t (** Set difference. *) val diff : t -> t -> t (** The empty set of propositions. *) val empty : t (** Size of the set *) val size : t -> int val from_proplist : Prop.normal Prop.t list -> t val to_proplist : t -> Prop.normal Prop.t list (** Apply function to all the elements of the propset. *) val map : (Prop.normal Prop.t -> Prop.normal Prop.t) -> t -> t (** Apply function to all the elements of the propset, removing those where it returns [None]. *) val map_option : (Prop.normal Prop.t -> Prop.normal Prop.t option) -> t -> t (** [fold f pset a] computes [(f pN ... (f p2 (f p1 a))...)], where [p1 ... pN] are the elements of pset, in increasing order. *) val fold : ('a -> Prop.normal Prop.t -> 'a) -> 'a -> t -> 'a (** [iter f pset] computes (f p1;f p2;..;f pN) where [p1 ... pN] are the elements of pset, in increasing order. *) val iter : (Prop.normal Prop.t -> unit) -> t -> unit val partition : (Prop.normal Prop.t -> bool) -> t -> t * t val subseteq : t -> t -> bool (** Set emptiness check. *) val is_empty : t -> bool val filter : (Prop.normal Prop.t -> bool) -> t -> t (** {2 Pretty print} *) (** Pretty print a set of propositions, obtained from the given prop. *) val pp : printenv -> Prop.normal Prop.t -> Format.formatter -> t -> unit (** dump a propset coming form the given initial prop *) val d : Prop.normal Prop.t -> t -> unit