(* * Copyright (c) 2009 -2013 Monoidics ltd. * Copyright (c) 2013 - Facebook. * All rights reserved. *) (** Functions for Theorem Proving *) open Ident open Sil (** {2 Ordinary Theorem Proving} *) (** Check [ |- e=0]. Result [false] means "don't know". *) val check_zero : exp -> bool (** Check [prop |- exp1=exp2]. Result [false] means "don't know". *) val check_equal : Prop.normal Prop.t -> exp -> exp -> bool (** Check whether [prop |- exp1!=exp2]. Result [false] means "don't know". *) val check_disequal : Prop.normal Prop.t -> exp -> exp -> bool val check_le : Prop.normal Prop.t -> exp -> exp -> bool (** Return true if the two types have sizes which can be compared *) val type_size_comparable : Sil.typ -> Sil.typ -> bool (** Check <= on the size of comparable types *) val check_type_size_leq : Sil.typ -> Sil.typ -> bool (** Check < on the size of comparable types *) val check_type_size_lt : Sil.typ -> Sil.typ -> bool (** Check whether [prop |- a]. Result [false] means "don't know". *) val check_atom : Prop.normal Prop.t -> atom -> bool (** Inconsistency checking ignoring footprint. *) val check_inconsistency_base : Prop.normal Prop.t -> bool (** Inconsistency checking. *) val check_inconsistency : Prop.normal Prop.t -> bool (** Check whether [prop |- allocated(exp)]. *) val check_allocatedness : Prop.normal Prop.t -> exp -> bool (** [is_root prop base_exp exp] checks whether [base_exp = exp.offlist] for some list of offsets [offlist]. If so, it returns [Some(offlist)]. Otherwise, it returns [None]. Assumes that [base_exp] points to the beginning of a structure, not the middle. *) val is_root : Prop.normal Prop.t -> exp -> exp -> offset list option (** [expand_hpred_pointer calc_index_frame hpred] expands [hpred] if it is a |-> whose lhs is a Lfield or Lindex or ptr+off. Return [(changed, calc_index_frame', hpred')] where [changed] indicates whether the predicate has changed. *) val expand_hpred_pointer : bool -> Sil.hpred -> bool * bool * Sil.hpred (** Get upper and lower bounds of an expression, if any *) val get_bounds : Prop.normal Prop.t -> Sil.exp -> Sil.Int.t option * Sil.Int.t option (** {2 Abduction prover} *) (** [check_implication p1 p2] returns true if [p1|-p2] *) val check_implication : Procname.t -> Sil.tenv -> Prop.normal Prop.t -> Prop.exposed Prop.t -> bool type check = | Bounds_check | Class_cast_check of Sil.exp * Sil.exp * Sil.exp val d_typings : (Sil.exp * Sil.exp) list -> unit type implication_result = | ImplOK of (check list * Sil.subst * Sil.subst * Sil.hpred list * (Sil.atom list) * (Sil.hpred list) * (Sil.hpred list) * (Sil.hpred list) * ((Sil.exp * Sil.exp) list) * ((Sil.exp * Sil.exp) list)) | ImplFail of check list (** [check_implication_for_footprint p1 p2] returns [Some(sub, frame, missing)] if [sub(p1 * missing) |- sub(p2 * frame)] where [sub] is a substitution which instantiates the primed vars of [p1] and [p2], which are assumed to be disjoint. *) val check_implication_for_footprint : Procname.t -> Sil.tenv -> Prop.normal Prop.t -> Prop.exposed Prop.t -> implication_result (** {2 Cover: miminum set of pi's whose disjunction is equivalent to true} *) (** Find miminum set of pi's in [cases] whose disjunction covers true *) val find_minimum_pure_cover : (Sil.atom list * 'a) list -> (Sil.atom list * 'a) list option (** {2 Compute various lower or upper bounds} *) (** Computer an upper bound of an expression *) val compute_upper_bound_of_exp : Prop.normal Prop.t -> Sil.exp -> Sil.Int.t option (** {2 Subtype checking} *) (** check_subtype t1 t2 checks whether t1 is a subtype of t2, given the type environment tenv. *) val check_subtype : Sil.tenv -> Sil.typ -> Sil.typ -> bool (** subtype_case_analysis tenv tecp1 texp2 performs case analysis on [texp1 <: texp2], and returns the updated types in the true and false case, if they are possible *) val subtype_case_analysis : Sil.tenv -> Sil.exp -> Sil.exp -> Sil.exp option * Sil.exp option