#!/usr/bin/env python2.7 # Copyright (c) 2013 - present Facebook, Inc. # All rights reserved. # # This source code is licensed under the BSD style license found in the # LICENSE file in the root directory of this source tree. An additional grant # of patent rights can be found in the PATENTS file in the same directory. from __future__ import absolute_import from __future__ import division from __future__ import print_function from __future__ import unicode_literals import argparse import csv import io import json import logging import multiprocessing import os import platform import re import shutil import stat import subprocess import sys import tempfile import time import traceback import zipfile from inferlib import analyze, config, issues, utils ANALYSIS_SUMMARY_OUTPUT = 'analysis_summary.txt' DEFAULT_BUCK_OUT = os.path.join(utils.decode(os.getcwd()), 'buck-out') DEFAULT_BUCK_OUT_GEN = os.path.join(DEFAULT_BUCK_OUT, 'gen') INFER_CSV_REPORT = os.path.join(config.BUCK_INFER_OUT, config.CSV_REPORT_FILENAME) INFER_JSON_REPORT = os.path.join(config.BUCK_INFER_OUT, config.JSON_REPORT_FILENAME) INFER_STATS = os.path.join(config.BUCK_INFER_OUT, config.STATS_FILENAME) INFER_SCRIPT = """\ #!/usr/bin/env {0} import subprocess import sys cmd = {1} + ['--', 'javac'] + sys.argv[1:] subprocess.check_call(cmd) """ def prepare_build(args): """Creates script that redirects javac calls to infer and a local buck configuration that tells buck to use that script. """ infer_options = [ '--buck', '--analyzer', args.analyzer, ] if args.debug: infer_options.append('--debug') if args.no_filtering: infer_options.append('--no-filtering') if args.debug_exceptions: infer_options += ['--debug-exceptions', '--no-filtering'] # Create a temporary directory as a cache for jar files. infer_cache_dir = os.path.join(args.infer_out, 'cache') if not os.path.isdir(infer_cache_dir): os.mkdir(infer_cache_dir) infer_options += ['--infer_cache', infer_cache_dir] temp_files = [infer_cache_dir] try: infer = [utils.get_cmd_in_bin_dir('infer')] + infer_options except subprocess.CalledProcessError as e: logging.error('Could not find infer') raise e # make sure INFER_ANALYSIS is set when buck is called logging.info('Setup Infer analysis mode for Buck: export INFER_ANALYSIS=1') os.environ['INFER_ANALYSIS'] = '1' # Create a script to be called by buck infer_script = None with tempfile.NamedTemporaryFile(delete=False, prefix='infer_', suffix='.py', dir='.') as infer_script: logging.info('Creating %s' % infer_script.name) infer_script.file.write( utils.encode(INFER_SCRIPT.format(sys.executable, infer))) st = os.stat(infer_script.name) os.chmod(infer_script.name, st.st_mode | stat.S_IEXEC) temp_files += [infer_script.name] return temp_files, infer_script.name def get_normalized_targets(targets): """ Use buck to convert a list of input targets/aliases into a set of the (transitive) target deps for all inputs""" # this expands the targets passed on the command line, then filters away # targets that are not Java/Android. you need to change this if you # care about something other than Java/Android TARGET_TYPES = "kind('android_library|java_library', deps('%s'))" BUCK_GET_JAVA_TARGETS = ['buck', 'query', TARGET_TYPES] buck_cmd = BUCK_GET_JAVA_TARGETS + targets try: targets = filter( lambda line: len(line) > 0, subprocess.check_output(buck_cmd).decode().strip().split('\n')) return targets except subprocess.CalledProcessError as e: logging.error('Error while expanding targets with {0}'.format(buck_cmd)) raise e def init_stats(args, start_time): """Returns dictionary with target independent statistics. """ return { 'float': {}, 'int': { 'cores': multiprocessing.cpu_count(), 'time': int(time.time()), 'start_time': int(round(start_time)), }, 'normal': { 'debug': str(args.debug), 'analyzer': args.analyzer, 'machine': platform.machine(), 'node': platform.node(), 'project': utils.decode(os.path.basename(os.getcwd())), 'revision': utils.vcs_revision(), 'branch': utils.vcs_branch(), 'system': platform.system(), 'infer_version': utils.infer_version(), 'infer_branch': utils.infer_branch(), } } def store_performances_csv(infer_out, stats): """Stores the statistics about perfromances into a CSV file to be exported to a database""" perf_filename = os.path.join(infer_out, config.CSV_PERF_FILENAME) with open(perf_filename, 'w') as csv_file_out: csv_writer = csv.writer(csv_file_out) keys = ['infer_version', 'project', 'revision', 'files', 'lines', 'cores', 'system', 'machine', 'node', 'total_time', 'capture_time', 'analysis_time', 'reporting_time', 'time'] int_stats = list(stats['int'].items()) normal_stats = list(stats['normal'].items()) flat_stats = dict(int_stats + normal_stats) values = [] for key in keys: if key in flat_stats: values.append(flat_stats[key]) csv_writer.writerow(keys) csv_writer.writerow(values) csv_file_out.flush() def get_harness_code(): all_harness_code = '\nGenerated harness code:\n' for filename in os.listdir(DEFAULT_BUCK_OUT_GEN): if 'InferGeneratedHarness' in filename: all_harness_code += '\n' + filename + ':\n' with open(os.path.join(DEFAULT_BUCK_OUT_GEN, filename), 'r') as file_in: all_harness_code += file_in.read() return all_harness_code + '\n' def get_basic_stats(stats): files_analyzed = '{0} files ({1} lines) analyzed in {2}s\n\n'.format( stats['int'].get('files', 0), stats['int'].get('lines', 0), stats['int']['total_time'], ) phase_times = 'Capture time: {0}s\nAnalysis time: {1}s\n\n'.format( stats['int'].get('capture_time', 0), stats['int'].get('analysis_time', 0), ) to_skip = { 'files', 'procedures', 'lines', 'cores', 'time', 'start_time', 'capture_time', 'analysis_time', 'reporting_time', 'total_time', 'makefile_generation_time' } bugs_found = 'Errors found:\n\n' for key, value in sorted(stats['int'].items()): if key not in to_skip: bugs_found += ' {0:>8} {1}\n'.format(value, key) basic_stats_message = files_analyzed + phase_times + bugs_found + '\n' return basic_stats_message def get_buck_stats(): trace_filename = os.path.join( DEFAULT_BUCK_OUT, 'log', 'traces', 'build.trace' ) ARGS = 'args' SUCCESS_STATUS = 'success_type' buck_stats = {} try: trace = utils.load_json_from_path(trace_filename) for t in trace: if SUCCESS_STATUS in t[ARGS]: status = t[ARGS][SUCCESS_STATUS] count = buck_stats.get(status, 0) buck_stats[status] = count + 1 buck_stats_message = 'Buck build statistics:\n\n' for key, value in sorted(buck_stats.items()): buck_stats_message += ' {0:>8} {1}\n'.format(value, key) return buck_stats_message except IOError as e: logging.error('Caught %s: %s' % (e.__class__.__name__, str(e))) logging.error(traceback.format_exc()) return '' class NotFoundInJar(Exception): pass def load_stats(opened_jar): try: return json.loads(opened_jar.read(INFER_STATS).decode()) except KeyError as e: raise NotFoundInJar def load_csv_report(opened_jar): try: sio = io.StringIO(opened_jar.read(INFER_CSV_REPORT).decode()) return list(utils.locale_csv_reader(sio)) except KeyError as e: raise NotFoundInJar def load_json_report(opened_jar): try: return json.loads(opened_jar.read(INFER_JSON_REPORT).decode()) except KeyError as e: raise NotFoundInJar def get_output_jars(targets): if len(targets) == 0: return [] else: audit_output = subprocess.check_output( ['buck', 'audit', 'classpath'] + targets) classpath_jars = audit_output.strip().split('\n') return filter(os.path.isfile, classpath_jars) def collect_results(args, start_time, targets): """Walks through buck-gen, collects results for the different buck targets and stores them in in args.infer_out/results.csv. """ buck_stats = get_buck_stats() logging.info(buck_stats) with open(os.path.join(args.infer_out, ANALYSIS_SUMMARY_OUTPUT), 'w') as f: f.write(buck_stats) all_csv_rows = set() all_json_rows = set() headers = [] stats = init_stats(args, start_time) accumulation_whitelist = list(map(re.compile, [ '^cores$', '^time$', '^start_time$', '.*_pc', ])) expected_analyzer = stats['normal']['analyzer'] expected_version = stats['normal']['infer_version'] for path in get_output_jars(targets): try: with zipfile.ZipFile(path) as jar: # Accumulate integers and float values target_stats = load_stats(jar) found_analyzer = target_stats['normal']['analyzer'] found_version = target_stats['normal']['infer_version'] if found_analyzer != expected_analyzer \ or found_version != expected_version: continue else: for type_k in ['int', 'float']: items = target_stats.get(type_k, {}).items() for key, value in items: if not any(map(lambda r: r.match(key), accumulation_whitelist)): old_value = stats[type_k].get(key, 0) stats[type_k][key] = old_value + value csv_rows = load_csv_report(jar) if len(csv_rows) > 0: headers.append(csv_rows[0]) for row in csv_rows[1:]: all_csv_rows.add(tuple(row)) json_rows = load_json_report(jar) for row in json_rows: all_json_rows.add(json.dumps(row)) # Override normals stats['normal'].update(target_stats.get('normal', {})) except NotFoundInJar: pass except zipfile.BadZipfile: logging.warn('Bad zip file %s', path) csv_report = os.path.join(args.infer_out, config.CSV_REPORT_FILENAME) json_report = os.path.join(args.infer_out, config.JSON_REPORT_FILENAME) bugs_out = os.path.join(args.infer_out, config.BUGS_FILENAME) if len(headers) > 1: if any(map(lambda x: x != headers[0], headers)): raise Exception('Inconsistent reports found') # Convert all float values to integer values for key, value in stats.get('float', {}).items(): stats['int'][key] = int(round(value)) # Delete the float entries before exporting the results del(stats['float']) with open(csv_report, 'w') as report: if len(headers) > 0: writer = csv.writer(report) all_csv_rows = [list(row) for row in all_csv_rows] writer.writerows([headers[0]] + all_csv_rows) report.flush() with open(json_report, 'w') as report: json_string = '[' json_string += ','.join(all_json_rows) json_string += ']' report.write(json_string) report.flush() print('\n') xml_out = None if args.pmd_xml: xml_out = os.path.join(args.infer_out, config.PMD_XML_FILENAME) issues.print_and_save_errors(json_report, bugs_out, xml_out) stats['int']['total_time'] = int(round(utils.elapsed_time(start_time))) store_performances_csv(args.infer_out, stats) stats_filename = os.path.join(args.infer_out, config.STATS_FILENAME) utils.dump_json_to_path(stats, stats_filename) basic_stats = get_basic_stats(stats) if args.print_harness: harness_code = get_harness_code() basic_stats += harness_code logging.info(basic_stats) with open(os.path.join(args.infer_out, ANALYSIS_SUMMARY_OUTPUT), 'a') as f: f.write(basic_stats) def cleanup(temp_files): """Removes the temporary infer files. """ for file in temp_files: try: logging.info('Removing %s' % file) if os.path.isdir(file): shutil.rmtree(file) else: os.unlink(file) except IOError: logging.error('Could not remove %s' % file) parser = argparse.ArgumentParser() parser.add_argument('--build-report', metavar='PATH', type=utils.decode) parser.add_argument('--deep', action='store_true') parser.add_argument('--keep-going', action='store_true') parser.add_argument('--load-limit', '-L') parser.add_argument('--no-cache', action='store_true') parser.add_argument('--profile', action='store_true') parser.add_argument('--shallow', action='store_true') parser.add_argument('--num-threads', '-j', metavar='N') parser.add_argument('--verbose', '-v', metavar='N', type=int) parser.add_argument('targets', nargs='*', metavar='target', help='Build targets to analyze') class UnsuportedBuckCommand(Exception): pass def parse_buck_command(args): build_keyword = 'build' if build_keyword in args and len(args[args.index(build_keyword):]) > 1: next_index = args.index(build_keyword) + 1 buck_args = args[next_index:] parsed_args = parser.parse_args(buck_args) base_cmd_without_targets = [p for p in buck_args if p not in parsed_args.targets] base_cmd = ['buck', build_keyword] + base_cmd_without_targets return base_cmd, parsed_args else: raise UnsuportedBuckCommand(args) class Wrapper: def __init__(self, infer_args, buck_cmd): self.timer = utils.Timer(logging.info) # The reactive mode is not yet supported if infer_args.reactive: sys.stderr.write( 'Reactive is not supported for Java Buck project. Exiting.\n') sys.exit(1) self.infer_args = infer_args self.timer.start('Computing library targets') base_cmd, buck_args = parse_buck_command(buck_cmd) self.buck_args = buck_args self.normalized_targets = get_normalized_targets( buck_args.targets) self.buck_cmd = base_cmd + self.normalized_targets self.timer.stop('%d targets computed', len(self.normalized_targets)) def _collect_results(self, start_time): self.timer.start('Collecting results ...') collect_results(self.infer_args, start_time, self.normalized_targets) self.timer.stop('Done') def run(self): temp_files = [] start_time = time.time() try: logging.info('Starting the analysis') if not os.path.isdir(self.infer_args.infer_out): os.mkdir(self.infer_args.infer_out) self.timer.start('Preparing build ...') temp_files2, infer_script = prepare_build(self.infer_args) temp_files += temp_files2 self.timer.stop('Build prepared') if len(self.normalized_targets) == 0: logging.info('Nothing to analyze') else: self.timer.start('Running Buck ...') javac_config = ['--config', 'tools.javac=' + infer_script] buck_cmd = self.buck_cmd + javac_config subprocess.check_call(buck_cmd) self.timer.stop('Buck finished') self._collect_results(start_time) return os.EX_OK except KeyboardInterrupt as e: self.timer.stop('Exiting') sys.exit(0) except subprocess.CalledProcessError as e: if self.buck_args.keep_going: print('Buck failed, but continuing analysis because --keep-going was passed') self._collect_results(start_time) return os.EX_OK raise e finally: cleanup(temp_files)