(**************************************************************************) (* *) (* OCaml *) (* *) (* Xavier Leroy, projet Cristal, INRIA Rocquencourt *) (* *) (* Copyright 1996 Institut National de Recherche en Informatique et *) (* en Automatique. *) (* *) (* All rights reserved. This file is distributed under the terms of *) (* the GNU Lesser General Public License version 2.1, with the *) (* special exception on linking described in the file LICENSE. *) (* *) (**************************************************************************) (* Sets over ordered types *) module type OrderedType = sig type t val compare: t -> t -> int end module type S = sig type elt type t include Comparer.S with type t := t val empty: t val is_empty: t -> bool val mem: elt -> t -> bool val add: elt -> t -> t val singleton: elt -> t val remove: elt -> t -> t val union: t -> t -> t val inter: t -> t -> t val disjoint: t -> t -> bool val diff: t -> t -> t val compare: t -> t -> int module Provide_equal (_ : sig type t = elt [@@deriving equal] end) : sig type t [@@deriving equal] end with type t := t val subset: t -> t -> bool val iter: (elt -> unit) -> t -> unit val map: (elt -> elt) -> t -> t val fold: (elt -> 'a -> 'a) -> t -> 'a -> 'a val for_all: (elt -> bool) -> t -> bool val exists: (elt -> bool) -> t -> bool val filter: (elt -> bool) -> t -> t val filter_map: (elt -> elt option) -> t -> t val partition: (elt -> bool) -> t -> t * t val cardinal: t -> int val elements: t -> elt list val min_elt: t -> elt val min_elt_opt: t -> elt option val max_elt: t -> elt val max_elt_opt: t -> elt option val choose: t -> elt val choose_opt: t -> elt option val split: elt -> t -> t * bool * t val find: elt -> t -> elt val find_opt: elt -> t -> elt option val find_first: (elt -> bool) -> t -> elt val find_first_opt: (elt -> bool) -> t -> elt option val find_last: (elt -> bool) -> t -> elt val find_last_opt: (elt -> bool) -> t -> elt option val of_list: elt list -> t val to_seq_from : elt -> t -> elt Seq.t val to_seq : t -> elt Seq.t val add_seq : elt Seq.t -> t -> t val of_seq : elt Seq.t -> t module Provide_sexp_of (_ : sig type t = elt [@@deriving sexp_of] end) : sig type t [@@deriving sexp_of] end with type t := t module Provide_of_sexp (_ : sig type t = elt [@@deriving of_sexp] end) : sig type t [@@deriving of_sexp] end with type t := t end module T = struct type ('elt, 'cmp) t = | Empty | Node of {l: ('elt, 'cmp) t; v: 'elt; r: ('elt, 'cmp) t; h: int} (* Sets are represented by balanced binary trees (the heights of the children differ by at most 2 *) type ('elt, 'cmp) enumeration = | End | More of 'elt * ('elt, 'cmp) t * ('elt, 'cmp) enumeration let rec cons_enum s e = match s with Empty -> e | Node{l; v; r} -> cons_enum l (More(v, r, e)) let compare compare_elt _ s1 s2 = let rec compare_aux e1 e2 = match (e1, e2) with (End, End) -> 0 | (End, _) -> -1 | (_, End) -> 1 | (More(v1, r1, e1), More(v2, r2, e2)) -> let c = compare_elt v1 v2 in if c <> 0 then c else compare_aux (cons_enum r1 e1) (cons_enum r2 e2) in compare_aux (cons_enum s1 End) (cons_enum s2 End) type 'compare_elt compare [@@deriving compare, equal, sexp] end include T let equal equal_elt _ s1 s2 = let rec equal_aux e1 e2 = match (e1, e2) with (End, End) -> true | (End, _) -> false | (_, End) -> false | (More(v1, r1, e1), More(v2, r2, e2)) -> equal_elt v1 v2 && equal_aux (cons_enum r1 e1) (cons_enum r2 e2) in equal_aux (cons_enum s1 End) (cons_enum s2 End) let rec elements_aux accu = function Empty -> accu | Node{l; v; r} -> elements_aux (v :: elements_aux accu r) l let elements s = elements_aux [] s let sexp_of_t sexp_of_elt _ s = elements s |> Sexplib.Conv.sexp_of_list sexp_of_elt let height = function Empty -> 0 | Node {h} -> h (* Creates a new node with left son l, value v and right son r. We must have all elements of l < v < all elements of r. l and r must be balanced and | height l - height r | <= 2. Inline expansion of height for better speed. *) let create l v r = let hl = match l with Empty -> 0 | Node {h} -> h in let hr = match r with Empty -> 0 | Node {h} -> h in Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)} let of_sorted_list l = let rec sub n l = match n, l with | 0, l -> Empty, l | 1, x0 :: l -> Node {l=Empty; v=x0; r=Empty; h=1}, l | 2, x0 :: x1 :: l -> Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Empty; h=2}, l | 3, x0 :: x1 :: x2 :: l -> Node{l=Node{l=Empty; v=x0; r=Empty; h=1}; v=x1; r=Node{l=Empty; v=x2; r=Empty; h=1}; h=2}, l | n, l -> let nl = n / 2 in let left, l = sub nl l in match l with | [] -> assert false | mid :: l -> let right, l = sub (n - nl - 1) l in create left mid right, l in fst (sub (List.length l) l) let t_of_sexp elt_of_sexp _ s = Sexplib.Conv.list_of_sexp elt_of_sexp s |> of_sorted_list module Make(Ord: Comparer.S) = struct module Ord = struct include Ord let compare = (comparer :> t -> t -> int) end type elt = Ord.t include (Comparer.Apply (T) (Ord)) module Provide_equal (Elt : sig type t = Ord.t [@@deriving equal] end) = struct let equal l r = equal Elt.equal Ord.equal_compare l r end module Provide_sexp_of (Elt : sig type t = Ord.t [@@deriving sexp_of] end) = struct let sexp_of_t s = sexp_of_t Elt.sexp_of_t Ord.sexp_of_compare s end module Provide_of_sexp (Elt : sig type t = Ord.t [@@deriving of_sexp] end) = struct let t_of_sexp s = t_of_sexp Elt.t_of_sexp Ord.compare_of_sexp s end (* Same as create, but performs one step of rebalancing if necessary. Assumes l and r balanced and | height l - height r | <= 3. Inline expansion of create for better speed in the most frequent case where no rebalancing is required. *) let bal l v r = let hl = match l with Empty -> 0 | Node {h} -> h in let hr = match r with Empty -> 0 | Node {h} -> h in if hl > hr + 2 then begin match l with Empty -> invalid_arg "Set.bal" | Node{l=ll; v=lv; r=lr} -> if height ll >= height lr then create ll lv (create lr v r) else begin match lr with Empty -> invalid_arg "Set.bal" | Node{l=lrl; v=lrv; r=lrr}-> create (create ll lv lrl) lrv (create lrr v r) end end else if hr > hl + 2 then begin match r with Empty -> invalid_arg "Set.bal" | Node{l=rl; v=rv; r=rr} -> if height rr >= height rl then create (create l v rl) rv rr else begin match rl with Empty -> invalid_arg "Set.bal" | Node{l=rll; v=rlv; r=rlr} -> create (create l v rll) rlv (create rlr rv rr) end end else Node{l; v; r; h=(if hl >= hr then hl + 1 else hr + 1)} (* Insertion of one element *) let rec add x = function Empty -> Node{l=Empty; v=x; r=Empty; h=1} | Node{l; v; r} as t -> let c = Ord.compare x v in if c = 0 then t else if c < 0 then let ll = add x l in if l == ll then t else bal ll v r else let rr = add x r in if r == rr then t else bal l v rr let singleton x = Node{l=Empty; v=x; r=Empty; h=1} (* Beware: those two functions assume that the added v is *strictly* smaller (or bigger) than all the present elements in the tree; it does not test for equality with the current min (or max) element. Indeed, they are only used during the "join" operation which respects this precondition. *) let rec add_min_element x = function | Empty -> singleton x | Node {l; v; r} -> bal (add_min_element x l) v r let rec add_max_element x = function | Empty -> singleton x | Node {l; v; r} -> bal l v (add_max_element x r) (* Same as create and bal, but no assumptions are made on the relative heights of l and r. *) let rec join l v r = match (l, r) with (Empty, _) -> add_min_element v r | (_, Empty) -> add_max_element v l | (Node{l=ll; v=lv; r=lr; h=lh}, Node{l=rl; v=rv; r=rr; h=rh}) -> if lh > rh + 2 then bal ll lv (join lr v r) else if rh > lh + 2 then bal (join l v rl) rv rr else create l v r (* Smallest and greatest element of a set *) let rec min_elt = function Empty -> raise Not_found | Node{l=Empty; v} -> v | Node{l} -> min_elt l let rec min_elt_opt = function Empty -> None | Node{l=Empty; v} -> Some v | Node{l} -> min_elt_opt l let rec max_elt = function Empty -> raise Not_found | Node{v; r=Empty} -> v | Node{r} -> max_elt r let rec max_elt_opt = function Empty -> None | Node{v; r=Empty} -> Some v | Node{r} -> max_elt_opt r (* Remove the smallest element of the given set *) let rec remove_min_elt = function Empty -> invalid_arg "Set.remove_min_elt" | Node{l=Empty; r} -> r | Node{l; v; r} -> bal (remove_min_elt l) v r (* Merge two trees l and r into one. All elements of l must precede the elements of r. Assume | height l - height r | <= 2. *) let merge t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> bal t1 (min_elt t2) (remove_min_elt t2) (* Merge two trees l and r into one. All elements of l must precede the elements of r. No assumption on the heights of l and r. *) let concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> join t1 (min_elt t2) (remove_min_elt t2) (* Splitting. split x s returns a triple (l, present, r) where - l is the set of elements of s that are < x - r is the set of elements of s that are > x - present is false if s contains no element equal to x, or true if s contains an element equal to x. *) let rec split x = function Empty -> (Empty, false, Empty) | Node{l; v; r} -> let c = Ord.compare x v in if c = 0 then (l, true, r) else if c < 0 then let (ll, pres, rl) = split x l in (ll, pres, join rl v r) else let (lr, pres, rr) = split x r in (join l v lr, pres, rr) (* Implementation of the set operations *) let empty = Empty let is_empty = function Empty -> true | _ -> false let rec mem x = function Empty -> false | Node{l; v; r} -> let c = Ord.compare x v in c = 0 || mem x (if c < 0 then l else r) let rec remove x = function Empty -> Empty | (Node{l; v; r} as t) -> let c = Ord.compare x v in if c = 0 then merge l r else if c < 0 then let ll = remove x l in if l == ll then t else bal ll v r else let rr = remove x r in if r == rr then t else bal l v rr let rec union s1 s2 = match (s1, s2) with (Empty, t2) -> t2 | (t1, Empty) -> t1 | (Node{l=l1; v=v1; r=r1; h=h1}, Node{l=l2; v=v2; r=r2; h=h2}) -> if h1 >= h2 then if h2 = 1 then add v2 s1 else begin let (l2, _, r2) = split v1 s2 in join (union l1 l2) v1 (union r1 r2) end else if h1 = 1 then add v1 s2 else begin let (l1, _, r1) = split v2 s1 in join (union l1 l2) v2 (union r1 r2) end let rec inter s1 s2 = match (s1, s2) with (Empty, _) -> Empty | (_, Empty) -> Empty | (Node{l=l1; v=v1; r=r1}, t2) -> match split v1 t2 with (l2, false, r2) -> concat (inter l1 l2) (inter r1 r2) | (l2, true, r2) -> join (inter l1 l2) v1 (inter r1 r2) (* Same as split, but compute the left and right subtrees only if the pivot element is not in the set. The right subtree is computed on demand. *) type split_bis = | Found | NotFound of t * (unit -> t) let rec split_bis x = function Empty -> NotFound (Empty, (fun () -> Empty)) | Node{l; v; r; _} -> let c = Ord.compare x v in if c = 0 then Found else if c < 0 then match split_bis x l with | Found -> Found | NotFound (ll, rl) -> NotFound (ll, (fun () -> join (rl ()) v r)) else match split_bis x r with | Found -> Found | NotFound (lr, rr) -> NotFound (join l v lr, rr) let rec disjoint s1 s2 = match (s1, s2) with (Empty, _) | (_, Empty) -> true | (Node{l=l1; v=v1; r=r1}, t2) -> if s1 == s2 then false else match split_bis v1 t2 with NotFound(l2, r2) -> disjoint l1 l2 && disjoint r1 (r2 ()) | Found -> false let rec diff s1 s2 = match (s1, s2) with (Empty, _) -> Empty | (t1, Empty) -> t1 | (Node{l=l1; v=v1; r=r1}, t2) -> match split v1 t2 with (l2, false, r2) -> join (diff l1 l2) v1 (diff r1 r2) | (l2, true, r2) -> concat (diff l1 l2) (diff r1 r2) let rec subset s1 s2 = match (s1, s2) with Empty, _ -> true | _, Empty -> false | Node {l=l1; v=v1; r=r1}, (Node {l=l2; v=v2; r=r2} as t2) -> let c = Ord.compare v1 v2 in if c = 0 then subset l1 l2 && subset r1 r2 else if c < 0 then subset (Node {l=l1; v=v1; r=Empty; h=0}) l2 && subset r1 t2 else subset (Node {l=Empty; v=v1; r=r1; h=0}) r2 && subset l1 t2 let rec iter f = function Empty -> () | Node{l; v; r} -> iter f l; f v; iter f r let rec fold f s accu = match s with Empty -> accu | Node{l; v; r} -> fold f r (f v (fold f l accu)) let rec for_all p = function Empty -> true | Node{l; v; r} -> p v && for_all p l && for_all p r let rec exists p = function Empty -> false | Node{l; v; r} -> p v || exists p l || exists p r let rec filter p = function Empty -> Empty | (Node{l; v; r}) as t -> (* call [p] in the expected left-to-right order *) let l' = filter p l in let pv = p v in let r' = filter p r in if pv then if l==l' && r==r' then t else join l' v r' else concat l' r' let rec partition p = function Empty -> (Empty, Empty) | Node{l; v; r} -> (* call [p] in the expected left-to-right order *) let (lt, lf) = partition p l in let pv = p v in let (rt, rf) = partition p r in if pv then (join lt v rt, concat lf rf) else (concat lt rt, join lf v rf) let rec cardinal = function Empty -> 0 | Node{l; r} -> cardinal l + 1 + cardinal r let elements = elements let choose = min_elt let choose_opt = min_elt_opt let rec find x = function Empty -> raise Not_found | Node{l; v; r} -> let c = Ord.compare x v in if c = 0 then v else find x (if c < 0 then l else r) let rec find_first_aux v0 f = function Empty -> v0 | Node{l; v; r} -> if f v then find_first_aux v f l else find_first_aux v0 f r let rec find_first f = function Empty -> raise Not_found | Node{l; v; r} -> if f v then find_first_aux v f l else find_first f r let rec find_first_opt_aux v0 f = function Empty -> Some v0 | Node{l; v; r} -> if f v then find_first_opt_aux v f l else find_first_opt_aux v0 f r let rec find_first_opt f = function Empty -> None | Node{l; v; r} -> if f v then find_first_opt_aux v f l else find_first_opt f r let rec find_last_aux v0 f = function Empty -> v0 | Node{l; v; r} -> if f v then find_last_aux v f r else find_last_aux v0 f l let rec find_last f = function Empty -> raise Not_found | Node{l; v; r} -> if f v then find_last_aux v f r else find_last f l let rec find_last_opt_aux v0 f = function Empty -> Some v0 | Node{l; v; r} -> if f v then find_last_opt_aux v f r else find_last_opt_aux v0 f l let rec find_last_opt f = function Empty -> None | Node{l; v; r} -> if f v then find_last_opt_aux v f r else find_last_opt f l let rec find_opt x = function Empty -> None | Node{l; v; r} -> let c = Ord.compare x v in if c = 0 then Some v else find_opt x (if c < 0 then l else r) let try_join l v r = (* [join l v r] can only be called when (elements of l < v < elements of r); use [try_join l v r] when this property may not hold, but you hope it does hold in the common case *) if (l = Empty || Ord.compare (max_elt l) v < 0) && (r = Empty || Ord.compare v (min_elt r) < 0) then join l v r else union l (add v r) let rec map f = function | Empty -> Empty | Node{l; v; r} as t -> (* enforce left-to-right evaluation order *) let l' = map f l in let v' = f v in let r' = map f r in if l == l' && v == v' && r == r' then t else try_join l' v' r' let try_concat t1 t2 = match (t1, t2) with (Empty, t) -> t | (t, Empty) -> t | (_, _) -> try_join t1 (min_elt t2) (remove_min_elt t2) let rec filter_map f = function | Empty -> Empty | Node{l; v; r} as t -> (* enforce left-to-right evaluation order *) let l' = filter_map f l in let v' = f v in let r' = filter_map f r in begin match v' with | Some v' -> if l == l' && v == v' && r == r' then t else try_join l' v' r' | None -> try_concat l' r' end let of_list l = match l with | [] -> empty | [x0] -> singleton x0 | [x0; x1] -> add x1 (singleton x0) | [x0; x1; x2] -> add x2 (add x1 (singleton x0)) | [x0; x1; x2; x3] -> add x3 (add x2 (add x1 (singleton x0))) | [x0; x1; x2; x3; x4] -> add x4 (add x3 (add x2 (add x1 (singleton x0)))) | _ -> of_sorted_list (List.sort_uniq ~cmp:Ord.compare l) let add_seq i m = Seq.fold_left (fun s x -> add x s) m i let of_seq i = add_seq i empty let rec seq_of_enum_ c () = match c with | End -> Seq.Nil | More (x, t, rest) -> Seq.Cons (x, seq_of_enum_ (cons_enum t rest)) let to_seq c = seq_of_enum_ (cons_enum c End) let to_seq_from low s = let rec aux low s c = match s with | Empty -> c | Node {l; r; v; _} -> begin match Ord.compare v low with | 0 -> More (v, r, c) | n when n<0 -> aux low r c | _ -> aux low l (More (v, r, c)) end in seq_of_enum_ (aux low s End) end