(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) open! IStd open! AbstractDomain.Types open Ints open Bounds module DegreeKind = struct type t = Linear | Log [@@deriving compare] let compute d i = match d with | Linear -> i | Log -> ( try NonNegativeInt.log2_ceil_exn i with Invalid_argument _ -> NonNegativeInt.zero ) let pp_hole pp f d x = match d with Linear -> pp f x | Log -> Format.fprintf f "log(%a)" pp x end module Degree = struct type t = {linear: NonNegativeInt.t; log: NonNegativeInt.t} [@@deriving compare] let zero = {linear= NonNegativeInt.zero; log= NonNegativeInt.zero} let succ (k : DegreeKind.t) d = match k with | Linear -> {d with linear= NonNegativeInt.succ d.linear} | Log -> {d with log= NonNegativeInt.succ d.log} let encode_to_int d = (* Constructs an integer compatible with compare. We assume that degrees won't go exceed 100 ;-) *) (NonNegativeInt.to_int_exn d.linear * 100) + NonNegativeInt.to_int_exn d.log let pp f d = NonNegativeInt.pp f d.linear ; if not (NonNegativeInt.is_zero d.log) then F.fprintf f " + %a%slog" NonNegativeInt.pp d.log SpecialChars.dot_operator end module NonNegativeBoundWithDegreeKind = struct type t = {degree_kind: DegreeKind.t; symbol: NonNegativeBound.t} [@@deriving compare] let classify ({degree_kind; symbol} as self) = match NonNegativeBound.classify symbol with | Constant c -> Constant (DegreeKind.compute degree_kind c) | Symbolic _ -> Symbolic self | ValTop trace -> ValTop trace let mask_min_max_constant {degree_kind; symbol} = {degree_kind; symbol= NonNegativeBound.mask_min_max_constant symbol} let make degree_kind symbol = {degree_kind; symbol} let int_lb {degree_kind; symbol} = NonNegativeBound.int_lb symbol |> DegreeKind.compute degree_kind let int_ub {degree_kind; symbol} = NonNegativeBound.int_ub symbol |> Option.map ~f:(DegreeKind.compute degree_kind) let subst callee_pname location {degree_kind; symbol} eval = match NonNegativeBound.subst callee_pname location symbol eval with | Constant c -> Constant (DegreeKind.compute degree_kind c) | Symbolic symbol -> Symbolic {degree_kind; symbol} | ValTop trace -> Logging.d_printfln_escaped "subst(%a) became top." (NonNegativeBound.pp ~hum:false) symbol ; ValTop trace let pp ~hum f {degree_kind; symbol} = DegreeKind.pp_hole (NonNegativeBound.pp ~hum) f degree_kind symbol let degree_kind {degree_kind} = degree_kind let symbol {symbol} = symbol let split_mult {degree_kind; symbol} = Option.map (NonNegativeBound.split_mult symbol) ~f:(fun (s1, s2) -> (make degree_kind s1, make degree_kind s2) ) let make_err_trace_symbol symbol = NonNegativeBound.make_err_trace symbol end let pp_magic_parentheses pp fmt x = let s = F.asprintf "%a" pp x in if String.contains s ' ' then F.fprintf fmt "(%s)" s else F.pp_print_string fmt s module NonNegativeNonTopPolynomial = struct module Key = struct type t = | NonNegativeBoundWithDegreeKind of NonNegativeBoundWithDegreeKind.t | FuncPtr of Symb.SymbolPath.partial [@@deriving compare] let lift_valclass = function | Symbolic s -> Symbolic (NonNegativeBoundWithDegreeKind s) | (Constant _ | ValTop _) as x -> x let pp_hum ~hum f = function | NonNegativeBoundWithDegreeKind bound -> pp_magic_parentheses (NonNegativeBoundWithDegreeKind.pp ~hum) f bound | FuncPtr partial -> F.fprintf f "|%a|" Symb.SymbolPath.pp_partial partial let pp = pp_hum ~hum:true let is_func_ptr = function FuncPtr _ -> true | NonNegativeBoundWithDegreeKind _ -> false end module M = struct include PrettyPrintable.MakePPMap (Key) let increasing_union ~f m1 m2 = union (fun _ v1 v2 -> Some (f v1 v2)) m1 m2 let zip m1 m2 = merge (fun _ opt1 opt2 -> Some (opt1, opt2)) m1 m2 let fold_no_key m ~init ~f = let f _k v acc = f acc v in fold f m init let le ~le_elt m1 m2 = match merge (fun _ v1_opt v2_opt -> match (v1_opt, v2_opt) with | Some _, None -> raise Exit | Some lhs, Some rhs when not (le_elt ~lhs ~rhs) -> raise Exit | _ -> None ) m1 m2 with | _ -> true | exception Exit -> false let xcompare ~xcompare_elt ~lhs ~rhs = (* TODO: avoid creating zipped map *) zip lhs rhs |> PartialOrder.container ~fold:fold_no_key ~xcompare_elt:(PartialOrder.of_opt ~xcompare_elt) end (** If x < y < z then [2 + 3 * x + 4 * x ^ 2 + x * y + 7 * y ^ 2 * z] is represented by {[ {const= 2; terms= { x -> {const= 3; terms= { x -> {const= 4; terms={}}, y -> {const= 1; terms={}} }}, y -> {const= 0; terms= { y -> {const= 0; terms= { z -> {const= 7; terms={}} }} }} }} ]} The representation is a tree, each edge from a node to a child (terms) represents a multiplication by a symbol. If a node has a non-zero const, it represents the multiplication (of the path) by this constant. In the example above, we have the following paths: - [2] - [x * 3] - [x * x * 4] - [x * y * 1] - [y * y * z * 7] Invariants: - except for the root, [terms <> {} || const <> 0] - symbols children of a term are 'smaller' than its self symbol - contents of terms are not zero - symbols in terms are only symbolic values *) type poly = {const: NonNegativeInt.t; terms: poly M.t} [@@deriving compare] type t = {poly: poly; autoreleasepool_trace: BoundTrace.t option} [@@deriving compare] let get_autoreleasepool_trace {autoreleasepool_trace} = autoreleasepool_trace let rec degree_poly {terms} = M.fold (fun t p cur_max -> let p = degree_poly p in let degree_term = match t with | NonNegativeBoundWithDegreeKind t -> Degree.succ (NonNegativeBoundWithDegreeKind.degree_kind t) p | FuncPtr _ -> p in if Degree.compare degree_term cur_max > 0 then degree_term else cur_max ) terms Degree.zero let join_autoreleasepool_trace poly_x poly_y x y = Option.merge x y ~f:(fun x y -> if Degree.compare (degree_poly poly_x) (degree_poly poly_y) >= 0 then x else y ) let poly_of_non_negative_int : NonNegativeInt.t -> poly = fun const -> {const; terms= M.empty} let of_non_negative_int : ?autoreleasepool_trace:BoundTrace.t -> NonNegativeInt.t -> t = fun ?autoreleasepool_trace const -> {poly= poly_of_non_negative_int const; autoreleasepool_trace} let zero_poly = poly_of_non_negative_int NonNegativeInt.zero let zero = of_non_negative_int NonNegativeInt.zero let one_poly = poly_of_non_negative_int NonNegativeInt.one let one ?autoreleasepool_trace () = of_non_negative_int ?autoreleasepool_trace NonNegativeInt.one let of_int_exn : ?autoreleasepool_trace:BoundTrace.t -> int -> t = fun ?autoreleasepool_trace i -> i |> NonNegativeInt.of_int_exn |> of_non_negative_int ?autoreleasepool_trace let is_zero_poly : poly -> bool = fun {const; terms} -> NonNegativeInt.is_zero const && M.is_empty terms let is_zero : t -> bool = fun {poly} -> is_zero_poly poly let is_one_poly : poly -> bool = fun {const; terms} -> NonNegativeInt.is_one const && M.is_empty terms let is_one : t -> bool = fun {poly} -> is_one_poly poly let is_constant : t -> bool = fun {poly= {terms}} -> M.is_empty terms let is_symbolic : t -> bool = fun p -> not (is_constant p) let rec plus_poly : poly -> poly -> poly = fun p1 p2 -> { const= NonNegativeInt.(p1.const + p2.const) ; terms= M.increasing_union ~f:plus_poly p1.terms p2.terms } let plus : t -> t -> t = fun p1 p2 -> { poly= plus_poly p1.poly p2.poly ; autoreleasepool_trace= join_autoreleasepool_trace p1.poly p2.poly p1.autoreleasepool_trace p2.autoreleasepool_trace } let rec mult_const_positive : poly -> PositiveInt.t -> poly = fun {const; terms} c -> { const= NonNegativeInt.(const * (c :> NonNegativeInt.t)) ; terms= M.map (fun p -> mult_const_positive p c) terms } let mult_const_poly : poly -> NonNegativeInt.t -> poly = fun p c -> match PositiveInt.of_big_int (c :> Z.t) with | None -> zero_poly | Some c -> mult_const_positive p c (* (c + r * R + s * S + t * T) x s = 0 + r * (R x s) + s * (c + s * S + t * T) *) let rec mult_symb_poly : poly -> Key.t -> poly = fun {const; terms} s -> let less_than_s, equal_s_opt, greater_than_s = M.split s terms in let less_than_s = M.map (fun p -> mult_symb_poly p s) less_than_s in let s_term = let terms = match equal_s_opt with | None -> greater_than_s | Some equal_s_p -> M.add s equal_s_p greater_than_s in {const; terms} in let terms = if is_zero_poly s_term then less_than_s else M.add s s_term less_than_s in {const= NonNegativeInt.zero; terms} let rec mult_poly : poly -> poly -> poly = fun p1 p2 -> if is_zero_poly p1 || is_zero_poly p2 then zero_poly else if is_one_poly p1 then p2 else if is_one_poly p2 then p1 else mult_const_poly p1 p2.const |> M.fold (fun s p acc -> plus_poly (mult_symb_poly (mult_poly p p1) s) acc) p2.terms let mult_common p1 p2 ~join_autoreleasepool_trace = let poly = mult_poly p1.poly p2.poly in let autoreleasepool_trace = if is_zero_poly poly then None else join_autoreleasepool_trace p1.poly p2.poly p1.autoreleasepool_trace p2.autoreleasepool_trace in {poly; autoreleasepool_trace} let mult p1 p2 = mult_common p1 p2 ~join_autoreleasepool_trace (** It takes only the trace of the body part, because the trace for the iteration number will be taken later from symbolic values. *) let mult_loop ~iter ~body = mult_common iter body ~join_autoreleasepool_trace:(fun _iter_poly _body_poly _iter body -> body ) let singleton key = { poly= {const= NonNegativeInt.zero; terms= M.singleton key one_poly} ; autoreleasepool_trace= None } let of_func_ptr path = singleton (FuncPtr path) let rec of_valclass : (NonNegativeInt.t, Key.t, 't) valclass -> ('t, t, 't) below_above = function | ValTop trace -> Above trace | Constant i -> Val (of_non_negative_int i) | Symbolic (NonNegativeBoundWithDegreeKind s as key) -> ( match NonNegativeBoundWithDegreeKind.split_mult s with | None -> Val (singleton key) | Some (s1, s2) -> ( match ( of_valclass (Key.lift_valclass (NonNegativeBoundWithDegreeKind.classify s1)) , of_valclass (Key.lift_valclass (NonNegativeBoundWithDegreeKind.classify s2)) ) with | Val s1, Val s2 -> Val (mult s1 s2) | Below _, _ | _, Below _ -> assert false | (Above _ as t), _ | _, (Above _ as t) -> t ) ) | Symbolic (FuncPtr _ as key) -> Val (singleton key) let rec int_lb {const; terms} = M.fold (fun symbol polynomial acc -> match symbol with | NonNegativeBoundWithDegreeKind symbol -> let s_lb = NonNegativeBoundWithDegreeKind.int_lb symbol in let p_lb = int_lb polynomial in NonNegativeInt.((s_lb * p_lb) + acc) | FuncPtr _ -> acc ) terms const let rec int_ub {const; terms} = M.fold (fun symbol polynomial acc -> match symbol with | NonNegativeBoundWithDegreeKind symbol -> Option.bind acc ~f:(fun acc -> Option.bind (NonNegativeBoundWithDegreeKind.int_ub symbol) ~f:(fun s_ub -> Option.map (int_ub polynomial) ~f:(fun p_ub -> NonNegativeInt.((s_ub * p_ub) + acc) ) ) ) | FuncPtr _ -> acc ) terms (Some const) (* assumes symbols are not comparable *) let rec leq_poly : lhs:poly -> rhs:poly -> bool = fun ~lhs ~rhs -> phys_equal lhs rhs || NonNegativeInt.leq ~lhs:lhs.const ~rhs:rhs.const && M.le ~le_elt:leq_poly lhs.terms rhs.terms || Option.exists (int_ub lhs) ~f:(fun lhs_ub -> NonNegativeInt.leq ~lhs:lhs_ub ~rhs:(int_lb rhs) ) let leq ~lhs ~rhs = leq_poly ~lhs:lhs.poly ~rhs:rhs.poly let rec xcompare_poly ~lhs ~rhs = let cmp_const = PartialOrder.of_compare ~compare:NonNegativeInt.compare ~lhs:lhs.const ~rhs:rhs.const in let cmp_terms = M.xcompare ~xcompare_elt:xcompare_poly ~lhs:lhs.terms ~rhs:rhs.terms in PartialOrder.join cmp_const cmp_terms let xcompare ~lhs ~rhs = xcompare_poly ~lhs:lhs.poly ~rhs:rhs.poly let rec mask_min_max_constant_poly {const; terms} = { const ; terms= M.fold (fun s p acc -> let p' = mask_min_max_constant_poly p in match s with | NonNegativeBoundWithDegreeKind s -> M.update (NonNegativeBoundWithDegreeKind (NonNegativeBoundWithDegreeKind.mask_min_max_constant s)) (function | None -> Some p' | Some p -> if leq_poly ~lhs:p ~rhs:p' then Some p' else Some p ) acc | FuncPtr _ as key -> M.add key p' acc ) terms M.empty } let mask_min_max_constant x = {x with poly= mask_min_max_constant_poly x.poly} (* assumes symbols are not comparable *) (* TODO: improve this for comparable symbols *) let min_default_left : t -> t -> t = fun p1 p2 -> match xcompare ~lhs:p1 ~rhs:p2 with | `Equal | `LeftSmallerThanRight -> p1 | `RightSmallerThanLeft -> p2 | `NotComparable -> if is_constant p1 then p1 else if is_constant p2 then p2 else p1 let subst callee_pname location {poly; autoreleasepool_trace} eval_sym eval_func_ptrs get_closure_callee_cost ~default_closure_cost = let exception ReturnTop of (NonNegativeBoundWithDegreeKind.t * BoundTrace.t) in (* avoids top-lifting everything *) let rec subst_poly {const; terms} = M.fold (fun s p acc -> match s with | NonNegativeBoundWithDegreeKind s -> ( match NonNegativeBoundWithDegreeKind.subst callee_pname location s eval_sym with | Constant c -> ( match PositiveInt.of_big_int (c :> Z.t) with | None -> acc | Some c -> let p = subst_poly p in mult_const_positive p c |> plus_poly acc ) | ValTop trace -> let p = subst_poly p in if is_zero_poly p then acc else raise (ReturnTop (s, trace)) | Symbolic s -> let p = subst_poly p in mult_symb_poly p (NonNegativeBoundWithDegreeKind s) |> plus_poly acc ) | FuncPtr s -> let funcptr_p = let p = subst_poly p in match FuncPtr.Set.is_singleton_or_more (eval_func_ptrs s) with | Singleton (Closure {name}) -> let closure_p = match get_closure_callee_cost name with | Some {poly= closure_p} -> closure_p | None -> poly_of_non_negative_int default_closure_cost in mult_poly closure_p p | Singleton (Path path) -> mult_symb_poly p (FuncPtr path) | Empty | More -> mult_poly (poly_of_non_negative_int default_closure_cost) p in plus_poly acc funcptr_p ) terms (poly_of_non_negative_int const) in match subst_poly poly with | poly -> let autoreleasepool_trace = Option.map autoreleasepool_trace ~f:(BoundTrace.call ~callee_pname ~location) in Val {poly; autoreleasepool_trace} | exception ReturnTop s_trace -> Above s_trace let rec is_zero_degree_poly {const; terms} = NonNegativeInt.is_zero const && is_zero_degree_terms terms and is_zero_degree_terms terms = M.for_all (fun key v -> Key.is_func_ptr key || is_zero_degree_poly v) terms (** Emit a pair (d,t) where d is the degree of the polynomial and t is the first term with such degree. When calculating the degree, it ignores symbols of function pointer, so they are addressed as if zero cost. *) let degree_with_term {poly; autoreleasepool_trace} = let rec degree_with_term_poly {const; terms} = let degree_terms = M.fold (fun t p cur_max -> match (t, degree_with_term_poly p) with (* It ignores function pointers when calculating degree of polynomial, since their semantics is different to the other symbolic values. For example, when a function has a complexity of |fptr| where fptr is a function pointer, it does not make sense to say the function has a linear complexity. *) | FuncPtr _, _ -> cur_max | _, (_, p') when is_zero_poly p' -> cur_max | NonNegativeBoundWithDegreeKind b, (d, p') -> let d' = Degree.succ (NonNegativeBoundWithDegreeKind.degree_kind b) d in if Degree.compare d' (fst cur_max) > 0 then (d', mult_symb_poly p' t) else cur_max ) terms (Degree.zero, zero_poly) in if is_zero_poly (snd degree_terms) then if NonNegativeInt.is_zero const then (Degree.zero, zero_poly) else (Degree.zero, one_poly) else degree_terms in let d, poly = degree_with_term_poly poly in (d, {poly; autoreleasepool_trace}) let degree p = fst (degree_with_term p) let multiplication_sep = F.sprintf " %s " SpecialChars.multiplication_sign let pp_poly : hum:bool -> F.formatter -> poly -> unit = let add_symb s (((last_s, last_occ) as last), others) = if Int.equal 0 (Key.compare s last_s) then ((last_s, PositiveInt.succ last_occ), others) else ((s, PositiveInt.one), last :: others) in let pp_coeff fmt (c : NonNegativeInt.t) = if Z.(gt (c :> Z.t) one) then F.fprintf fmt "%a %s " NonNegativeInt.pp c SpecialChars.dot_operator in let pp_exp fmt (e : PositiveInt.t) = if Z.(gt (e :> Z.t) one) then PositiveInt.pp_exponent fmt e in let pp_symb_exp ~hum fmt (symb, exp) = F.fprintf fmt "%a%a" (Key.pp_hum ~hum) symb pp_exp exp in let pp_symbs ~hum fmt (last, others) = List.rev_append others [last] |> Pp.seq ~sep:multiplication_sep (pp_symb_exp ~hum) fmt in let rec pp_sub ~hum ~print_plus symbs fmt {const; terms} = let print_plus = if not (NonNegativeInt.is_zero const) then ( if print_plus then F.pp_print_string fmt " + " ; F.fprintf fmt "%a%a" pp_coeff const (pp_symbs ~hum) symbs ; true ) else print_plus in ( M.fold (fun s p print_plus -> if Config.cost_suppress_func_ptr && (Key.is_func_ptr s || is_zero_degree_poly p) then print_plus else ( pp_sub ~hum ~print_plus (add_symb s symbs) fmt p ; true ) ) terms print_plus : bool ) |> ignore in fun ~hum fmt {const; terms} -> let const_not_zero = not (NonNegativeInt.is_zero const) in if const_not_zero || M.is_empty terms || (Config.cost_suppress_func_ptr && is_zero_degree_terms terms) then NonNegativeInt.pp fmt const ; ( M.fold (fun s p print_plus -> if Config.cost_suppress_func_ptr && (Key.is_func_ptr s || is_zero_degree_poly p) then print_plus else ( pp_sub ~hum ~print_plus ((s, PositiveInt.one), []) fmt p ; true ) ) terms const_not_zero : bool ) |> ignore let pp : hum:bool -> F.formatter -> t -> unit = fun ~hum fmt {poly} -> pp_poly ~hum fmt poly let get_symbols p : NonNegativeBound.t list = let rec get_symbols_sub {terms} acc = M.fold (fun s p acc -> let acc = match s with | NonNegativeBoundWithDegreeKind s -> NonNegativeBoundWithDegreeKind.symbol s :: acc | FuncPtr _ -> acc in get_symbols_sub p acc ) terms acc in get_symbols_sub p.poly [] let polynomial_traces ?(is_autoreleasepool_trace = false) p = let traces = get_symbols p |> List.map ~f:NonNegativeBoundWithDegreeKind.make_err_trace_symbol in if is_autoreleasepool_trace then traces @ Option.value_map (get_autoreleasepool_trace p) ~default:[] ~f:(fun trace -> [("autorelease", BoundTrace.make_err_trace ~depth:0 trace)] ) else traces end module TopTrace = struct type t = | UnboundedLoop of {bound_trace: BoundTrace.t} | UnboundedSymbol of {location: Location.t; symbol: NonNegativeBoundWithDegreeKind.t; bound_trace: BoundTrace.t} | Call of {location: Location.t; callee_pname: Procname.t; callee_trace: t} [@@deriving compare] let rec length = function | UnboundedLoop {bound_trace} | UnboundedSymbol {bound_trace} -> 1 + BoundTrace.length bound_trace | Call {callee_trace} -> 1 + length callee_trace let compare t1 t2 = [%compare: int * t] (length t1, t1) (length t2, t2) let unbounded_loop bound_trace = UnboundedLoop {bound_trace} let unbounded_symbol ~location ~symbol bound_trace = UnboundedSymbol {location; symbol; bound_trace} let call ~location ~callee_pname callee_trace = Call {location; callee_pname; callee_trace} let rec pp f = function | UnboundedLoop {bound_trace} -> F.fprintf f "%a -> UnboundedLoop" BoundTrace.pp bound_trace | UnboundedSymbol {location; symbol; bound_trace} -> F.fprintf f "%a -> UnboundedSymbol (%a): %a" BoundTrace.pp bound_trace Location.pp location (NonNegativeBoundWithDegreeKind.pp ~hum:false) symbol | Call {callee_pname; callee_trace; location} -> F.fprintf f "%a -> Call `%a` (%a)" pp callee_trace Procname.pp callee_pname Location.pp location let rec make_err_trace ~depth trace = match trace with | UnboundedLoop {bound_trace} -> let bound_err_trace = BoundTrace.make_err_trace ~depth bound_trace in [("Unbounded loop", bound_err_trace)] |> Errlog.concat_traces | UnboundedSymbol {location; symbol; bound_trace} -> let desc = F.asprintf "Unbounded value %a" (NonNegativeBoundWithDegreeKind.pp ~hum:true) symbol in Errlog.make_trace_element depth location desc [] :: BoundTrace.make_err_trace ~depth bound_trace | Call {location; callee_pname; callee_trace} -> let desc = F.asprintf "Call to %a" Procname.pp callee_pname in Errlog.make_trace_element depth location desc [] :: make_err_trace ~depth:(depth + 1) callee_trace end module TopTraces = struct include AbstractDomain.MinReprSet (TopTrace) let make_err_trace traces = match min_elt traces with None -> [] | Some trace -> TopTrace.make_err_trace ~depth:0 trace end module UnreachableTrace = struct type t = | UnreachableNode of Location.t | Call of {location: Location.t; callee_pname: Procname.t; callee_trace: t} [@@deriving compare] let rec length = function | UnreachableNode _ -> 1 | Call {callee_trace} -> 1 + length callee_trace let compare t1 t2 = [%compare: int * t] (length t1, t1) (length t2, t2) let unreachable_node node_loc = UnreachableNode node_loc let call ~location ~callee_pname callee_trace = Call {location; callee_pname; callee_trace} let rec pp f = function | UnreachableNode node_loc -> F.fprintf f "UnreachableNode (%a)" Location.pp node_loc | Call {callee_pname; callee_trace; location} -> F.fprintf f "%a -> Call `%a` (%a)" pp callee_trace Procname.pp callee_pname Location.pp location let rec make_err_trace ~depth trace = match trace with | UnreachableNode node_loc -> [Errlog.make_trace_element depth node_loc "Unreachable node" []] | Call {location; callee_pname; callee_trace} -> let desc = F.asprintf "Call to %a" Procname.pp callee_pname in Errlog.make_trace_element depth location desc [] :: make_err_trace ~depth:(depth + 1) callee_trace end module UnreachableTraces = struct include AbstractDomain.MinReprSet (UnreachableTrace) let make_err_trace traces = match min_elt traces with | None -> [] | Some trace -> UnreachableTrace.make_err_trace ~depth:0 trace end module NonNegativePolynomial = struct (* Use Above for Top values, Below for Unreachable values with their trace, and Val for non-negative polynomials *) type t = (UnreachableTraces.t, NonNegativeNonTopPolynomial.t, TopTraces.t) below_above type degree_with_term = ( UnreachableTraces.t , Degree.t * NonNegativeNonTopPolynomial.t , TopTraces.t ) AbstractDomain.Types.below_above let leq = AbstractDomain.StackedUtils.leq ~leq_below:UnreachableTraces.leq ~leq:NonNegativeNonTopPolynomial.leq ~leq_above:TopTraces.leq let pp ~hum = let pp_below f traces = AbstractDomain.BottomLiftedUtils.pp_bottom f ; if not hum then F.fprintf f ": %a" UnreachableTraces.pp traces in let pp_above f traces = AbstractDomain.TopLiftedUtils.pp_top f ; if not hum then F.fprintf f ": %a" TopTraces.pp traces in AbstractDomain.StackedUtils.pp ~pp:(NonNegativeNonTopPolynomial.pp ~hum) ~pp_above ~pp_below let pp_hum = pp ~hum:true let pp = pp ~hum:false let top = Above TopTraces.bottom let zero = Val NonNegativeNonTopPolynomial.zero let one ?autoreleasepool_trace () = Val (NonNegativeNonTopPolynomial.one ?autoreleasepool_trace ()) let of_unreachable node_loc = Below (UnreachableTraces.singleton (UnreachableTrace.unreachable_node node_loc)) let of_int_exn ?autoreleasepool_trace i = Val (NonNegativeNonTopPolynomial.of_int_exn ?autoreleasepool_trace i) let make_trace_set ~map_above = AbstractDomain.StackedUtils.map ~f_below:(fun _ -> assert false) ~f:Fn.id ~f_above:(fun above -> TopTraces.singleton (map_above above)) let of_non_negative_bound ?(degree_kind = DegreeKind.Linear) b = b |> NonNegativeBoundWithDegreeKind.make degree_kind |> NonNegativeBoundWithDegreeKind.classify |> NonNegativeNonTopPolynomial.Key.lift_valclass |> NonNegativeNonTopPolynomial.of_valclass (* Invariant: we always get a non-below bound from [of_valclass] *) |> make_trace_set ~map_above:TopTrace.unbounded_loop let of_func_ptr path = Val (NonNegativeNonTopPolynomial.of_func_ptr path) let is_symbolic = function | Below _ | Above _ -> false | Val p -> NonNegativeNonTopPolynomial.is_symbolic p let is_top = function Above _ -> true | _ -> false let is_unreachable = function Below _ -> true | _ -> false let is_zero = function Val p when NonNegativeNonTopPolynomial.is_zero p -> true | _ -> false let is_one = function Val p when NonNegativeNonTopPolynomial.is_one p -> true | _ -> false let top_lifted_increasing ~f p1 p2 = AbstractDomain.StackedUtils.combine ~f_below:UnreachableTraces.join ~dir:`Increasing p1 p2 ~f ~f_above:TopTraces.join let unreachable_lifted_increasing ~f p1 p2 = match (p1, p2) with | (Below _ as below), _ | _, (Below _ as below) -> below | _ -> top_lifted_increasing ~f p1 p2 let plus = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.plus let mult_unreachable = unreachable_lifted_increasing ~f:NonNegativeNonTopPolynomial.mult let mult = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.mult let mult_loop ~iter ~body = top_lifted_increasing iter body ~f:(fun iter body -> NonNegativeNonTopPolynomial.mult_loop ~iter ~body ) let min_default_left p1 p2 = AbstractDomain.StackedUtils.combine ~dir:`Decreasing p1 p2 ~f:NonNegativeNonTopPolynomial.min_default_left ~f_above:TopTraces.join ~f_below:UnreachableTraces.join let subst callee_pname location p eval_sym eval_func_ptrs get_closure_callee_cost ~default_closure_cost = match p with | Above callee_traces -> Above (TopTraces.map (fun callee_trace -> TopTrace.call ~callee_pname ~location callee_trace) callee_traces) | Below callee_traces -> Below (UnreachableTraces.map (fun callee_trace -> UnreachableTrace.call ~callee_pname ~location callee_trace) callee_traces) | Val p -> let get_closure_callee_cost pname = match get_closure_callee_cost pname with | Some (Val p) -> Some p | None | Some (Below _ | Above _) -> (* It doesn't propagate Top/Bottoms if the closure has these costs. *) None in NonNegativeNonTopPolynomial.subst callee_pname location p eval_sym eval_func_ptrs get_closure_callee_cost ~default_closure_cost |> make_trace_set ~map_above:(fun (symbol, bound_trace) -> TopTrace.unbounded_symbol ~location ~symbol bound_trace ) let degree p = match p with Above _ | Below _ -> None | Val p -> Some (NonNegativeNonTopPolynomial.degree p) let compare_by_degree = let cmp _ _ = 0 (* All pairs of Top/Unreachable should be considered equal *) in AbstractDomain.StackedUtils.compare ~cmp_above:cmp ~cmp:(fun p1 p2 -> Degree.compare (NonNegativeNonTopPolynomial.degree p1) (NonNegativeNonTopPolynomial.degree p2) ) ~cmp_below:cmp let get_degree_with_term = AbstractDomain.StackedUtils.map ~f:NonNegativeNonTopPolynomial.degree_with_term ~f_above:Fn.id ~f_below:Fn.id let pp_degree ~only_bigO fmt = function | Above _ -> Format.pp_print_string fmt "Top" | Below _ -> Format.pp_print_string fmt "Unreachable" | Val (degree, degree_term) -> if only_bigO then Format.fprintf fmt "O(%a)" (NonNegativeNonTopPolynomial.pp ~hum:true) (NonNegativeNonTopPolynomial.mask_min_max_constant degree_term) else Degree.pp fmt degree let degree_str p = match degree p with | Some degree -> Format.asprintf ", degree = %a" Degree.pp degree | None -> "" let polynomial_traces ?is_autoreleasepool_trace = function | Below trace -> UnreachableTraces.make_err_trace trace | Val p -> NonNegativeNonTopPolynomial.polynomial_traces ?is_autoreleasepool_trace p |> Errlog.concat_traces | Above trace -> TopTraces.make_err_trace trace let encode astate = Marshal.to_string astate [] |> Base64.encode_exn let decode enc_str = Marshal.from_string (Base64.decode_exn enc_str) 0 end