/* * Copyright (c) 2017-present, Facebook, Inc. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. */ #include void modulo_signed_Bad(int i) { char arr[5]; arr[i % 5] = 123; } void modulo_signed_Good(int i) { char arr[5]; if (i >= 0) { arr[i % 5] = 123; } } void modulo_signed_neg_Bad(int i) { char arr[5]; arr[i % -5] = 123; } void modulo_signed_neg_Good(int i) { char arr[5]; if (i >= 0) { arr[i % -5] = 123; } } void modulo_signed_Good2(int i) { char arr[5]; int j = i % 5; if (j >= 0) { arr[j] = 123; } } void modulo_unsigned_Good(unsigned int i) { char arr[5]; arr[i % 5] = 123; } void modulo_unsigned_short_Good(uint16_t i) { char arr[5]; arr[i % 5] = 123; } void modulo_signed_var_Bad_FN(unsigned int len, int i) { char arr[len]; arr[i % len] = 123; } void modulo_unsigned_var_Good(unsigned int len, unsigned int i) { char arr[len]; arr[i % len] = 123; } unsigned int modulo_unsigned(unsigned int a, unsigned int b) { return a % b; } void modulo_call_Good(unsigned int len, unsigned int i) { char arr[len]; arr[modulo_unsigned(i, len)] = 123; } int modulo_signed(int a, int b) { return a % b; } void modulo_call_Bad_FN(unsigned int len, int i) { char arr[len]; arr[modulo_signed(i, len)] = 123; } int division_of_zero_Good(int x) { int i = 4 * x; i /= 2; i /= 2; return i; } /* While the most precise return value is - "2*i+1" if 0 <= i < 10, - "0" o.w. Inferbo returns [1+min(-1,s0),10+max(-10,s1)] where i is [s0,s1]. */ int plus_linear_min(int i) { /* i |-> [s0,s1] */ int linear = i + 1; /* linear |-> [s0+1,s1+1] */ if (i >= 0 && i < 10) { /* i |-> [max(0,s0),min(9,s1)] */ return linear + i; /* return |-> [s0+1,s1+10] */ } return 0; } void plus_linear_min_Good() { int a[20]; a[plus_linear_min(9)] = 1; } void plus_linear_min_Bad() { int a[19]; a[plus_linear_min(9)] = 1; } void plus_linear_min2_Good_FP() { int a[10]; a[plus_linear_min(4)] = 1; } void plus_linear_min3_Good_FP() { int a[20]; a[plus_linear_min(15)] = 1; }