(* * Copyright (c) 2016-present, Programming Research Laboratory (ROPAS) * Seoul National University, Korea * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) open! IStd open AbsLoc open! AbstractDomain.Types module F = Format module L = Logging module OndemandEnv = BufferOverrunOndemandEnv module Relation = BufferOverrunDomainRelation module SPath = Symb.SymbolPath module Trace = BufferOverrunTrace module TraceSet = Trace.Set module LoopHeadLoc = Location type eval_sym_trace = { eval_sym: Bounds.Bound.eval_sym ; trace_of_sym: Symb.Symbol.t -> Trace.Set.t ; eval_locpath: PowLoc.eval_locpath } module ItvThresholds = AbstractDomain.FiniteSet (struct include Z let pp = pp_print end) module ItvUpdatedBy = struct type t = Addition | Multiplication | Top let leq ~lhs ~rhs = match (lhs, rhs) with | Addition, _ -> true | _, Addition -> false | Multiplication, _ -> true | _, Multiplication -> false | Top, Top -> true let join x y = if leq ~lhs:x ~rhs:y then y else x let widen ~prev ~next ~num_iters:_ = join prev next let pp fmt = function | Addition -> F.pp_print_string fmt "+" | Multiplication -> F.pp_print_string fmt "*" | Top -> F.pp_print_string fmt "?" let bottom = Addition end (* ModeledRange represents how many times the interval value can be updated by modeled functions. This domain is to support the case where there are mismatches between value of a control variable and actual number of loop iterations. For example, [while((c = file_channel.read(buf)) != -1) { ... }] the loop will iterates as the file size, but the control variable [c] does not have that value. In these cases, it assigns a symbolic value of the file size to the modeled range of [c], then which it is used when calculating the overall cost. *) module ModeledRange = struct include AbstractDomain.BottomLifted (struct include Bounds.NonNegativeBound let pp = pp ~hum:true end) let of_modeled_function pname location bound = let pname = Typ.Procname.to_simplified_string pname in NonBottom (Bounds.NonNegativeBound.of_modeled_function pname location bound) let of_big_int ~trace z = NonBottom (Bounds.NonNegativeBound.of_big_int ~trace z) end module Val = struct type t = { itv: Itv.t ; itv_thresholds: ItvThresholds.t ; itv_updated_by: ItvUpdatedBy.t ; modeled_range: ModeledRange.t ; sym: Relation.Sym.t ; powloc: PowLoc.t ; arrayblk: ArrayBlk.t ; offset_sym: Relation.Sym.t ; size_sym: Relation.Sym.t ; traces: TraceSet.t } let bot : t = { itv= Itv.bot ; itv_thresholds= ItvThresholds.empty ; itv_updated_by= ItvUpdatedBy.bottom ; modeled_range= ModeledRange.bottom ; sym= Relation.Sym.bot ; powloc= PowLoc.bot ; arrayblk= ArrayBlk.bot ; offset_sym= Relation.Sym.bot ; size_sym= Relation.Sym.bot ; traces= TraceSet.bottom } let pp fmt x = let itv_thresholds_pp fmt itv_thresholds = if Config.bo_debug >= 3 && not (ItvThresholds.is_empty itv_thresholds) then F.fprintf fmt " (thresholds:%a)" ItvThresholds.pp itv_thresholds in let itv_updated_by_pp fmt itv_updated_by = if Config.bo_debug >= 3 then F.fprintf fmt "(updated by %a)" ItvUpdatedBy.pp itv_updated_by in let relation_sym_pp fmt sym = if Option.is_some Config.bo_relational_domain then F.fprintf fmt ", %a" Relation.Sym.pp sym in let modeled_range_pp fmt range = if not (ModeledRange.is_bottom range) then F.fprintf fmt " (modeled_range:%a)" ModeledRange.pp range in let trace_pp fmt traces = if Config.bo_debug >= 1 then F.fprintf fmt ", %a" TraceSet.pp traces in F.fprintf fmt "(%a%a%a%a%a, %a, %a%a%a%a)" Itv.pp x.itv itv_thresholds_pp x.itv_thresholds relation_sym_pp x.sym itv_updated_by_pp x.itv_updated_by modeled_range_pp x.modeled_range PowLoc.pp x.powloc ArrayBlk.pp x.arrayblk relation_sym_pp x.offset_sym relation_sym_pp x.size_sym trace_pp x.traces let unknown_from : callee_pname:_ -> location:_ -> t = fun ~callee_pname ~location -> let traces = Trace.(Set.singleton_final location (UnknownFrom callee_pname)) in { itv= Itv.top ; itv_thresholds= ItvThresholds.empty ; itv_updated_by= ItvUpdatedBy.Top ; modeled_range= ModeledRange.bottom ; sym= Relation.Sym.top ; powloc= PowLoc.unknown ; arrayblk= ArrayBlk.unknown ; offset_sym= Relation.Sym.top ; size_sym= Relation.Sym.top ; traces } let leq ~lhs ~rhs = if phys_equal lhs rhs then true else Itv.leq ~lhs:lhs.itv ~rhs:rhs.itv && ItvThresholds.leq ~lhs:lhs.itv_thresholds ~rhs:rhs.itv_thresholds && ItvUpdatedBy.leq ~lhs:lhs.itv_updated_by ~rhs:rhs.itv_updated_by && ModeledRange.leq ~lhs:lhs.modeled_range ~rhs:rhs.modeled_range && Relation.Sym.leq ~lhs:lhs.sym ~rhs:rhs.sym && PowLoc.leq ~lhs:lhs.powloc ~rhs:rhs.powloc && ArrayBlk.leq ~lhs:lhs.arrayblk ~rhs:rhs.arrayblk && Relation.Sym.leq ~lhs:lhs.offset_sym ~rhs:rhs.offset_sym && Relation.Sym.leq ~lhs:lhs.size_sym ~rhs:rhs.size_sym let widen ~prev ~next ~num_iters = if phys_equal prev next then prev else let itv_thresholds = ItvThresholds.join prev.itv_thresholds next.itv_thresholds in { itv= Itv.widen_thresholds ~thresholds:(ItvThresholds.elements itv_thresholds) ~prev:prev.itv ~next:next.itv ~num_iters ; itv_thresholds ; itv_updated_by= ItvUpdatedBy.widen ~prev:prev.itv_updated_by ~next:next.itv_updated_by ~num_iters ; modeled_range= ModeledRange.widen ~prev:prev.modeled_range ~next:next.modeled_range ~num_iters ; sym= Relation.Sym.widen ~prev:prev.sym ~next:next.sym ~num_iters ; powloc= PowLoc.widen ~prev:prev.powloc ~next:next.powloc ~num_iters ; arrayblk= ArrayBlk.widen ~prev:prev.arrayblk ~next:next.arrayblk ~num_iters ; offset_sym= Relation.Sym.widen ~prev:prev.offset_sym ~next:next.offset_sym ~num_iters ; size_sym= Relation.Sym.widen ~prev:prev.size_sym ~next:next.size_sym ~num_iters ; traces= TraceSet.join prev.traces next.traces } let join : t -> t -> t = fun x y -> if phys_equal x y then x else { itv= Itv.join x.itv y.itv ; itv_thresholds= ItvThresholds.join x.itv_thresholds y.itv_thresholds ; itv_updated_by= ItvUpdatedBy.join x.itv_updated_by y.itv_updated_by ; modeled_range= ModeledRange.join x.modeled_range y.modeled_range ; sym= Relation.Sym.join x.sym y.sym ; powloc= PowLoc.join x.powloc y.powloc ; arrayblk= ArrayBlk.join x.arrayblk y.arrayblk ; offset_sym= Relation.Sym.join x.offset_sym y.offset_sym ; size_sym= Relation.Sym.join x.size_sym y.size_sym ; traces= TraceSet.join x.traces y.traces } let get_itv : t -> Itv.t = fun x -> x.itv let get_itv_updated_by : t -> ItvUpdatedBy.t = fun x -> x.itv_updated_by let get_modeled_range : t -> ModeledRange.t = fun x -> x.modeled_range let get_sym : t -> Relation.Sym.t = fun x -> x.sym let get_sym_var : t -> Relation.Var.t option = fun x -> Relation.Sym.get_var x.sym let get_pow_loc : t -> PowLoc.t = fun x -> x.powloc let get_array_blk : t -> ArrayBlk.t = fun x -> x.arrayblk let get_array_locs : t -> PowLoc.t = fun x -> ArrayBlk.get_pow_loc x.arrayblk let get_all_locs : t -> PowLoc.t = fun x -> PowLoc.join x.powloc (get_array_locs x) let get_offset_sym : t -> Relation.Sym.t = fun x -> x.offset_sym let get_size_sym : t -> Relation.Sym.t = fun x -> x.size_sym let get_traces : t -> TraceSet.t = fun x -> x.traces let of_itv ?(traces = TraceSet.bottom) itv = {bot with itv; traces} let of_int n = of_itv (Itv.of_int n) let of_big_int n = of_itv (Itv.of_big_int n) let of_int_lit n = of_itv (Itv.of_int_lit n) let of_loc ?(traces = TraceSet.bottom) x = {bot with powloc= PowLoc.singleton x; traces} let of_pow_loc ~traces powloc = {bot with powloc; traces} let of_c_array_alloc : Allocsite.t -> stride:int option -> offset:Itv.t -> size:Itv.t -> traces:TraceSet.t -> t = fun allocsite ~stride ~offset ~size ~traces -> let stride = Option.value_map stride ~default:Itv.nat ~f:Itv.of_int in { bot with arrayblk= ArrayBlk.make_c allocsite ~offset ~size ~stride ; offset_sym= Relation.Sym.of_allocsite_offset allocsite ; size_sym= Relation.Sym.of_allocsite_size allocsite ; traces } let of_java_array_alloc : Allocsite.t -> length:Itv.t -> traces:TraceSet.t -> t = fun allocsite ~length ~traces -> { bot with arrayblk= ArrayBlk.make_java allocsite ~length ; size_sym= Relation.Sym.of_allocsite_size allocsite ; traces } let of_literal_string : Typ.IntegerWidths.t -> string -> t = fun integer_type_widths s -> let allocsite = Allocsite.literal_string s in let stride = Some (integer_type_widths.char_width / 8) in let offset = Itv.zero in let size = Itv.of_int (String.length s + 1) in of_c_array_alloc allocsite ~stride ~offset ~size ~traces:TraceSet.bottom let deref_of_literal_string s = let max_char = String.fold s ~init:0 ~f:(fun acc c -> max acc (Char.to_int c)) in of_itv (Itv.set_lb_zero (Itv.of_int max_char)) let set_itv_updated_by itv_updated_by x = {x with itv_updated_by= ItvUpdatedBy.join x.itv_updated_by itv_updated_by} let set_itv_updated_by_addition = set_itv_updated_by ItvUpdatedBy.Addition let set_itv_updated_by_multiplication = set_itv_updated_by ItvUpdatedBy.Multiplication let set_itv_updated_by_unknown = set_itv_updated_by ItvUpdatedBy.Top let set_modeled_range range x = {x with modeled_range= range} let unknown_bit : t -> t = fun x -> {x with itv= Itv.top; sym= Relation.Sym.top} let neg : t -> t = fun x -> {x with itv= Itv.neg x.itv; sym= Relation.Sym.top} let lnot : t -> t = fun x -> {x with itv= Itv.lnot x.itv |> Itv.of_bool; sym= Relation.Sym.top} let lift_itv : (Itv.t -> Itv.t -> Itv.t) -> ?f_trace:_ -> t -> t -> t = fun f ?f_trace x y -> let itv = f x.itv y.itv in let itv_thresholds = ItvThresholds.join x.itv_thresholds y.itv_thresholds in let itv_updated_by = ItvUpdatedBy.join x.itv_updated_by y.itv_updated_by in let modeled_range = ModeledRange.join x.modeled_range y.modeled_range in let traces = match f_trace with | Some f_trace -> f_trace x.traces y.traces | None -> ( match (Itv.eq itv x.itv, Itv.eq itv y.itv) with | true, false -> x.traces | false, true -> y.traces | true, true | false, false -> TraceSet.join x.traces y.traces ) in {bot with itv; itv_thresholds; itv_updated_by; modeled_range; traces} let lift_cmp_itv : (Itv.t -> Itv.t -> Boolean.t) -> Boolean.EqualOrder.t -> t -> t -> t = fun cmp_itv cmp_loc x y -> let b = match ( x.itv , PowLoc.is_bot x.powloc , ArrayBlk.is_bot x.arrayblk , y.itv , PowLoc.is_bot y.powloc , ArrayBlk.is_bot y.arrayblk ) with | NonBottom _, true, true, NonBottom _, true, true -> cmp_itv x.itv y.itv | Bottom, false, true, Bottom, false, true -> PowLoc.lift_cmp cmp_loc x.powloc y.powloc | Bottom, true, false, Bottom, true, false -> ArrayBlk.lift_cmp_itv cmp_itv cmp_loc x.arrayblk y.arrayblk | _ -> Boolean.Top in let itv = Itv.of_bool b in {bot with itv; traces= TraceSet.join x.traces y.traces} let plus_a = lift_itv Itv.plus let minus_a = lift_itv Itv.minus let get_iterator_itv : t -> t = fun i -> let itv = Itv.get_iterator_itv i.itv in of_itv itv ~traces:i.traces let mult = lift_itv Itv.mult let div = lift_itv Itv.div let mod_sem = lift_itv Itv.mod_sem let shiftlt = lift_itv Itv.shiftlt let shiftrt = lift_itv Itv.shiftrt let band_sem = lift_itv Itv.band_sem let lt_sem : t -> t -> t = lift_cmp_itv Itv.lt_sem Boolean.EqualOrder.strict_cmp let gt_sem : t -> t -> t = lift_cmp_itv Itv.gt_sem Boolean.EqualOrder.strict_cmp let le_sem : t -> t -> t = lift_cmp_itv Itv.le_sem Boolean.EqualOrder.loose_cmp let ge_sem : t -> t -> t = lift_cmp_itv Itv.ge_sem Boolean.EqualOrder.loose_cmp let eq_sem : t -> t -> t = lift_cmp_itv Itv.eq_sem Boolean.EqualOrder.eq let ne_sem : t -> t -> t = lift_cmp_itv Itv.ne_sem Boolean.EqualOrder.ne let land_sem : t -> t -> t = lift_cmp_itv Itv.land_sem Boolean.EqualOrder.top let lor_sem : t -> t -> t = lift_cmp_itv Itv.lor_sem Boolean.EqualOrder.top let lift_prune1 : (Itv.t -> Itv.t) -> t -> t = fun f x -> {x with itv= f x.itv} let lift_prune_length1 : (Itv.t -> Itv.t) -> t -> t = fun f x -> {x with arrayblk= ArrayBlk.transform_length ~f x.arrayblk} let lift_prune2 : (Itv.t -> Itv.t -> Itv.t) -> (ArrayBlk.t -> ArrayBlk.t -> ArrayBlk.t) -> t -> t -> t = fun f g x y -> let itv = let pruned_itv = f x.itv y.itv in if Itv.is_bottom pruned_itv && (not (Itv.is_bottom x.itv)) && Itv.is_bottom y.itv && not (PowLoc.is_bottom (get_all_locs y)) then x.itv else pruned_itv in let itv_thresholds = Option.value_map (Itv.is_const y.itv) ~default:x.itv_thresholds ~f:(fun z -> x.itv_thresholds |> ItvThresholds.add Z.(z - one) |> ItvThresholds.add z |> ItvThresholds.add Z.(z + one) ) in let arrayblk = g x.arrayblk y.arrayblk in if phys_equal itv x.itv && phys_equal itv_thresholds x.itv_thresholds && phys_equal arrayblk x.arrayblk then (* x hasn't changed, don't join traces *) x else {x with itv; itv_thresholds; arrayblk; traces= TraceSet.join x.traces y.traces} let prune_eq_zero : t -> t = lift_prune1 Itv.prune_eq_zero let prune_ne_zero : t -> t = lift_prune1 Itv.prune_ne_zero let prune_ge_one : t -> t = lift_prune1 Itv.prune_ge_one let prune_length_le : t -> Itv.t -> t = fun x y -> lift_prune_length1 (fun x -> Itv.prune_le x y) x let prune_length_lt : t -> Itv.t -> t = fun x y -> lift_prune_length1 (fun x -> Itv.prune_lt x y) x let prune_length_eq : t -> Itv.t -> t = fun x y -> lift_prune_length1 (fun x -> Itv.prune_eq x y) x let prune_length_eq_zero : t -> t = fun x -> prune_length_eq x Itv.zero let prune_length_ge_one : t -> t = lift_prune_length1 Itv.prune_ge_one let prune_comp : Binop.t -> t -> t -> t = fun c -> lift_prune2 (Itv.prune_comp c) (ArrayBlk.prune_comp c) let is_null : t -> bool = fun x -> Itv.is_false x.itv && PowLoc.is_bot x.powloc && ArrayBlk.is_bot x.arrayblk let prune_eq : t -> t -> t = fun x y -> if is_null y then {x with itv= Itv.zero; powloc= PowLoc.bot; arrayblk= ArrayBlk.bot} else lift_prune2 Itv.prune_eq ArrayBlk.prune_eq x y let prune_ne : t -> t -> t = lift_prune2 Itv.prune_ne ArrayBlk.prune_ne let is_pointer_to_non_array x = (not (PowLoc.is_bot x.powloc)) && ArrayBlk.is_bot x.arrayblk (* In the pointer arithmetics, it returns top, if we cannot precisely follow the physical memory model, e.g., (&x + 1). *) let lift_pi : (ArrayBlk.t -> Itv.t -> ArrayBlk.t) -> t -> t -> t = fun f x y -> let traces = TraceSet.join x.traces y.traces in if is_pointer_to_non_array x then {bot with itv= Itv.top; traces} else {bot with arrayblk= f x.arrayblk y.itv; traces} let plus_pi : t -> t -> t = fun x y -> lift_pi ArrayBlk.plus_offset x y let minus_pi : t -> t -> t = fun x y -> lift_pi ArrayBlk.minus_offset x y let minus_pp : t -> t -> t = fun x y -> let itv = if is_pointer_to_non_array x && is_pointer_to_non_array y then Itv.top else ArrayBlk.diff x.arrayblk y.arrayblk in {bot with itv; traces= TraceSet.join x.traces y.traces} let get_symbols : t -> Itv.SymbolSet.t = fun x -> Itv.SymbolSet.union (Itv.get_symbols x.itv) (ArrayBlk.get_symbols x.arrayblk) let normalize : t -> t = fun x -> {x with itv= Itv.normalize x.itv; arrayblk= ArrayBlk.normalize x.arrayblk} let subst : t -> eval_sym_trace -> Location.t -> t = fun x {eval_sym; trace_of_sym; eval_locpath} location -> let symbols = get_symbols x in let traces_caller = Itv.SymbolSet.fold (fun symbol traces -> TraceSet.join (trace_of_sym symbol) traces) symbols TraceSet.bottom in let traces = TraceSet.call location ~traces_caller ~traces_callee:x.traces in let powloc = PowLoc.subst x.powloc eval_locpath in let powloc_from_arrayblk, arrayblk = ArrayBlk.subst x.arrayblk eval_sym eval_locpath in { x with itv= Itv.subst x.itv eval_sym ; powloc= PowLoc.join powloc powloc_from_arrayblk ; arrayblk ; traces } (* normalize bottom *) |> normalize let add_assign_trace_elem location locs x = let traces = Trace.(Set.add_elem location (Assign locs)) x.traces in {x with traces} let array_sizeof {arrayblk} = ArrayBlk.sizeof arrayblk let set_array_length : Location.t -> length:t -> t -> t = fun location ~length v -> { v with arrayblk= ArrayBlk.set_length length.itv v.arrayblk ; traces= Trace.(Set.add_elem location ArrayDeclaration) length.traces } let transform_array_length : Location.t -> f:(Itv.t -> Itv.t) -> t -> t = fun location ~f v -> { v with arrayblk= ArrayBlk.transform_length ~f v.arrayblk ; traces= Trace.(Set.add_elem location (through ~risky_fun:None)) v.traces } let set_array_offset : Location.t -> Itv.t -> t -> t = fun location offset v -> { v with arrayblk= ArrayBlk.set_offset offset v.arrayblk ; traces= Trace.(Set.add_elem location (through ~risky_fun:None)) v.traces } let set_array_stride : Z.t -> t -> t = fun new_stride v -> PhysEqual.optim1 v ~res:{v with arrayblk= ArrayBlk.set_stride new_stride v.arrayblk} let unknown_locs = of_pow_loc PowLoc.unknown ~traces:TraceSet.bottom let is_mone x = Itv.is_mone (get_itv x) let cast typ v = {v with powloc= PowLoc.cast typ v.powloc} let of_path tenv ~may_last_field integer_type_widths location typ path = let traces_of_loc l = let trace = if Loc.is_global l then Trace.Global l else Trace.Parameter l in TraceSet.singleton location trace in let itv_val ~non_int = let l = Loc.of_path path in let traces = traces_of_loc l in let unsigned = Typ.is_unsigned_int typ in of_itv ~traces (Itv.of_normal_path ~unsigned ~non_int path) in let ptr_to_c_array_alloc deref_path size = let allocsite = Allocsite.make_symbol deref_path in let offset = Itv.zero in let traces = traces_of_loc (Loc.of_path deref_path) in of_c_array_alloc allocsite ~stride:None ~offset ~size ~traces in let is_java = Language.curr_language_is Java in L.d_printfln_escaped "Val.of_path %a : %a%s%s" SPath.pp_partial path (Typ.pp Pp.text) typ (if may_last_field then ", may_last_field" else "") (if is_java then ", is_java" else "") ; match typ.Typ.desc with | Tint (IBool | IChar | ISChar | IUChar) -> let v = itv_val ~non_int:(Language.curr_language_is Java) in if Language.curr_language_is Java then set_itv_updated_by_unknown v else set_itv_updated_by_addition v | Tfloat _ | Tfun _ | TVar _ -> itv_val ~non_int:true |> set_itv_updated_by_unknown | Tint _ | Tvoid -> itv_val ~non_int:false |> set_itv_updated_by_addition | Tptr (elt, _) -> if is_java || SPath.is_this path then let deref_kind = if is_java then SPath.Deref_JavaPointer else SPath.Deref_COneValuePointer in let deref_path = SPath.deref ~deref_kind path in let l = Loc.of_path deref_path in let traces = traces_of_loc l in {bot with powloc= PowLoc.singleton l; traces} else let deref_kind = SPath.Deref_CPointer in let deref_path = SPath.deref ~deref_kind path in let l = Loc.of_path deref_path in let traces = traces_of_loc l in let arrayblk = let allocsite = Allocsite.make_symbol deref_path in let stride = match elt.Typ.desc with | Typ.Tint ikind -> Itv.of_int (Typ.width_of_ikind integer_type_widths ikind) | _ -> Itv.nat in let offset = if SPath.is_cpp_vector_elem path then Itv.zero else Itv.of_offset_path ~is_void:(Typ.is_pointer_to_void typ) path in let size = Itv.of_length_path ~is_void:(Typ.is_pointer_to_void typ) path in ArrayBlk.make_c allocsite ~stride ~offset ~size in {bot with arrayblk; traces} | Tstruct typename -> ( match BufferOverrunTypModels.dispatch tenv typename with | Some (CArray {deref_kind; length}) -> let deref_path = SPath.deref ~deref_kind path in let size = Itv.of_int_lit length in ptr_to_c_array_alloc deref_path size | Some CppStdVector -> let l = Loc.of_path (SPath.deref ~deref_kind:Deref_CPointer path) in let traces = traces_of_loc l in of_loc ~traces l | Some JavaCollection -> let deref_path = SPath.deref ~deref_kind:Deref_ArrayIndex path in let l = Loc.of_path deref_path in let traces = traces_of_loc l in let allocsite = Allocsite.make_symbol deref_path in let length = Itv.of_length_path ~is_void:false path in of_java_array_alloc allocsite ~length ~traces | Some JavaInteger -> itv_val ~non_int:false | None -> let l = Loc.of_path path in let traces = traces_of_loc l in of_loc ~traces l ) | Tarray {length; stride} -> let deref_path = SPath.deref ~deref_kind:Deref_ArrayIndex path in let l = Loc.of_path deref_path in let traces = traces_of_loc l in let allocsite = Allocsite.make_symbol deref_path in let size = match length with | None (* IncompleteArrayType, no-size flexible array *) -> Itv.of_length_path ~is_void:false path | Some length when may_last_field && (IntLit.iszero length || IntLit.isone length) (* 0/1-sized flexible array *) -> Itv.of_length_path ~is_void:false path | Some length -> Itv.of_big_int (IntLit.to_big_int length) in if is_java then of_java_array_alloc allocsite ~length:size ~traces else let stride = Option.map stride ~f:(fun n -> IntLit.to_int_exn n) in let offset = Itv.zero in of_c_array_alloc allocsite ~stride ~offset ~size ~traces let on_demand : default:t -> ?typ:Typ.t -> OndemandEnv.t -> Loc.t -> t = fun ~default ?typ {tenv; typ_of_param_path; may_last_field; entry_location; integer_type_widths} l -> let do_on_demand path typ = let may_last_field = may_last_field path in of_path tenv ~may_last_field integer_type_widths entry_location typ path in match Loc.is_literal_string l with | Some s -> deref_of_literal_string s | None -> ( match Loc.is_literal_string_strlen l with | Some s -> of_itv (Itv.of_int (String.length s)) | None -> ( match Loc.get_path l with | None -> L.d_printfln_escaped "Val.on_demand for %a -> no path" Loc.pp l ; default | Some path -> ( match typ_of_param_path path with | None -> ( match typ with | Some typ when Loc.is_global l -> L.d_printfln_escaped "Val.on_demand for %a -> global" Loc.pp l ; do_on_demand path typ | _ -> L.d_printfln_escaped "Val.on_demand for %a -> no type" Loc.pp l ; default ) | Some typ -> L.d_printfln_escaped "Val.on_demand for %a" Loc.pp l ; do_on_demand path typ ) ) ) module Itv = struct let zero_255 = of_itv Itv.zero_255 let m1_255 = of_itv Itv.m1_255 let nat = of_itv Itv.nat let pos = of_itv Itv.pos let top = of_itv Itv.top let unknown_bool = of_itv Itv.unknown_bool let zero = of_itv Itv.zero end end module StackLocs = struct include AbstractDomain.FiniteSet (Loc) let bot = empty end (* MultiLocs denotes whether abstract locations represent one or multiple concrete locations. If the value is true, the abstract location may represent multiple concrete locations, thus it should be updated weakly. *) module MultiLocs = AbstractDomain.BooleanOr module MVal = struct include AbstractDomain.Pair (MultiLocs) (Val) let pp fmt (represents_multiple_values, v) = if represents_multiple_values then F.fprintf fmt "M" ; Val.pp fmt v let on_demand ~default ?typ oenv l = (Loc.represents_multiple_values l, Val.on_demand ~default ?typ oenv l) let get_rep_multi (represents_multiple_values, _) = represents_multiple_values let get_val (_, v) = v end module MemPure = struct include AbstractDomain.Map (Loc) (MVal) let bot = empty let range : filter_loc:(Loc.t -> LoopHeadLoc.t option) -> node_id:ProcCfg.Normal.Node.id -> t -> Polynomials.NonNegativePolynomial.t = fun ~filter_loc ~node_id mem -> fold (fun loc (_, v) acc -> match filter_loc loc with | Some loop_head_loc -> ( let itv_updated_by = Val.get_itv_updated_by v in match itv_updated_by with | Addition | Multiplication -> (* TODO take range of multiplied one with log scale *) let itv = Val.get_itv v in if Itv.has_only_non_int_symbols itv then acc else let range1 = match Val.get_modeled_range v with | NonBottom range -> Polynomials.NonNegativePolynomial.of_non_negative_bound range | Bottom -> Itv.range loop_head_loc itv |> Itv.ItvRange.to_top_lifted_polynomial in if Polynomials.NonNegativePolynomial.is_top range1 then L.d_printfln_escaped "Range of %a (loc:%a) became top at %a." Itv.pp itv Loc.pp loc ProcCfg.Normal.Node.pp_id node_id ; let range = Polynomials.NonNegativePolynomial.mult acc range1 in if (not (Polynomials.NonNegativePolynomial.is_top acc)) && Polynomials.NonNegativePolynomial.is_top range then L.d_printfln_escaped "Multiplication of %a and %a (loc:%a) became top at %a." Polynomials.NonNegativePolynomial.pp acc Polynomials.NonNegativePolynomial.pp range1 Loc.pp loc ProcCfg.Normal.Node.pp_id node_id ; range | Top -> acc ) | None -> acc ) mem Polynomials.NonNegativePolynomial.one let join oenv astate1 astate2 = if phys_equal astate1 astate2 then astate1 else merge (fun l v1_opt v2_opt -> match (v1_opt, v2_opt) with | Some v1, Some v2 -> Some (MVal.join v1 v2) | Some v1, None | None, Some v1 -> let v2 = MVal.on_demand ~default:Val.bot oenv l in Some (MVal.join v1 v2) | None, None -> None ) astate1 astate2 let widen oenv ~prev ~next ~num_iters = if phys_equal prev next then prev else merge (fun l v1_opt v2_opt -> match (v1_opt, v2_opt) with | Some v1, Some v2 -> Some (MVal.widen ~prev:v1 ~next:v2 ~num_iters) | Some v1, None -> let v2 = MVal.on_demand ~default:Val.bot oenv l in Some (MVal.widen ~prev:v1 ~next:v2 ~num_iters) | None, Some v2 -> let v1 = MVal.on_demand ~default:Val.bot oenv l in Some (MVal.widen ~prev:v1 ~next:v2 ~num_iters) | None, None -> None ) prev next let is_rep_multi_loc l m = Option.value_map ~default:false (find_opt l m) ~f:MVal.get_rep_multi let find_opt l m = Option.map (find_opt l m) ~f:MVal.get_val let add ?(represents_multiple_values = false) l v m = let f = function | None -> Some (represents_multiple_values || Loc.represents_multiple_values l, v) | Some (represents_multiple_values', v') -> let represents_multiple_values = represents_multiple_values || represents_multiple_values' in let v = if represents_multiple_values then Val.join v' v else v in Some (represents_multiple_values, v) in update l f m let fold f m init = fold (fun k range acc -> f k (MVal.get_val range) acc) m init end module AliasTarget = struct (* [Eq]: The value of alias target is exactly the same to the alias key. [Le]: The value of alias target is less than or equal to the alias key. For example, if there is an alias between [%r] and [size(x)+i] with the [Le] type, which means [size(x)+i <= %r]. *) type alias_typ = Eq | Le [@@deriving compare] let alias_typ_pp fmt = function | Eq -> F.pp_print_string fmt "=" | Le -> F.pp_print_string fmt ">=" (* Relations between values of logical variables(registers) and program variables "Simple relation": Since Sil distinguishes logical and program variables, we need a relation for pruning values of program variables. For example, a C statement [if(x){...}] is translated to [%r=load(x); if(%r){...}] in Sil. At the load statement, we record the alias between the values of [%r] and [x], then we can prune not only the value of [%r], but also that of [x] inside the if branch. The [java_tmp] field is an additional slot for keeping one more alias of temporary variable in Java. The [i] field is to express [%r=load(x)+i]. "Empty relation": For pruning [vector.length] with [vector::empty()] results, we adopt a specific relation between [%r] and [v->elements], where [%r=v.empty()]. So, if [%r!=0], [v]'s array length ([v->elements->length]) is pruned by [=0]. On the other hand, if [%r==0], [v]'s array length is pruned by [>=1]. "Size relation": This is for pruning vector's length. When there is a function call, [%r=x.size()], the alias target for [%r] becomes [AliasTarget.size {l=x.elements}]. The [java_tmp] field is an additional slot for keeping one more alias of temporary variable in Java. The [i] field is to express [%r=x.size()+i], which is required to follow the semantics of [Array.add] inside loops precisely. "Iterator offset relation": This is for tracking a relation between an iterator offset and a length of array. If [%r] has an alias to [IteratorOffset {l; i}], which means that [%r's iterator offset] is same to [length(l)+i]. "HasNext relation": This is for tracking return values of the [hasNext] function. If [%r] has an alias to [HasNext {l}], which means that [%r] is a [hasNext] results of the iterator [l]. *) type t = | Simple of {i: IntLit.t; java_tmp: Loc.t option} | Empty | Size of {alias_typ: alias_typ; i: IntLit.t; java_tmp: Loc.t option} | Fgets | IteratorOffset of {alias_typ: alias_typ; i: IntLit.t; java_tmp: Loc.t option} | IteratorHasNext of {java_tmp: Loc.t option} | Top [@@deriving compare] let top = Top let is_top = function Top -> true | _ -> false let equal = [%compare.equal: t] let pp_with_key ~pp_lhs ~pp_rhs = let pp_intlit fmt i = if not (IntLit.iszero i) then if IntLit.isnegative i then F.fprintf fmt "-%a" IntLit.pp (IntLit.neg i) else F.fprintf fmt "+%a" IntLit.pp i in let pp_java_tmp fmt java_tmp = Option.iter java_tmp ~f:(F.fprintf fmt "=%a" Loc.pp) in fun fmt -> function | Simple {i; java_tmp} -> F.fprintf fmt "%t%a=%t%a" pp_lhs pp_java_tmp java_tmp pp_rhs pp_intlit i | Empty -> F.fprintf fmt "%t=empty(%t)" pp_lhs pp_rhs | Size {alias_typ; i; java_tmp} -> F.fprintf fmt "%t%a%asize(%t)%a" pp_lhs pp_java_tmp java_tmp alias_typ_pp alias_typ pp_rhs pp_intlit i | Fgets -> F.fprintf fmt "%t=fgets(%t)" pp_lhs pp_rhs | IteratorOffset {alias_typ; i; java_tmp} -> F.fprintf fmt "iterator offset(%t%a)%alength(%t)%a" pp_lhs pp_java_tmp java_tmp alias_typ_pp alias_typ pp_rhs pp_intlit i | IteratorHasNext {java_tmp} -> F.fprintf fmt "%t%a=hasNext(%t)" pp_lhs pp_java_tmp java_tmp pp_rhs | Top -> F.fprintf fmt "%t=?%t" pp_lhs pp_rhs let pp = let pp_underscore fmt = F.pp_print_string fmt "_" in pp_with_key ~pp_lhs:pp_underscore ~pp_rhs:pp_underscore let get_locs = function | Simple {java_tmp= Some tmp} | Size {java_tmp= Some tmp} | IteratorOffset {java_tmp= Some tmp} | IteratorHasNext {java_tmp= Some tmp} -> PowLoc.singleton tmp | Simple {java_tmp= None} | Size {java_tmp= None} | Empty | Fgets | IteratorOffset {java_tmp= None} | IteratorHasNext {java_tmp= None} | Top -> PowLoc.empty let use_loc l x = PowLoc.mem l (get_locs x) let loc_map x ~f = match x with | Simple {i; java_tmp} -> Simple {i; java_tmp= Option.bind java_tmp ~f} | Empty -> Empty | Size {alias_typ; i; java_tmp} -> Size {alias_typ; i; java_tmp= Option.bind java_tmp ~f} | Fgets -> Fgets | IteratorOffset {alias_typ; i; java_tmp} -> IteratorOffset {alias_typ; i; java_tmp= Option.bind java_tmp ~f} | IteratorHasNext {java_tmp} -> IteratorHasNext {java_tmp= Option.bind java_tmp ~f} | Top -> Top let leq ~lhs ~rhs = equal lhs rhs || match (lhs, rhs) with | _, Top -> true | Top, _ -> false | ( Size {alias_typ= _; i= i1; java_tmp= java_tmp1} , Size {alias_typ= Le; i= i2; java_tmp= java_tmp2} ) | ( IteratorOffset {alias_typ= _; i= i1; java_tmp= java_tmp1} , IteratorOffset {alias_typ= Le; i= i2; java_tmp= java_tmp2} ) -> (* (a=size(l)+2) <= (a>=size(l)+1) *) (* (a>=size(l)+2) <= (a>=size(l)+1) *) IntLit.geq i1 i2 && Option.equal Loc.equal java_tmp1 java_tmp2 | _, _ -> false let join = let java_tmp_eq loc1 loc2 = Option.equal Loc.equal loc1 loc2 in fun x y -> if equal x y then x else match (x, y) with | ( Size {alias_typ= _; i= i1; java_tmp= java_tmp1} , Size {alias_typ= _; i= i2; java_tmp= java_tmp2} ) when java_tmp_eq java_tmp1 java_tmp2 -> (* (a=size(l)+1) join (a=size(l)+2) is (a>=size(l)+1) *) (* (a=size(l)+1) join (a>=size(l)+2) is (a>=size(l)+1) *) Size {alias_typ= Le; i= IntLit.min i1 i2; java_tmp= java_tmp1} | ( IteratorOffset {alias_typ= _; i= i1; java_tmp= java_tmp1} , IteratorOffset {alias_typ= _; i= i2; java_tmp= java_tmp2} ) when java_tmp_eq java_tmp1 java_tmp2 -> IteratorOffset {alias_typ= Le; i= IntLit.min i1 i2; java_tmp= java_tmp1} | _, _ -> Top let widen ~prev ~next ~num_iters:_ = if equal prev next then prev else match (prev, next) with | Size {alias_typ= Eq}, Size {alias_typ= _} | IteratorOffset {alias_typ= Eq}, IteratorOffset {alias_typ= _} -> join prev next | Size {alias_typ= Le; i= i1}, Size {alias_typ= _; i= i2} | IteratorOffset {alias_typ= Le; i= i1}, IteratorOffset {alias_typ= _; i= i2} when IntLit.eq i1 i2 -> join prev next | _, _ -> Top let is_unknown x = PowLoc.exists Loc.is_unknown (get_locs x) let is_size = function Size _ | IteratorOffset _ -> true | _ -> false let incr_size_alias x = match x with | Size {alias_typ; i} -> Size {alias_typ; i= IntLit.(add i minus_one); java_tmp= None} | IteratorOffset {alias_typ; i; java_tmp} -> IteratorOffset {alias_typ; i= IntLit.(add i minus_one); java_tmp} | _ -> x let incr_or_not_size_alias x = match x with | Size {i} -> Size {alias_typ= Le; i; java_tmp= None} | IteratorOffset {i; java_tmp} -> IteratorOffset {alias_typ= Le; i; java_tmp} | _ -> x let set_java_tmp loc = function | Size a -> Size {a with java_tmp= Some loc} | IteratorOffset a -> IteratorOffset {a with java_tmp= Some loc} | IteratorHasNext _ -> IteratorHasNext {java_tmp= Some loc} | _ as alias -> alias end module KeyLhs = struct type t = IdentKey of Ident.t | LocKey of Loc.t [@@deriving compare] let of_id id = IdentKey id let of_loc l = LocKey l let pp f = function IdentKey id -> Ident.pp f id | LocKey l -> Loc.pp f l let use_loc l = function LocKey l' -> Loc.equal l l' | IdentKey _ -> false end module KeyRhs = Loc module AliasTargets = struct include AbstractDomain.SafeInvertedMap (KeyRhs) (AliasTarget) let pp_with_lhs ~pp_lhs fmt x = let pp_sep fmt () = F.fprintf fmt ", @," in let pp1 fmt (rhs, v) = AliasTarget.pp_with_key ~pp_lhs ~pp_rhs:(fun fmt -> KeyRhs.pp fmt rhs) fmt v in F.pp_print_list ~pp_sep pp1 fmt (bindings x) let pp = pp_with_lhs ~pp_lhs:(fun fmt -> F.pp_print_string fmt "_") let forget l x = let not_use_l k v = not (KeyRhs.equal l k || AliasTarget.use_loc l v) in filter not_use_l x let forget_size_alias arr_locs x = let not_in_arr_locs k v = not (PowLoc.mem k arr_locs && AliasTarget.is_size v) in filter not_in_arr_locs x let incr_size_alias loc x = update loc (Option.map ~f:AliasTarget.incr_size_alias) x let incr_or_not_size_alias loc x = update loc (Option.map ~f:AliasTarget.incr_or_not_size_alias) x let subst ~subst_loc x = let accum_substed rhs tgt acc = Option.value_map (subst_loc rhs) ~default:acc ~f:(fun rhs -> add rhs (AliasTarget.loc_map tgt ~f:subst_loc) acc ) in fold accum_substed x empty let exists2 f x y = exists (fun k v -> exists (f k v) y) x let find_first_simple_zero_alias x = let exception Found of KeyRhs.t in let is_simple_zero rhs = function | AliasTarget.Simple {i} when IntLit.iszero i -> raise (Found rhs) | _ -> () in match iter is_simple_zero x with () -> None | exception Found rhs -> Some rhs end module AliasMap = struct module M = AbstractDomain.SafeInvertedMap (KeyLhs) (AliasTargets) type t = M.t let leq = M.leq let join = M.join let widen = M.widen let pp : F.formatter -> t -> unit = fun fmt x -> let pp_sep fmt () = F.fprintf fmt ", @," in let pp1 fmt (lhs, v) = AliasTargets.pp_with_lhs ~pp_lhs:(fun fmt -> KeyLhs.pp fmt lhs) fmt v in F.pp_print_list ~pp_sep pp1 fmt (M.bindings x) let empty = M.empty let is_empty = M.is_empty let add_alias ~lhs ~rhs v m = let add_to_tgts = function | None -> Some (AliasTargets.singleton rhs v) | Some tgts -> Some (AliasTargets.add rhs v tgts) in M.update lhs add_to_tgts m let add_aliases ~lhs tgts m = AliasTargets.fold (fun rhs v acc -> add_alias ~lhs ~rhs v acc) tgts m let remove = M.remove let find k m = M.find_opt k m |> Option.value ~default:AliasTargets.empty let find_id : Ident.t -> t -> AliasTargets.t = fun id x -> find (KeyLhs.of_id id) x let find_loc : Loc.t -> t -> AliasTargets.t = fun loc x -> find (KeyLhs.LocKey loc) x |> AliasTargets.map (AliasTarget.set_java_tmp loc) let load : Ident.t -> Loc.t -> AliasTarget.t -> t -> t = fun id loc tgt x -> if Loc.is_unknown loc || AliasTarget.is_unknown tgt then x else let tgts = match tgt with | AliasTarget.Simple {i} when IntLit.iszero i && Language.curr_language_is Java -> find_loc loc x |> AliasTargets.add loc tgt | _ -> AliasTargets.singleton loc tgt in add_aliases ~lhs:(KeyLhs.of_id id) tgts x let forget : Loc.t -> t -> t = fun l x -> let forget1 k v = if KeyLhs.use_loc l k then AliasTargets.top else AliasTargets.forget l v in M.mapi forget1 x let store : Loc.t -> Ident.t -> t -> t = fun l id x -> if Language.curr_language_is Java then let tgts = find_id id x in if Loc.is_frontend_tmp l then add_aliases ~lhs:(KeyLhs.of_loc l) tgts x else let accum_java_tmp_alias rhs tgt acc = match tgt with | AliasTarget.Simple {i} when IntLit.iszero i && Loc.is_frontend_tmp rhs -> add_alias ~lhs:(KeyLhs.of_id id) ~rhs:l (AliasTarget.Simple {i; java_tmp= Some rhs}) acc |> add_alias ~lhs:(KeyLhs.of_loc rhs) ~rhs:l (AliasTarget.Simple {i; java_tmp= None}) | _ -> acc in AliasTargets.fold accum_java_tmp_alias tgts x else x let add_size_alias ~lhs ~lhs_v ~arr ~arr_size x = add_alias ~lhs:(KeyLhs.of_loc lhs) ~rhs:arr (AliasTarget.Size {alias_typ= Eq; i= IntLit.sub lhs_v arr_size; java_tmp= None}) x let incr_size_alias loc x = M.map (AliasTargets.incr_size_alias loc) x let incr_or_not_size_alias loc x = M.map (AliasTargets.incr_or_not_size_alias loc) x let forget_size_alias arr_locs x = M.map (AliasTargets.forget_size_alias arr_locs) x let store_n ~prev loc id n x = let accum_size_alias rhs tgt acc = match tgt with | AliasTarget.Size {alias_typ; i} -> add_alias ~lhs:(KeyLhs.of_loc loc) ~rhs (AliasTarget.Size {alias_typ; i= IntLit.add i n; java_tmp= None}) acc | _ -> acc in AliasTargets.fold accum_size_alias (find_id id prev) x let add_iterator_offset_alias id arr x = add_alias ~lhs:(KeyLhs.of_id id) ~rhs:arr (AliasTarget.IteratorOffset {alias_typ= Eq; i= IntLit.zero; java_tmp= None}) x let incr_iterator_offset_alias id x = let accum_incr_iterator_offset_alias rhs tgt acc = match tgt with | AliasTarget.IteratorOffset ({i; java_tmp} as tgt) -> let i = IntLit.(add i one) in let acc = add_alias ~lhs:(KeyLhs.of_id id) ~rhs (AliasTarget.IteratorOffset {tgt with i}) acc in Option.value_map java_tmp ~default:x ~f:(fun java_tmp -> add_alias ~lhs:(KeyLhs.of_loc java_tmp) ~rhs (AliasTarget.IteratorOffset {tgt with i; java_tmp= None}) acc ) | _ -> acc in match M.find_opt (KeyLhs.of_id id) x with | Some tgts -> AliasTargets.fold accum_incr_iterator_offset_alias tgts x | _ -> x let add_iterator_has_next_alias ~ret_id ~iterator x = let accum_has_next_alias _rhs tgt acc = match tgt with | AliasTarget.IteratorOffset {java_tmp= Some java_tmp} -> add_alias ~lhs:(KeyLhs.of_id ret_id) ~rhs:java_tmp (AliasTarget.IteratorHasNext {java_tmp= None}) acc | _ -> acc in match M.find_opt (KeyLhs.of_id iterator) x with | Some tgts -> AliasTargets.fold accum_has_next_alias tgts x | _ -> x end module AliasRet = struct include AliasTargets let pp : F.formatter -> t -> unit = fun fmt x -> F.pp_print_string fmt "ret=" ; pp fmt x end module Alias = struct type t = {map: AliasMap.t; ret: AliasRet.t} let leq ~lhs ~rhs = if phys_equal lhs rhs then true else AliasMap.leq ~lhs:lhs.map ~rhs:rhs.map && AliasRet.leq ~lhs:lhs.ret ~rhs:rhs.ret let join x y = if phys_equal x y then x else {map= AliasMap.join x.map y.map; ret= AliasRet.join x.ret y.ret} let widen ~prev ~next ~num_iters = if phys_equal prev next then prev else { map= AliasMap.widen ~prev:prev.map ~next:next.map ~num_iters ; ret= AliasRet.widen ~prev:prev.ret ~next:next.ret ~num_iters } let pp fmt x = F.fprintf fmt "@[{ %a%s%a }@]" AliasMap.pp x.map (if AliasMap.is_empty x.map then "" else ", ") AliasRet.pp x.ret let init : t = {map= AliasMap.empty; ret= AliasRet.empty} let lift_map : (AliasMap.t -> AliasMap.t) -> t -> t = fun f a -> {a with map= f a.map} let bind_map : (AliasMap.t -> 'a) -> t -> 'a = fun f a -> f a.map let find_id : Ident.t -> t -> AliasTargets.t = fun x -> bind_map (AliasMap.find_id x) let find_loc : Loc.t -> t -> AliasTargets.t = fun x -> bind_map (AliasMap.find_loc x) let find_ret : t -> AliasTargets.t = fun x -> x.ret let load : Ident.t -> Loc.t -> AliasTarget.t -> t -> t = fun id loc tgt -> lift_map (AliasMap.load id loc tgt) let store_simple : Loc.t -> Exp.t -> t -> t = fun loc e prev -> let a = lift_map (AliasMap.forget loc) prev in match e with | Exp.Var l -> let a = lift_map (AliasMap.store loc l) a in if Loc.is_return loc then {a with ret= find_id l a} else a | Exp.BinOp (Binop.PlusA _, Exp.Var id, Exp.Const (Const.Cint i)) | Exp.BinOp (Binop.PlusA _, Exp.Const (Const.Cint i), Exp.Var id) -> lift_map (AliasMap.load id loc (AliasTarget.Simple {i= IntLit.neg i; java_tmp= None})) a |> lift_map (AliasMap.store_n ~prev:prev.map loc id i) | Exp.BinOp (Binop.MinusA _, Exp.Var id, Exp.Const (Const.Cint i)) -> lift_map (AliasMap.load id loc (AliasTarget.Simple {i; java_tmp= None})) a |> lift_map (AliasMap.store_n ~prev:prev.map loc id (IntLit.neg i)) | _ -> a let fgets : Ident.t -> PowLoc.t -> t -> t = fun id locs a -> let a = PowLoc.fold (fun loc acc -> lift_map (AliasMap.forget loc) acc) locs a in match PowLoc.is_singleton_or_more locs with | IContainer.Singleton loc -> load id loc AliasTarget.Fgets a | _ -> a let update_size_alias locs a ~f = PowLoc.fold f locs a let incr_size_alias : PowLoc.t -> t -> t = fun locs a -> update_size_alias locs a ~f:(fun loc acc -> lift_map (AliasMap.incr_size_alias loc) acc) let incr_or_not_size_alias : PowLoc.t -> t -> t = fun locs a -> update_size_alias locs a ~f:(fun loc acc -> lift_map (AliasMap.incr_or_not_size_alias loc) acc) let add_size_alias : Loc.t -> IntLit.t -> (Loc.t * IntLit.t) list -> t -> t = fun loc i arr_locs prev -> let accum_size_alias acc (arr_loc, arr_size) = lift_map (AliasMap.add_size_alias ~lhs:loc ~lhs_v:i ~arr:arr_loc ~arr_size) acc in List.fold arr_locs ~init:(lift_map (AliasMap.forget loc) prev) ~f:accum_size_alias let add_iterator_offset_alias : Ident.t -> PowLoc.t -> t -> t = fun id arr_locs a -> let accum_iterator_offset_alias arr_loc acc = lift_map (AliasMap.add_iterator_offset_alias id arr_loc) acc in PowLoc.fold accum_iterator_offset_alias arr_locs a let incr_iterator_offset_alias : Ident.t -> t -> t = fun id a -> lift_map (AliasMap.incr_iterator_offset_alias id) a let add_iterator_has_next_alias : ret_id:Ident.t -> iterator:Ident.t -> t -> t = fun ~ret_id ~iterator a -> lift_map (AliasMap.add_iterator_has_next_alias ~ret_id ~iterator) a let remove_temp : Ident.t -> t -> t = fun temp -> lift_map (AliasMap.remove (KeyLhs.of_id temp)) let forget_size_alias arr_locs = lift_map (AliasMap.forget_size_alias arr_locs) end module CoreVal = struct type t = Val.t let compare x y = let r = Itv.compare (Val.get_itv x) (Val.get_itv y) in if r <> 0 then r else let r = PowLoc.compare (Val.get_pow_loc x) (Val.get_pow_loc y) in if r <> 0 then r else ArrayBlk.compare (Val.get_array_blk x) (Val.get_array_blk y) let pp fmt x = F.fprintf fmt "(%a, %a, %a)" Itv.pp (Val.get_itv x) PowLoc.pp (Val.get_pow_loc x) ArrayBlk.pp (Val.get_array_blk x) let is_symbolic v = let itv = Val.get_itv v in if Itv.is_bottom itv then ArrayBlk.is_symbolic (Val.get_array_blk v) else Itv.is_symbolic itv let is_empty v = Itv.is_bottom (Val.get_itv v) && PowLoc.is_empty (Val.get_pow_loc v) && ArrayBlk.is_empty (Val.get_array_blk v) end module PruningExp = struct type t = Unknown | Binop of {bop: Binop.t; lhs: CoreVal.t; rhs: CoreVal.t} [@@deriving compare] let leq ~lhs ~rhs = match (lhs, rhs) with | _, Unknown -> true | Unknown, _ -> false | Binop {bop= bop1; lhs= lhs1; rhs= rhs1}, Binop {bop= bop2; lhs= lhs2; rhs= rhs2} -> Binop.equal bop1 bop2 && Val.leq ~lhs:lhs1 ~rhs:lhs2 && Val.leq ~lhs:rhs1 ~rhs:rhs2 let join x y = match (x, y) with | Binop {bop= bop1; lhs= lhs1; rhs= rhs1}, Binop {bop= bop2; lhs= lhs2; rhs= rhs2} when Binop.equal bop1 bop2 -> Binop {bop= bop1; lhs= Val.join lhs1 lhs2; rhs= Val.join rhs1 rhs2} | _, _ -> Unknown let widen ~prev ~next ~num_iters = match (prev, next) with | Binop {bop= bop1; lhs= lhs1; rhs= rhs1}, Binop {bop= bop2; lhs= lhs2; rhs= rhs2} when Binop.equal bop1 bop2 -> Binop { bop= bop1 ; lhs= Val.widen ~prev:lhs1 ~next:lhs2 ~num_iters ; rhs= Val.widen ~prev:rhs1 ~next:rhs2 ~num_iters } | _, _ -> Unknown let pp fmt x = match x with | Unknown -> F.pp_print_string fmt "Unknown" | Binop {bop; lhs; rhs} -> F.fprintf fmt "(%a %s %a)" CoreVal.pp lhs (Binop.str Pp.text bop) CoreVal.pp rhs let make bop ~lhs ~rhs = Binop {bop; lhs; rhs} let is_unknown = function Unknown -> true | Binop _ -> false let is_symbolic = function | Unknown -> false | Binop {lhs; rhs} -> CoreVal.is_symbolic lhs || CoreVal.is_symbolic rhs let is_empty = let le_false v = Itv.leq ~lhs:(Val.get_itv v) ~rhs:Itv.zero in function | Unknown -> false | Binop {bop= Lt; lhs; rhs} -> le_false (Val.lt_sem lhs rhs) | Binop {bop= Gt; lhs; rhs} -> le_false (Val.gt_sem lhs rhs) | Binop {bop= Le; lhs; rhs} -> le_false (Val.le_sem lhs rhs) | Binop {bop= Ge; lhs; rhs} -> le_false (Val.ge_sem lhs rhs) | Binop {bop= Eq; lhs; rhs} -> le_false (Val.eq_sem lhs rhs) | Binop {bop= Ne; lhs; rhs} -> le_false (Val.ne_sem lhs rhs) | Binop _ -> assert false let subst x eval_sym_trace location = match x with | Unknown -> Unknown | Binop {bop; lhs; rhs} -> Binop { bop ; lhs= Val.subst lhs eval_sym_trace location ; rhs= Val.subst rhs eval_sym_trace location } end module PrunedVal = struct type t = {v: CoreVal.t; pruning_exp: PruningExp.t} [@@deriving compare] let leq ~lhs ~rhs = Val.leq ~lhs:lhs.v ~rhs:rhs.v && PruningExp.leq ~lhs:lhs.pruning_exp ~rhs:rhs.pruning_exp let join x y = {v= Val.join x.v y.v; pruning_exp= PruningExp.join x.pruning_exp y.pruning_exp} let widen ~prev ~next ~num_iters = { v= Val.widen ~prev:prev.v ~next:next.v ~num_iters ; pruning_exp= PruningExp.widen ~prev:prev.pruning_exp ~next:next.pruning_exp ~num_iters } let pp fmt x = CoreVal.pp fmt x.v ; if not (PruningExp.is_unknown x.pruning_exp) then F.fprintf fmt " by %a" PruningExp.pp x.pruning_exp let make v pruning_exp = {v; pruning_exp} let get_val x = x.v let subst {v; pruning_exp} eval_sym_trace location = { v= Val.subst v eval_sym_trace location ; pruning_exp= PruningExp.subst pruning_exp eval_sym_trace location } let is_symbolic {v; pruning_exp} = CoreVal.is_symbolic v || PruningExp.is_symbolic pruning_exp let is_empty {v; pruning_exp} = CoreVal.is_empty v || PruningExp.is_empty pruning_exp end (* [PrunePairs] is a map from abstract locations to abstract values that represents pruned results in the latest pruning. It uses [InvertedMap] because more pruning means smaller abstract states. *) module PrunePairs = struct include AbstractDomain.InvertedMap (Loc) (PrunedVal) let forget locs x = filter (fun l _ -> not (PowLoc.mem l locs)) x let subst x ({eval_locpath} as eval_sym_trace) location = let open Result.Monad_infix in let subst1 l pruned_val acc = acc >>= fun acc -> match PowLoc.is_singleton_or_more (PowLoc.subst_loc l eval_locpath) with | Singleton loc -> Ok (add loc (PrunedVal.subst pruned_val eval_sym_trace location) acc) | Empty -> Error `SubstBottom | More -> Error `SubstFail in fold subst1 x (Ok empty) let is_reachable x = not (exists (fun _ v -> PrunedVal.is_empty v) x) end module LatestPrune = struct (* Latest p: The pruned pairs 'p' has pruning information (which abstract locations are updated by which abstract values) in the latest pruning. TrueBranch (x, p): After a pruning, the variable 'x' is assigned by 1. There is no other memory updates after the latest pruning. FalseBranch (x, p): After a pruning, the variable 'x' is assigned by 0. There is no other memory updates after the latest pruning. V (x, ptrue, pfalse): After two non-sequential prunings ('ptrue' and 'pfalse'), the variable 'x' is assigned by 1 and 0, respectively. There is no other memory updates after the latest prunings. VRet (x, ptrue, pfalse): Similar to V, but this is for return values of functions. Top: No information about the latest pruning. *) type t = | Latest of PrunePairs.t | TrueBranch of Pvar.t * PrunePairs.t | FalseBranch of Pvar.t * PrunePairs.t | V of Pvar.t * PrunePairs.t * PrunePairs.t | VRet of Ident.t * PrunePairs.t * PrunePairs.t | Top let pvar_pp = Pvar.pp Pp.text let pp fmt = function | Top -> () | Latest p -> F.fprintf fmt "LatestPrune: latest %a" PrunePairs.pp p | TrueBranch (v, p) -> F.fprintf fmt "LatestPrune: true(%a) %a" pvar_pp v PrunePairs.pp p | FalseBranch (v, p) -> F.fprintf fmt "LatestPrune: false(%a) %a" pvar_pp v PrunePairs.pp p | V (v, p1, p2) -> F.fprintf fmt "LatestPrune: v(%a) %a / %a" pvar_pp v PrunePairs.pp p1 PrunePairs.pp p2 | VRet (v, p1, p2) -> F.fprintf fmt "LatestPrune: ret(%a) %a / %a" Ident.pp v PrunePairs.pp p1 PrunePairs.pp p2 let leq ~lhs ~rhs = if phys_equal lhs rhs then true else match (lhs, rhs) with | _, Top -> true | Top, _ -> false | Latest p1, Latest p2 -> PrunePairs.leq ~lhs:p1 ~rhs:p2 | TrueBranch (x1, p1), TrueBranch (x2, p2) | FalseBranch (x1, p1), FalseBranch (x2, p2) | TrueBranch (x1, p1), V (x2, p2, _) | FalseBranch (x1, p1), V (x2, _, p2) -> Pvar.equal x1 x2 && PrunePairs.leq ~lhs:p1 ~rhs:p2 | V (x1, ptrue1, pfalse1), V (x2, ptrue2, pfalse2) -> Pvar.equal x1 x2 && PrunePairs.leq ~lhs:ptrue1 ~rhs:ptrue2 && PrunePairs.leq ~lhs:pfalse1 ~rhs:pfalse2 | VRet (x1, ptrue1, pfalse1), VRet (x2, ptrue2, pfalse2) -> Ident.equal x1 x2 && PrunePairs.leq ~lhs:ptrue1 ~rhs:ptrue2 && PrunePairs.leq ~lhs:pfalse1 ~rhs:pfalse2 | _, _ -> false let join x y = match (x, y) with | _, _ when leq ~lhs:x ~rhs:y -> y | _, _ when leq ~lhs:y ~rhs:x -> x | Latest p1, Latest p2 -> Latest (PrunePairs.join p1 p2) | FalseBranch (x1, p1), FalseBranch (x2, p2) when Pvar.equal x1 x2 -> FalseBranch (x1, PrunePairs.join p1 p2) | TrueBranch (x1, p1), TrueBranch (x2, p2) when Pvar.equal x1 x2 -> TrueBranch (x1, PrunePairs.join p1 p2) | FalseBranch (x', pfalse), TrueBranch (y', ptrue) | TrueBranch (x', ptrue), FalseBranch (y', pfalse) when Pvar.equal x' y' -> V (x', ptrue, pfalse) | TrueBranch (x1, ptrue1), V (x2, ptrue2, pfalse) | V (x2, ptrue2, pfalse), TrueBranch (x1, ptrue1) when Pvar.equal x1 x2 -> V (x1, PrunePairs.join ptrue1 ptrue2, pfalse) | FalseBranch (x1, pfalse1), V (x2, ptrue, pfalse2) | V (x2, ptrue, pfalse2), FalseBranch (x1, pfalse1) when Pvar.equal x1 x2 -> V (x1, ptrue, PrunePairs.join pfalse1 pfalse2) | V (x1, ptrue1, pfalse1), V (x2, ptrue2, pfalse2) when Pvar.equal x1 x2 -> V (x1, PrunePairs.join ptrue1 ptrue2, PrunePairs.join pfalse1 pfalse2) | VRet (x1, ptrue1, pfalse1), VRet (x2, ptrue2, pfalse2) when Ident.equal x1 x2 -> VRet (x1, PrunePairs.join ptrue1 ptrue2, PrunePairs.join pfalse1 pfalse2) | _, _ -> Top let widen ~prev ~next ~num_iters:_ = join prev next let top = Top let is_top = function Top -> true | _ -> false let forget locs = let is_mem_locs x = PowLoc.mem (Loc.of_pvar x) locs in function | Latest p -> Latest (PrunePairs.forget locs p) | TrueBranch (x, p) -> if is_mem_locs x then Top else TrueBranch (x, PrunePairs.forget locs p) | FalseBranch (x, p) -> if is_mem_locs x then Top else FalseBranch (x, PrunePairs.forget locs p) | V (x, ptrue, pfalse) -> if is_mem_locs x then Top else V (x, PrunePairs.forget locs ptrue, PrunePairs.forget locs pfalse) | VRet (x, ptrue, pfalse) -> VRet (x, PrunePairs.forget locs ptrue, PrunePairs.forget locs pfalse) | Top -> Top let replace ~from ~to_ x = match x with | TrueBranch (x, p) when Pvar.equal x from -> TrueBranch (to_, p) | FalseBranch (x, p) when Pvar.equal x from -> FalseBranch (to_, p) | V (x, ptrue, pfalse) when Pvar.equal x from -> V (to_, ptrue, pfalse) | _ -> x let subst ~ret_id ({eval_locpath} as eval_sym_trace) location = let open Result.Monad_infix in let subst_pvar x = match PowLoc.is_singleton_or_more (PowLoc.subst_loc (Loc.of_pvar x) eval_locpath) with | Empty -> Error `SubstBottom | Singleton (Loc.Var (Var.ProgramVar x')) -> Ok x' | Singleton _ | More -> Error `SubstFail in function | Latest p -> PrunePairs.subst p eval_sym_trace location >>| fun p' -> Latest p' | TrueBranch (x, p) -> subst_pvar x >>= fun x' -> PrunePairs.subst p eval_sym_trace location >>| fun p' -> TrueBranch (x', p') | FalseBranch (x, p) -> subst_pvar x >>= fun x' -> PrunePairs.subst p eval_sym_trace location >>| fun p' -> FalseBranch (x', p') | V (x, ptrue, pfalse) when Pvar.is_return x -> PrunePairs.subst ptrue eval_sym_trace location >>= fun ptrue' -> PrunePairs.subst pfalse eval_sym_trace location >>| fun pfalse' -> VRet (ret_id, ptrue', pfalse') | V (x, ptrue, pfalse) -> subst_pvar x >>= fun x' -> PrunePairs.subst ptrue eval_sym_trace location >>= fun ptrue' -> PrunePairs.subst pfalse eval_sym_trace location >>| fun pfalse' -> V (x', ptrue', pfalse') | VRet _ | Top -> Ok Top end module Reachability = struct module M = PrettyPrintable.MakePPSet (PrunedVal) type t = M.t let equal = M.equal let pp = M.pp (* It keeps only symbolic pruned values, because non-symbolic ones are useless to see the reachability. *) let add v x = if PrunedVal.is_symbolic v then M.add v x else x let of_latest_prune latest_prune = let of_prune_pairs p = PrunePairs.fold (fun _ v acc -> add v acc) p M.empty in match latest_prune with | LatestPrune.Latest p | LatestPrune.TrueBranch (_, p) | LatestPrune.FalseBranch (_, p) -> of_prune_pairs p | LatestPrune.V (_, ptrue, pfalse) | LatestPrune.VRet (_, ptrue, pfalse) -> M.inter (of_prune_pairs ptrue) (of_prune_pairs pfalse) | LatestPrune.Top -> M.empty let make latest_prune = of_latest_prune latest_prune let add_latest_prune latest_prune x = M.union x (of_latest_prune latest_prune) let subst x eval_sym_trace location = let exception Unreachable in let subst1 x acc = let v = PrunedVal.subst x eval_sym_trace location in if PrunedVal.is_empty v then raise Unreachable else add v acc in match M.fold subst1 x M.empty with x -> `Reachable x | exception Unreachable -> `Unreachable end module MemReach = struct type 'has_oenv t0 = { stack_locs: StackLocs.t ; mem_pure: MemPure.t ; alias: Alias.t ; latest_prune: LatestPrune.t ; relation: Relation.t ; oenv: ('has_oenv, OndemandEnv.t) GOption.t } type no_oenv_t = GOption.none t0 type t = GOption.some t0 let init : OndemandEnv.t -> t = fun oenv -> { stack_locs= StackLocs.bot ; mem_pure= MemPure.bot ; alias= Alias.init ; latest_prune= LatestPrune.top ; relation= Relation.empty ; oenv= GOption.GSome oenv } let leq ~lhs ~rhs = if phys_equal lhs rhs then true else StackLocs.leq ~lhs:lhs.stack_locs ~rhs:rhs.stack_locs && MemPure.leq ~lhs:lhs.mem_pure ~rhs:rhs.mem_pure && Alias.leq ~lhs:lhs.alias ~rhs:rhs.alias && LatestPrune.leq ~lhs:lhs.latest_prune ~rhs:rhs.latest_prune && Relation.leq ~lhs:lhs.relation ~rhs:rhs.relation let widen ~prev ~next ~num_iters = if phys_equal prev next then prev else ( assert (phys_equal prev.oenv next.oenv) ; let oenv = GOption.value prev.oenv in { stack_locs= StackLocs.widen ~prev:prev.stack_locs ~next:next.stack_locs ~num_iters ; mem_pure= MemPure.widen oenv ~prev:prev.mem_pure ~next:next.mem_pure ~num_iters ; alias= Alias.widen ~prev:prev.alias ~next:next.alias ~num_iters ; latest_prune= LatestPrune.widen ~prev:prev.latest_prune ~next:next.latest_prune ~num_iters ; relation= Relation.widen ~prev:prev.relation ~next:next.relation ~num_iters ; oenv= prev.oenv } ) let join : t -> t -> t = fun x y -> assert (phys_equal x.oenv y.oenv) ; let oenv = GOption.value x.oenv in { stack_locs= StackLocs.join x.stack_locs y.stack_locs ; mem_pure= MemPure.join oenv x.mem_pure y.mem_pure ; alias= Alias.join x.alias y.alias ; latest_prune= LatestPrune.join x.latest_prune y.latest_prune ; relation= Relation.join x.relation y.relation ; oenv= x.oenv } let pp : F.formatter -> _ t0 -> unit = fun fmt x -> F.fprintf fmt "StackLocs:@;%a@;MemPure:@;%a@;Alias:@;%a@;%a" StackLocs.pp x.stack_locs MemPure.pp x.mem_pure Alias.pp x.alias LatestPrune.pp x.latest_prune ; if Option.is_some Config.bo_relational_domain then F.fprintf fmt "@;Relation:@;%a" Relation.pp x.relation let unset_oenv : t -> no_oenv_t = function x -> {x with oenv= GOption.GNone} let is_stack_loc : Loc.t -> _ t0 -> bool = fun l m -> StackLocs.mem l m.stack_locs let is_rep_multi_loc : Loc.t -> _ t0 -> bool = fun l m -> MemPure.is_rep_multi_loc l m.mem_pure let find_opt : Loc.t -> _ t0 -> Val.t option = fun l m -> MemPure.find_opt l m.mem_pure let find_stack : Loc.t -> _ t0 -> Val.t = fun l m -> Option.value (find_opt l m) ~default:Val.bot let find_heap_default : default:Val.t -> ?typ:Typ.t -> Loc.t -> _ t0 -> Val.t = fun ~default ?typ l m -> IOption.value_default_f (find_opt l m) ~f:(fun () -> GOption.value_map m.oenv ~default ~f:(fun oenv -> Val.on_demand ~default ?typ oenv l) ) let find_heap : ?typ:Typ.t -> Loc.t -> _ t0 -> Val.t = fun ?typ l m -> find_heap_default ~default:Val.Itv.top ?typ l m let find : ?typ:Typ.t -> Loc.t -> _ t0 -> Val.t = fun ?typ l m -> if is_stack_loc l m then find_stack l m else find_heap ?typ l m let find_set : ?typ:Typ.t -> PowLoc.t -> _ t0 -> Val.t = fun ?typ locs m -> let find_join loc acc = Val.join acc (find ?typ loc m) in PowLoc.fold find_join locs Val.bot let find_alias_id : Ident.t -> _ t0 -> AliasTargets.t = fun k m -> Alias.find_id k m.alias let find_alias_loc : Loc.t -> _ t0 -> AliasTargets.t = fun k m -> Alias.find_loc k m.alias let find_simple_alias : Ident.t -> _ t0 -> (Loc.t * IntLit.t) list = let accum_simple_alias l tgt acc = match tgt with AliasTarget.Simple {i} -> (l, i) :: acc | _ -> acc in fun k m -> AliasTargets.fold accum_simple_alias (Alias.find_id k m.alias) [] let find_size_alias : Ident.t -> _ t0 -> (AliasTarget.alias_typ * Loc.t * IntLit.t * Loc.t option) list = let accum_size_alias l tgt acc = match tgt with | AliasTarget.Size {alias_typ; i; java_tmp} -> (alias_typ, l, i, java_tmp) :: acc | _ -> acc in fun k m -> AliasTargets.fold accum_size_alias (Alias.find_id k m.alias) [] let find_ret_alias : _ t0 -> AliasTargets.t = fun m -> Alias.find_ret m.alias let load_alias : Ident.t -> Loc.t -> AliasTarget.t -> t -> t = fun id loc tgt m -> {m with alias= Alias.load id loc tgt m.alias} let store_simple_alias : Loc.t -> Exp.t -> t -> t = fun loc e m -> match e with | Exp.Const (Const.Cint i) when IntLit.iszero i || IntLit.isone i -> let arr_locs = let add_arr l v acc = let size = Val.array_sizeof v in if Itv.is_zero size then (l, IntLit.zero) :: acc else if Itv.is_one size then (l, IntLit.one) :: acc else acc in MemPure.fold add_arr m.mem_pure [] in {m with alias= Alias.add_size_alias loc i arr_locs m.alias} | _ -> {m with alias= Alias.store_simple loc e m.alias} let fgets_alias : Ident.t -> PowLoc.t -> t -> t = fun id locs m -> {m with alias= Alias.fgets id locs m.alias} let incr_size_alias locs m = {m with alias= Alias.incr_size_alias locs m.alias} let incr_or_not_size_alias locs m = {m with alias= Alias.incr_or_not_size_alias locs m.alias} let add_iterator_offset_alias id m = let arr_locs = let add_arr l v acc = if Itv.is_zero (Val.array_sizeof v) then PowLoc.add l acc else acc in MemPure.fold add_arr m.mem_pure PowLoc.empty in {m with alias= Alias.add_iterator_offset_alias id arr_locs m.alias} let incr_iterator_offset_alias id m = {m with alias= Alias.incr_iterator_offset_alias id m.alias} let add_iterator_has_next_alias ~ret_id ~iterator m = {m with alias= Alias.add_iterator_has_next_alias ~ret_id ~iterator m.alias} let add_stack_loc : Loc.t -> t -> t = fun k m -> {m with stack_locs= StackLocs.add k m.stack_locs} let add_stack : ?represents_multiple_values:bool -> Loc.t -> Val.t -> t -> t = fun ?represents_multiple_values k v m -> { m with stack_locs= StackLocs.add k m.stack_locs ; mem_pure= MemPure.add ?represents_multiple_values k v m.mem_pure } let replace_stack : Loc.t -> Val.t -> t -> t = fun k v m -> {m with mem_pure= MemPure.add k v m.mem_pure} let add_heap : ?represents_multiple_values:bool -> Loc.t -> Val.t -> t -> t = fun ?represents_multiple_values x v m -> let v = let sym = if Itv.is_bottom (Val.get_itv v) then Relation.Sym.bot else Relation.Sym.of_loc x in let offset_sym, size_sym = if ArrayBlk.is_bot (Val.get_array_blk v) then (Relation.Sym.bot, Relation.Sym.bot) else (Relation.Sym.of_loc_offset x, Relation.Sym.of_loc_size x) in {v with Val.sym; Val.offset_sym; Val.size_sym} in {m with mem_pure= MemPure.add ?represents_multiple_values x v m.mem_pure} let add_heap_set : ?represents_multiple_values:bool -> PowLoc.t -> Val.t -> t -> t = fun ?represents_multiple_values locs v m -> PowLoc.fold (fun l acc -> add_heap ?represents_multiple_values l v acc) locs m let add_unknown_from : Ident.t -> callee_pname:Typ.Procname.t option -> location:Location.t -> t -> t = fun id ~callee_pname ~location m -> let val_unknown = Val.unknown_from ~callee_pname ~location in add_stack (Loc.of_id id) val_unknown m |> add_heap Loc.unknown val_unknown let strong_update : PowLoc.t -> Val.t -> t -> t = fun locs v m -> let strong_update1 l m = if is_stack_loc l m then replace_stack l v m else add_heap l v m in PowLoc.fold strong_update1 locs m let transformi_mem : f:(Loc.t -> Val.t -> Val.t) -> PowLoc.t -> t -> t = fun ~f locs m -> let transform_mem1 l m = let add, find = if is_stack_loc l m then (replace_stack, find_stack) else (add_heap ~represents_multiple_values:false, find_heap_default ~default:Val.bot ?typ:None) in add l (f l (find l m)) m in PowLoc.fold transform_mem1 locs m let transform_mem : f:(Val.t -> Val.t) -> PowLoc.t -> t -> t = fun ~f -> transformi_mem ~f:(fun _ v -> f v) let weak_update locs v m = transformi_mem ~f:(fun l v' -> if Loc.represents_multiple_values l then Val.join v' v else v) locs m let update_mem : PowLoc.t -> Val.t -> t -> t = fun ploc v s -> if can_strong_update ploc then strong_update ploc v s else ( L.d_printfln_escaped "Weak update for %a <- %a" PowLoc.pp ploc Val.pp v ; weak_update ploc v s ) let remove_temp : Ident.t -> t -> t = fun temp m -> let l = Loc.of_id temp in { m with stack_locs= StackLocs.remove l m.stack_locs ; mem_pure= MemPure.remove l m.mem_pure ; alias= Alias.remove_temp temp m.alias } let remove_temps : Ident.t list -> t -> t = fun temps m -> List.fold temps ~init:m ~f:(fun acc temp -> remove_temp temp acc) let set_prune_pairs : PrunePairs.t -> t -> t = fun prune_pairs m -> {m with latest_prune= LatestPrune.Latest prune_pairs} let apply_latest_prune : Exp.t -> t -> t * PrunePairs.t = let apply_prunes prunes m = let apply1 l v acc = update_mem (PowLoc.singleton l) (PrunedVal.get_val v) acc in PrunePairs.fold apply1 prunes m in fun e m -> match (m.latest_prune, e) with | LatestPrune.V (x, prunes, _), Exp.Var r | LatestPrune.V (x, _, prunes), Exp.UnOp (Unop.LNot, Exp.Var r, _) -> let pruned_val_meet _rhs v1 _v2 = (* NOTE: We need the pruned values, but for now we don't have the meet operation on value. *) Some v1 in let apply_simple_alias1 ((m_acc, prunes_acc) as acc) = function | Loc.Var (Var.ProgramVar y), i when Pvar.equal x y && IntLit.iszero i -> (apply_prunes prunes m_acc, PrunePairs.union pruned_val_meet prunes_acc prunes) | _ -> acc in List.fold (find_simple_alias r m) ~init:(m, PrunePairs.empty) ~f:apply_simple_alias1 | LatestPrune.VRet (x, prunes, _), Exp.Var r | LatestPrune.VRet (x, _, prunes), Exp.UnOp (Unop.LNot, Exp.Var r, _) -> if Ident.equal x r then (apply_prunes prunes m, prunes) else (m, PrunePairs.empty) | _ -> (m, PrunePairs.empty) let update_latest_prune : updated_locs:PowLoc.t -> Exp.t -> Exp.t -> t -> t = fun ~updated_locs e1 e2 m -> match (e1, e2, m.latest_prune) with | Lvar x, Const (Const.Cint i), LatestPrune.Latest p -> if IntLit.isone i then {m with latest_prune= LatestPrune.TrueBranch (x, p)} else if IntLit.iszero i then {m with latest_prune= LatestPrune.FalseBranch (x, p)} else {m with latest_prune= LatestPrune.forget updated_locs m.latest_prune} | Lvar return, _, _ when Pvar.is_return return -> let tgts = Alias.find_ret m.alias in let replace_latest_prune l tgt acc = match (l, tgt) with | Loc.Var (ProgramVar pvar), AliasTarget.Simple {i} when IntLit.iszero i -> {acc with latest_prune= LatestPrune.replace ~from:pvar ~to_:return m.latest_prune} | _ -> acc in AliasTargets.fold replace_latest_prune tgts m | _, _, _ -> {m with latest_prune= LatestPrune.forget updated_locs m.latest_prune} let get_latest_prune : _ t0 -> LatestPrune.t = fun {latest_prune} -> latest_prune let set_latest_prune : LatestPrune.t -> t -> t = fun latest_prune x -> {x with latest_prune} let get_reachable_locs_from_aux : f:(Pvar.t -> bool) -> PowLoc.t -> _ t0 -> PowLoc.t = let add_reachable1 ~root loc v acc = if Loc.equal root loc then PowLoc.union acc (Val.get_all_locs v) else if Loc.is_field_of ~loc:root ~field_loc:loc then PowLoc.add loc acc else acc in let rec add_from_locs heap locs acc = PowLoc.fold (add_from_loc heap) locs acc and add_from_loc heap loc acc = if PowLoc.mem loc acc then acc else let reachable_locs = MemPure.fold (add_reachable1 ~root:loc) heap PowLoc.empty in add_from_locs heap reachable_locs (PowLoc.add loc acc) in let add_param_locs ~f mem acc = let add_loc loc _ acc = if Loc.exists_pvar ~f loc then PowLoc.add loc acc else acc in MemPure.fold add_loc mem acc in fun ~f locs m -> let locs = add_param_locs ~f m.mem_pure locs in add_from_locs m.mem_pure locs PowLoc.empty let get_reachable_locs_from : (Pvar.t * Typ.t) list -> PowLoc.t -> _ t0 -> PowLoc.t = fun formals locs m -> let is_formal pvar = List.exists formals ~f:(fun (formal, _) -> Pvar.equal pvar formal) in get_reachable_locs_from_aux ~f:is_formal locs m let range : filter_loc:(Loc.t -> LoopHeadLoc.t option) -> node_id:ProcCfg.Normal.Node.id -> t -> Polynomials.NonNegativePolynomial.t = fun ~filter_loc ~node_id {mem_pure} -> MemPure.range ~filter_loc ~node_id mem_pure let get_relation : t -> Relation.t = fun m -> m.relation let is_relation_unsat : t -> bool = fun m -> Relation.is_unsat m.relation let lift_relation : (Relation.t -> Relation.t) -> t -> t = fun f m -> {m with relation= f m.relation} let meet_constraints : Relation.Constraints.t -> t -> t = fun constrs -> lift_relation (Relation.meet_constraints constrs) let store_relation : PowLoc.t -> Relation.SymExp.t option * Relation.SymExp.t option * Relation.SymExp.t option -> t -> t = fun locs symexp_opts -> lift_relation (Relation.store_relation locs symexp_opts) let relation_forget_locs : PowLoc.t -> t -> t = fun locs -> lift_relation (Relation.forget_locs locs) let forget_unreachable_locs : formals:(Pvar.t * Typ.t) list -> t -> t = fun ~formals m -> let is_reachable = let reachable_locs = let f pvar = Pvar.is_return pvar || Pvar.is_global pvar || List.exists formals ~f:(fun (formal, _) -> Pvar.equal formal pvar) in get_reachable_locs_from_aux ~f PowLoc.empty m in fun l -> PowLoc.mem l reachable_locs in let stack_locs = StackLocs.filter is_reachable m.stack_locs in let mem_pure = MemPure.filter (fun l _ -> is_reachable l) m.mem_pure in {m with stack_locs; mem_pure} let forget_size_alias arr_locs m = {m with alias= Alias.forget_size_alias arr_locs m.alias} let init_param_relation : Loc.t -> t -> t = fun loc -> lift_relation (Relation.init_param loc) let init_array_relation : Allocsite.t -> offset_opt:Itv.t option -> size:Itv.t -> size_exp_opt:Relation.SymExp.t option -> t -> t = fun allocsite ~offset_opt ~size ~size_exp_opt -> lift_relation (Relation.init_array allocsite ~offset_opt ~size ~size_exp_opt) let instantiate_relation : Relation.SubstMap.t -> caller:t -> callee:no_oenv_t -> t = fun subst_map ~caller ~callee -> { caller with relation= Relation.instantiate subst_map ~caller:caller.relation ~callee:callee.relation } (* unsound *) let set_first_idx_of_null : Loc.t -> Val.t -> t -> t = fun loc idx m -> update_mem (PowLoc.singleton (Loc.of_c_strlen loc)) idx m (* unsound *) let unset_first_idx_of_null : Loc.t -> Val.t -> t -> t = fun loc idx m -> let old_c_strlen = find_heap (Loc.of_c_strlen loc) m in let idx_itv = Val.get_itv idx in if Boolean.is_true (Itv.lt_sem idx_itv (Val.get_itv old_c_strlen)) then m else let new_c_strlen = Val.of_itv ~traces:(Val.get_traces idx) (Itv.incr idx_itv) in set_first_idx_of_null loc new_c_strlen m end module Mem = struct type 'has_oenv t0 = Bottom | ExcRaised | NonBottom of 'has_oenv MemReach.t0 type no_oenv_t = GOption.none t0 type t = GOption.some t0 let bot : t = Bottom let exc_raised : t = ExcRaised let is_exc_raised = function ExcRaised -> true | _ -> false let leq ~lhs ~rhs = if phys_equal lhs rhs then true else match (lhs, rhs) with | Bottom, _ -> true | _, Bottom -> false | ExcRaised, _ -> true | _, ExcRaised -> false | NonBottom lhs, NonBottom rhs -> MemReach.leq ~lhs ~rhs let join x y = if phys_equal x y then x else match (x, y) with | Bottom, m | m, Bottom -> m | ExcRaised, m | m, ExcRaised -> m | NonBottom m1, NonBottom m2 -> PhysEqual.optim2 ~res:(NonBottom (MemReach.join m1 m2)) x y let widen ~prev:prev0 ~next:next0 ~num_iters = if phys_equal prev0 next0 then prev0 else match (prev0, next0) with | Bottom, m | m, Bottom -> m | ExcRaised, m | m, ExcRaised -> m | NonBottom prev, NonBottom next -> PhysEqual.optim2 ~res:(NonBottom (MemReach.widen ~prev ~next ~num_iters)) prev0 next0 let map ~f x = match x with | Bottom | ExcRaised -> x | NonBottom m -> let m' = f m in if phys_equal m' m then x else NonBottom m' let init : OndemandEnv.t -> t = fun oenv -> NonBottom (MemReach.init oenv) let f_lift_default : default:'a -> ('h MemReach.t0 -> 'a) -> 'h t0 -> 'a = fun ~default f m -> match m with Bottom | ExcRaised -> default | NonBottom m' -> f m' let is_stack_loc : Loc.t -> _ t0 -> bool = fun k -> f_lift_default ~default:false (MemReach.is_stack_loc k) let is_rep_multi_loc : Loc.t -> _ t0 -> bool = fun k -> f_lift_default ~default:false (MemReach.is_rep_multi_loc k) let find : Loc.t -> _ t0 -> Val.t = fun k -> f_lift_default ~default:Val.bot (MemReach.find k) let find_stack : Loc.t -> _ t0 -> Val.t = fun k -> f_lift_default ~default:Val.bot (MemReach.find_stack k) let find_set : ?typ:Typ.t -> PowLoc.t -> _ t0 -> Val.t = fun ?typ k -> f_lift_default ~default:Val.bot (MemReach.find_set ?typ k) let find_opt : Loc.t -> _ t0 -> Val.t option = fun k -> f_lift_default ~default:None (MemReach.find_opt k) let find_alias_id : Ident.t -> _ t0 -> AliasTargets.t = fun k -> f_lift_default ~default:AliasTargets.empty (MemReach.find_alias_id k) let find_alias_loc : Loc.t -> _ t0 -> AliasTargets.t = fun k -> f_lift_default ~default:AliasTargets.empty (MemReach.find_alias_loc k) let find_simple_alias : Ident.t -> _ t0 -> (Loc.t * IntLit.t) list = fun k -> f_lift_default ~default:[] (MemReach.find_simple_alias k) let find_size_alias : Ident.t -> _ t0 -> (AliasTarget.alias_typ * Loc.t * IntLit.t * Loc.t option) list = fun k -> f_lift_default ~default:[] (MemReach.find_size_alias k) let find_ret_alias : _ t0 -> AliasTargets.t bottom_lifted = fun m -> match m with | Bottom | ExcRaised -> Bottom | NonBottom m' -> NonBottom (MemReach.find_ret_alias m') let load_alias : Ident.t -> Loc.t -> AliasTarget.t -> t -> t = fun id loc tgt -> map ~f:(MemReach.load_alias id loc tgt) let load_simple_alias : Ident.t -> Loc.t -> t -> t = fun id loc -> load_alias id loc (AliasTarget.Simple {i= IntLit.zero; java_tmp= None}) let load_empty_alias : Ident.t -> Loc.t -> t -> t = fun id loc -> load_alias id loc AliasTarget.Empty let load_size_alias : Ident.t -> Loc.t -> t -> t = fun id loc -> load_alias id loc (AliasTarget.Size {alias_typ= Eq; i= IntLit.zero; java_tmp= None}) let store_simple_alias : Loc.t -> Exp.t -> t -> t = fun loc e -> map ~f:(MemReach.store_simple_alias loc e) let fgets_alias : Ident.t -> PowLoc.t -> t -> t = fun id locs -> map ~f:(MemReach.fgets_alias id locs) let incr_size_alias locs = map ~f:(MemReach.incr_size_alias locs) let incr_or_not_size_alias locs = map ~f:(MemReach.incr_or_not_size_alias locs) let add_iterator_offset_alias : Ident.t -> t -> t = fun id -> map ~f:(MemReach.add_iterator_offset_alias id) let incr_iterator_offset_alias : Exp.t -> t -> t = fun iterator m -> match iterator with Exp.Var id -> map ~f:(MemReach.incr_iterator_offset_alias id) m | _ -> m let add_iterator_has_next_alias : Ident.t -> Exp.t -> t -> t = fun ret_id iterator m -> match iterator with | Exp.Var iterator -> map ~f:(MemReach.add_iterator_has_next_alias ~ret_id ~iterator) m | _ -> m let add_stack_loc : Loc.t -> t -> t = fun k -> map ~f:(MemReach.add_stack_loc k) let add_stack : ?represents_multiple_values:bool -> Loc.t -> Val.t -> t -> t = fun ?represents_multiple_values k v -> map ~f:(MemReach.add_stack ?represents_multiple_values k v) let add_heap : ?represents_multiple_values:bool -> Loc.t -> Val.t -> t -> t = fun ?represents_multiple_values k v -> map ~f:(MemReach.add_heap ?represents_multiple_values k v) let add_heap_set : ?represents_multiple_values:bool -> PowLoc.t -> Val.t -> t -> t = fun ?represents_multiple_values ploc v -> map ~f:(MemReach.add_heap_set ?represents_multiple_values ploc v) let add_unknown_from : Ident.t -> callee_pname:Typ.Procname.t -> location:Location.t -> t -> t = fun id ~callee_pname ~location -> map ~f:(MemReach.add_unknown_from id ~callee_pname:(Some callee_pname) ~location) let add_unknown : Ident.t -> location:Location.t -> t -> t = fun id ~location -> map ~f:(MemReach.add_unknown_from id ~callee_pname:None ~location) let strong_update : PowLoc.t -> Val.t -> t -> t = fun p v -> map ~f:(MemReach.strong_update p v) let get_reachable_locs_from : (Pvar.t * Typ.t) list -> PowLoc.t -> _ t0 -> PowLoc.t = fun formals locs -> f_lift_default ~default:PowLoc.empty (MemReach.get_reachable_locs_from formals locs) let update_mem : PowLoc.t -> Val.t -> t -> t = fun ploc v -> map ~f:(MemReach.update_mem ploc v) let transform_mem : f:(Val.t -> Val.t) -> PowLoc.t -> t -> t = fun ~f ploc -> map ~f:(MemReach.transform_mem ~f ploc) let remove_temps : Ident.t list -> t -> t = fun temps -> map ~f:(MemReach.remove_temps temps) let set_prune_pairs : PrunePairs.t -> t -> t = fun prune_pairs -> map ~f:(MemReach.set_prune_pairs prune_pairs) let apply_latest_prune : Exp.t -> t -> t * PrunePairs.t = fun e -> function | (Bottom | ExcRaised) as x -> (x, PrunePairs.empty) | NonBottom m -> let m, prune_pairs = MemReach.apply_latest_prune e m in (NonBottom m, prune_pairs) let update_latest_prune : updated_locs:PowLoc.t -> Exp.t -> Exp.t -> t -> t = fun ~updated_locs e1 e2 -> map ~f:(MemReach.update_latest_prune ~updated_locs e1 e2) let get_latest_prune : _ t0 -> LatestPrune.t = fun m -> f_lift_default ~default:LatestPrune.Top MemReach.get_latest_prune m let set_latest_prune : LatestPrune.t -> t -> t = fun latest_prune m -> map ~f:(MemReach.set_latest_prune latest_prune) m let get_relation : t -> Relation.t = fun m -> f_lift_default ~default:Relation.bot MemReach.get_relation m let meet_constraints : Relation.Constraints.t -> t -> t = fun constrs -> map ~f:(MemReach.meet_constraints constrs) let is_relation_unsat m = f_lift_default ~default:true MemReach.is_relation_unsat m let store_relation : PowLoc.t -> Relation.SymExp.t option * Relation.SymExp.t option * Relation.SymExp.t option -> t -> t = fun locs symexp_opts -> map ~f:(MemReach.store_relation locs symexp_opts) let relation_forget_locs : PowLoc.t -> t -> t = fun locs -> map ~f:(MemReach.relation_forget_locs locs) let forget_unreachable_locs : formals:(Pvar.t * Typ.t) list -> t -> t = fun ~formals -> map ~f:(MemReach.forget_unreachable_locs ~formals) let forget_size_alias arr_locs = map ~f:(MemReach.forget_size_alias arr_locs) let[@warning "-32"] init_param_relation : Loc.t -> t -> t = fun loc -> map ~f:(MemReach.init_param_relation loc) let init_array_relation : Allocsite.t -> offset_opt:Itv.t option -> size:Itv.t -> size_exp_opt:Relation.SymExp.t option -> t -> t = fun allocsite ~offset_opt ~size ~size_exp_opt -> map ~f:(MemReach.init_array_relation allocsite ~offset_opt ~size ~size_exp_opt) let instantiate_relation : Relation.SubstMap.t -> caller:t -> callee:no_oenv_t -> t = fun subst_map ~caller ~callee -> match callee with | Bottom | ExcRaised -> caller | NonBottom callee -> map ~f:(fun caller -> MemReach.instantiate_relation subst_map ~caller ~callee) caller let unset_oenv = function | (Bottom | ExcRaised) as x -> x | NonBottom m -> NonBottom (MemReach.unset_oenv m) let set_first_idx_of_null loc idx = map ~f:(MemReach.set_first_idx_of_null loc idx) let unset_first_idx_of_null loc idx = map ~f:(MemReach.unset_first_idx_of_null loc idx) let get_c_strlen locs m = let get_c_strlen' loc acc = match loc with Loc.Allocsite _ -> Val.join acc (find (Loc.of_c_strlen loc) m) | _ -> acc in PowLoc.fold get_c_strlen' locs Val.bot let pp f m = match m with | Bottom -> F.pp_print_string f SpecialChars.up_tack | ExcRaised -> F.pp_print_string f (SpecialChars.up_tack ^ " by exception") | NonBottom m -> MemReach.pp f m end