(* * Copyright (c) 2009 - 2013 Monoidics ltd. * Copyright (c) 2013 - present Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) (** Functions for Propositions (i.e., Symbolic Heaps) *) module L = Logging module F = Format open Utils (** {2 Sets of Propositions} *) module PropSet = Set.Make(struct type t = Prop.normal Prop.t let compare = Prop.prop_compare end) let compare = PropSet.compare (** Sets of propositions. The invariant is maintaned that Prop.prop_rename_primed_footprint_vars is called on any prop added to the set. *) type t = PropSet.t let add p pset = let ps = Prop.prop_expand p in list_fold_left (fun pset' p' -> PropSet.add (Prop.prop_rename_primed_footprint_vars p') pset') pset ps (** Singleton set. *) let singleton p = add p PropSet.empty (** Set union. *) let union = PropSet.union (** Set membership *) let mem p = PropSet.mem p (** Set intersection *) let inter = PropSet.inter (** Set difference. *) let diff = PropSet.diff let empty = PropSet.empty (** Set emptiness check. *) let is_empty = PropSet.is_empty (** Size of the set *) let size = PropSet.cardinal let filter = PropSet.filter let from_proplist plist = list_fold_left (fun pset p -> add p pset) empty plist let to_proplist pset = PropSet.elements pset (** Apply function to all the elements of [propset], removing those where it returns [None]. *) let map_option f pset = let plisto = list_map f (to_proplist pset) in let plisto = list_filter (function | Some _ -> true | None -> false) plisto in let plist = list_map (function Some p -> p | None -> assert false) plisto in from_proplist plist (** Apply function to all the elements of [propset]. *) let map f pset = from_proplist (list_map f (to_proplist pset)) (** [fold f pset a] computes [f (... (f (f a p1) p2) ...) pn] where [p1 ... pN] are the elements of pset, in increasing order. *) let fold f a pset = let l = to_proplist pset in list_fold_left f a l (** [iter f pset] computes (f p1;f p2;..;f pN) where [p1 ... pN] are the elements of pset, in increasing order. *) let iter = PropSet.iter let subseteq = PropSet.subset let partition = PropSet.partition (** {2 Pretty print} *) (** Pretty print a set of propositions, obtained from the given prop. *) let pp pe prop f pset = let plist = to_proplist pset in (Propgraph.pp_proplist pe "PROP" (prop, false)) f plist let d p ps = let plist = to_proplist ps in Propgraph.d_proplist p plist