(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) open! IStd (** {1 Abstract domains and domain combinators} *) module Types : sig type 'astate bottom_lifted = Bottom | NonBottom of 'astate type 'astate top_lifted = Top | NonTop of 'astate [@@deriving equal] type ('below, 'astate, 'above) below_above = Below of 'below | Above of 'above | Val of 'astate end open! Types module type NoJoin = sig include PrettyPrintable.PrintableType val leq : lhs:t -> rhs:t -> bool (** the implication relation: [lhs <= rhs] means [lhs |- rhs] *) end module type S = sig include NoJoin val join : t -> t -> t val widen : prev:t -> next:t -> num_iters:int -> t end include (* ocaml ignores the warning suppression at toplevel, hence the [include struct ... end] trick *) sig [@@@warning "-60"] (** a trivial domain *) module Empty : S with type t = unit end (** A domain with an explicit bottom value *) module type WithBottom = sig include S val bottom : t (** The bottom value of the domain. *) val is_bottom : t -> bool (** Return true if this is the bottom value *) end (** A domain with an explicit top value *) module type WithTop = sig include S val top : t val is_top : t -> bool end (** Create a domain with Bottom element from a pre-domain *) module BottomLifted (Domain : S) : sig include WithBottom with type t = Domain.t bottom_lifted val map : f:(Domain.t -> Domain.t) -> t -> t end module BottomLiftedUtils : sig val pp_bottom : Format.formatter -> unit end (** Create a domain with Top element from a pre-domain *) module TopLifted (Domain : S) : WithTop with type t = Domain.t top_lifted module TopLiftedUtils : sig val pp_top : Format.formatter -> unit end (** Cartesian product of two domains. *) module Pair (Domain1 : S) (Domain2 : S) : S with type t = Domain1.t * Domain2.t (** Flat abstract domain: Bottom, Top, and non-comparable elements in between *) module Flat (V : PrettyPrintable.PrintableEquatableType) : sig include WithBottom include WithTop with type t := t val v : V.t -> t val get : t -> V.t option end include sig [@@@warning "-60"] (** Stacked abstract domain: tagged union of [Below], [Val], and [Above] domains where all elements of [Below] are strictly smaller than all elements of [Val] which are strictly smaller than all elements of [Above] *) module Stacked (Below : S) (Val : S) (Above : S) : S with type t = (Below.t, Val.t, Above.t) below_above end module StackedUtils : sig val leq : leq_below:(lhs:'b -> rhs:'b -> bool) -> leq:(lhs:'v -> rhs:'v -> bool) -> leq_above:(lhs:'a -> rhs:'a -> bool) -> lhs:('b, 'v, 'a) below_above -> rhs:('b, 'v, 'a) below_above -> bool val compare : ('b, 'v, 'a) below_above -> ('b, 'v, 'a) below_above -> cmp_below:('b -> 'b -> int) -> cmp:('v -> 'v -> int) -> cmp_above:('a -> 'a -> int) -> int val pp : pp_below:(Format.formatter -> 'b -> unit) -> pp:(Format.formatter -> 'v -> unit) -> pp_above:(Format.formatter -> 'a -> unit) -> Format.formatter -> ('b, 'v, 'a) below_above -> unit val combine : dir:[`Increasing | `Decreasing] -> ('b, 'v, 'a) below_above -> ('b, 'v, 'a) below_above -> f_below:('b -> 'b -> 'b) -> f:('v -> 'v -> 'v) -> f_above:('a -> 'a -> 'a) -> ('b, 'v, 'a) below_above val map : ('b, 'v, 'a) below_above -> f_below:('b -> 'b2) -> f:('v -> 'v2) -> f_above:('a -> 'a2) -> ('b2, 'v2, 'a2) below_above end (** Abstracts a set of [Element]s by keeping its smallest representative only. The widening is terminating only if the order fulfills the descending chain condition. *) module MinReprSet (Element : PrettyPrintable.PrintableOrderedType) : sig type elt = Element.t include Caml.Set.OrderedType include WithBottom with type t := t val singleton : elt -> t val min_elt : t -> elt option val add : elt -> t -> t val map : (elt -> elt) -> t -> t val fold : (elt -> 'a -> 'a) -> t -> 'a -> 'a val exists : (elt -> bool) -> t -> bool end module type FiniteSetS = sig include PrettyPrintable.PPSet include WithBottom with type t := t end include sig [@@@warning "-60"] (** Lift a PPSet to a powerset domain ordered by subset. The elements of the set should be drawn from a *finite* collection of possible values, since the widening operator here is just union. *) module FiniteSetOfPPSet (PPSet : PrettyPrintable.PPSet) : FiniteSetS with type elt = PPSet.elt end (** Lift a set to a powerset domain ordered by subset. The elements of the set should be drawn from a *finite* collection of possible values, since the widening operator here is just union. *) module FiniteSet (Element : PrettyPrintable.PrintableOrderedType) : FiniteSetS with type elt = Element.t module type InvertedSetS = sig include PrettyPrintable.PPSet include WithTop with type t := t end (** Lift a set to a powerset domain ordered by superset, so the join operator is intersection *) module InvertedSet (Element : PrettyPrintable.PrintableOrderedType) : InvertedSetS with type elt = Element.t module type MapS = sig include PrettyPrintable.PPMonoMap include WithBottom with type t := t end include sig [@@@warning "-60"] (** Map domain ordered by union over the set of bindings, so the bottom element is the empty map. Every element implicitly maps to bottom unless it is explicitly bound to something else. Uses PPMap as the underlying map *) module MapOfPPMap (PPMap : PrettyPrintable.PPMap) (ValueDomain : S) : MapS with type key = PPMap.key and type value = ValueDomain.t and type t = ValueDomain.t PPMap.t end (** Map domain ordered by union over the set of bindings, so the bottom element is the empty map. Every element implicitly maps to bottom unless it is explicitly bound to something else *) module Map (Key : PrettyPrintable.PrintableOrderedType) (ValueDomain : S) : MapS with type key = Key.t and type value = ValueDomain.t module type InvertedMapS = sig include PrettyPrintable.PPMonoMap include WithTop with type t := t end (** Map domain ordered by intersection over the set of bindings, so the top element is the empty map. Every element implictly maps to top unless it is explicitly bound to something else *) module InvertedMap (Key : PrettyPrintable.PrintableOrderedType) (ValueDomain : S) : InvertedMapS with type key = Key.t and type value = ValueDomain.t (** Similar to [InvertedMap] but it guarantees that it has a canonical form. For example, both [{a -> top_v}] and [empty] represent the same abstract value [top] in [InvertedMap], but in this implementation, [top] is always implemented as [empty] by not adding the [top_v] explicitly. *) module SafeInvertedMap (Key : PrettyPrintable.PrintableOrderedType) (ValueDomain : WithTop) : InvertedMapS with type key = Key.t and type value = ValueDomain.t (* ocaml ignores the warning suppression at toplevel, hence the [include struct ... end] trick *) include sig [@@@warning "-60"] module FiniteMultiMap (Key : PrettyPrintable.PrintableOrderedType) (Value : PrettyPrintable.PrintableOrderedType) : sig include WithBottom val add : Key.t -> Value.t -> t -> t [@@warning "-32"] val mem : Key.t -> t -> bool [@@warning "-32"] val remove : Key.t -> Value.t -> t -> t [@@warning "-32"] val fold : (Key.t -> Value.t -> 'a -> 'a) -> t -> 'a -> 'a val filter : (Key.t -> Value.t -> bool) -> t -> t end end (** Boolean domain ordered by p || ~q. Useful when you want a boolean that's true only when it's true in both conditional branches. *) module BooleanAnd : S with type t = bool (** Boolean domain ordered by ~p || q. Useful when you want a boolean that's true only when it's true in one conditional branch. *) module BooleanOr : WithBottom with type t = bool module type MaxCount = sig val max : int (** must be positive *) end (** Domain keeping a non-negative count with a bounded maximum value. The count can be only incremented and decremented. *) module CountDomain (MaxCount : MaxCount) : sig include WithBottom with type t = private int (** top is maximum value *) include WithTop with type t := t val increment : t -> t (** bump the count by one if it is less than the max *) val decrement : t -> t (** descrease the count by one if it is greater than 0 *) val add : t -> t -> t (** capped sum of two states *) end (** Domain keeping a non-negative count with a bounded maximum value. [join] is minimum and [top] is zero. *) module DownwardIntDomain (MaxCount : MaxCount) : sig (** top is zero *) include WithTop with type t = private int (** bottom is the provided maximum *) include WithBottom with type t := t val increment : t -> t (** bump the count by one if this won't cross the maximum *) val decrement : t -> t (** decrease the count by one if it is greater than 0 *) end