(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) open! NS0 include Map_intf module Make (Key : sig type t [@@deriving compare, sexp_of] end) : S with type key = Key.t = struct module M = CCMap.Make (Key) type key = Key.t type 'a t = 'a M.t [@@deriving compare, equal] let sexp_of_t sexp_of_data m = M.to_list m |> Sexplib.Conv.sexp_of_list (Sexplib.Conv.sexp_of_pair Key.sexp_of_t sexp_of_data) module Provide_of_sexp (Key : sig type t = key [@@deriving of_sexp] end) = struct let t_of_sexp data_of_sexp s = s |> Sexplib.Conv.list_of_sexp (Sexplib.Conv.pair_of_sexp Key.t_of_sexp data_of_sexp) |> M.of_list end let empty = M.empty let singleton = M.singleton let add_exn ~key ~data m = assert (not (M.mem key m)) ; M.add key data m let add ~key ~data m = M.add key data m let add_multi ~key ~data m = M.update key (function Some vs -> Some (data :: vs) | None -> Some [data]) m let remove key m = M.remove key m let merge l r ~f = M.merge_safe l r ~f let merge_endo t u ~f = let change = ref false in let t' = merge t u ~f:(fun key side -> let f_side = f key side in ( match (side, f_side) with | (`Both (data, _) | `Left data), Some data' when data' == data -> () | _ -> change := true ) ; f_side ) in if !change then t' else t let union x y ~f = M.union f x y let partition m ~f = M.partition f m let partition_map m ~f = M.fold (fun k v (l, r) -> match (f k v : _ Either.t) with | Left a -> (M.add k a l, r) | Right b -> (l, M.add k b r) ) m (empty, empty) let is_empty = M.is_empty let root_key m = let exception Found in let found = ref None in try M.find_first (fun key -> found := Some key ; raise Found ) m |> ignore ; None with | Found -> !found | Not_found -> None let root_binding m = let exception Found in let found = ref None in try M.for_all (fun key data -> found := Some (key, data) ; raise Found ) m |> ignore ; None with | Found -> !found | Not_found -> None let is_singleton m = match root_key m with | Some k -> let l, _, r = M.split k m in is_empty l && is_empty r | None -> false let length = M.cardinal let only_binding m = match root_key m with | Some k -> ( match M.split k m with | l, Some v, r when is_empty l && is_empty r -> Some (k, v) | _ -> None ) | None -> None let classify m = match root_key m with | None -> `Zero | Some k -> ( match M.split k m with | l, Some v, r when is_empty l && is_empty r -> `One (k, v) | _ -> `Many ) let choose_key = root_key let choose = root_binding let choose_exn m = Option.get_exn (choose m) let min_binding = M.min_binding_opt let mem k m = M.mem k m let find_exn k m = M.find k m let find k m = M.find_opt k m let find_multi k m = match M.find_opt k m with None -> [] | Some vs -> vs let find_and_remove k m = let found = ref None in let m = M.update k (fun v -> found := v ; None ) m in Option.map ~f:(fun v -> (v, m)) !found let pop m = choose m |> Option.map ~f:(fun (k, v) -> (k, v, remove k m)) let pop_min_binding m = min_binding m |> Option.map ~f:(fun (k, v) -> (k, v, remove k m)) let change k m ~f = M.update k f m let update k m ~f = M.update k (fun v -> Some (f v)) m let map m ~f = M.map f m let mapi m ~f = M.mapi (fun key data -> f ~key ~data) m let map_endo t ~f = map_endo map t ~f let filter_mapi m ~f = M.filter_map (fun key data -> f ~key ~data) m let iter m ~f = M.iter (fun _ data -> f data) m let iteri m ~f = M.iter (fun key data -> f ~key ~data) m let existsi m ~f = M.exists (fun key data -> f ~key ~data) m let for_alli m ~f = M.for_all (fun key data -> f ~key ~data) m let fold m s ~f = M.fold (fun key data acc -> f ~key ~data acc) m s let keys = M.keys let values = M.values let to_iter = M.to_iter let to_list = M.to_list let of_iter = M.of_iter let of_list = M.of_list let to_iter2 l r = let seq = ref Iter.empty in M.merge_safe l r ~f:(fun k vv -> seq := Iter.cons (k, vv) !seq ; None ) |> ignore ; !seq let symmetric_diff l r ~eq = Iter.filter_map (to_iter2 l r) ~f:(fun (k, vv) -> match vv with | `Both (lv, rv) when eq lv rv -> None | `Both vv -> Some (k, `Unequal vv) | `Left lv -> Some (k, `Left lv) | `Right rv -> Some (k, `Right rv) ) let pp pp_k pp_v fs m = Format.fprintf fs "@[<1>[%a]@]" (List.pp ",@ " (fun fs (k, v) -> Format.fprintf fs "@[%a@ @<2>↦ %a@]" pp_k k pp_v v )) (Iter.to_list (to_iter m)) let pp_diff pp_key pp_val pp_diff_val ~eq fs (x, y) = let pp_diff_elt fs = function | k, `Left v -> Format.fprintf fs "-- [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v | k, `Right v -> Format.fprintf fs "++ [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v | k, `Unequal vv -> Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_key k pp_diff_val vv in let sd = Iter.to_list (symmetric_diff ~eq x y) in if not (List.is_empty sd) then Format.fprintf fs "[@[%a@]];@ " (List.pp ";@ " pp_diff_elt) sd end