(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) let%test_module _ = ( module struct open Equality let () = Trace.init ~margin:68 () (* let () = * Trace.init ~margin:160 * ~config:(Result.ok_exn (Trace.parse "+Equality")) * () * * [@@@warning "-32"] *) let printf pp = Format.printf "@\n%a@." pp let pp = printf pp let pp_classes = Format.printf "@\n@[ %a@]@." pp_classes let ( ! ) i = Term.integer (Z.of_int i) let ( + ) = Term.add let ( - ) = Term.sub let ( * ) = Term.mul let f = Term.unsigned 8 let g = Term.rem let wrt = Var.Set.empty let t_, wrt = Var.fresh "t" ~wrt let u_, wrt = Var.fresh "u" ~wrt let v_, wrt = Var.fresh "v" ~wrt let w_, wrt = Var.fresh "w" ~wrt let x_, wrt = Var.fresh "x" ~wrt let y_, wrt = Var.fresh "y" ~wrt let z_, wrt = Var.fresh "z" ~wrt let t = Term.var t_ let u = Term.var u_ let v = Term.var v_ let w = Term.var w_ let x = Term.var x_ let y = Term.var y_ let z = Term.var z_ let of_eqs l = List.fold ~init:(wrt, true_) ~f:(fun (us, r) (a, b) -> and_eq us a b r) l |> snd let and_eq a b r = and_eq wrt a b r |> snd let and_ r s = and_ wrt r s |> snd let or_ r s = or_ wrt r s |> snd (* tests *) let f1 = of_eqs [(!0, !1)] let%test _ = is_false f1 let%expect_test _ = pp f1 ; [%expect {| {sat= false; rep= []} |}] let%test _ = is_false (and_eq !1 !1 f1) let f2 = of_eqs [(x, x + !1)] let%test _ = is_false f2 let%expect_test _ = pp f2 ; [%expect {| {sat= false; rep= [[%x_5 ↦ ]]} |}] let f3 = of_eqs [(x + !0, x + !1)] let%test _ = is_false f3 let%expect_test _ = pp f3 ; [%expect {| {sat= false; rep= [[%x_5 ↦ ]]} |}] let f4 = of_eqs [(x, y); (x + !0, y + !1)] let%test _ = is_false f4 let%expect_test _ = pp f4 ; [%expect {| {sat= false; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]]} |}] let t1 = of_eqs [(!1, !1)] let%test _ = is_true t1 let t2 = of_eqs [(x, x)] let%test _ = is_true t2 let%test _ = is_false (and_ f3 t2) let%test _ = is_false (and_ t2 f3) let r0 = true_ let%expect_test _ = pp r0 ; [%expect {| {sat= true; rep= []} |}] let%expect_test _ = pp_classes r0 ; [%expect {||}] let%test _ = difference r0 (f x) (f x) |> Poly.equal (Some (Z.of_int 0)) let%test _ = difference r0 !4 !3 |> Poly.equal (Some (Z.of_int 1)) let r1 = of_eqs [(x, y)] let%expect_test _ = pp_classes r1 ; pp r1 ; [%expect {| %x_5 = %y_6 {sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]]} |}] let%test _ = entails_eq r1 x y let r2 = of_eqs [(x, y); (f x, y); (f y, z)] let%expect_test _ = pp_classes r2 ; pp r2 ; [%expect {| %x_5 = %y_6 = %z_7 = ((u8) %x_5) {sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [%z_7 ↦ %x_5]; [((u8) %x_5) ↦ %x_5]]} |}] let%test _ = entails_eq r2 x z let%test _ = entails_eq (or_ r1 r2) x y let%test _ = not (entails_eq (or_ r1 r2) x z) let%test _ = entails_eq (or_ f1 r2) x z let%test _ = entails_eq (or_ r2 f3) x z let%test _ = entails_eq r2 (f y) y let%test _ = entails_eq r2 (f x) (f z) let%test _ = entails_eq r2 (g x y) (g z y) let%test _ = difference (or_ r1 r2) x z |> Poly.equal None let%expect_test _ = let r = of_eqs [(w, y); (y, z)] in let s = of_eqs [(x, y); (y, z)] in let rs = or_ r s in pp r ; pp s ; pp rs ; [%expect {| {sat= true; rep= [[%w_4 ↦ ]; [%y_6 ↦ %w_4]; [%z_7 ↦ %w_4]]} {sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [%z_7 ↦ %x_5]]} {sat= true; rep= [[%y_6 ↦ ]; [%z_7 ↦ %y_6]]} |}] let%test _ = let r = of_eqs [(w, y); (y, z)] in let s = of_eqs [(x, y); (y, z)] in let rs = or_ r s in entails_eq rs y z let r3 = of_eqs [(g y z, w); (v, w); (g y w, t); (x, v); (x, u); (u, z)] let%expect_test _ = pp_classes r3 ; pp r3 ; [%expect {| %t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = (%y_6 rem %t_1) = (%y_6 rem %t_1) {sat= true; rep= [[%t_1 ↦ ]; [%u_2 ↦ %t_1]; [%v_3 ↦ %t_1]; [%w_4 ↦ %t_1]; [%x_5 ↦ %t_1]; [%y_6 ↦ ]; [%z_7 ↦ %t_1]; [(%y_6 rem %v_3) ↦ %t_1]; [(%y_6 rem %z_7) ↦ %t_1]]} |}] let%test _ = entails_eq r3 t z let%test _ = entails_eq r3 x z let%test _ = entails_eq (and_ r2 r3) x z let r4 = of_eqs [(w + !2, x - !3); (x - !5, y + !7); (y, z - !4)] let%expect_test _ = pp_classes r4 ; pp r4 ; [%expect {| (%z_7 + -4) = %y_6 ∧ (%z_7 + 3) = %w_4 ∧ (%z_7 + 8) = %x_5 {sat= true; rep= [[%w_4 ↦ (%z_7 + 3)]; [%x_5 ↦ (%z_7 + 8)]; [%y_6 ↦ (%z_7 + -4)]; [%z_7 ↦ ]]} |}] let%test _ = entails_eq r4 x (w + !5) let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5)) let r5 = of_eqs [(x, y); (g w x, y); (g w y, f z)] let%test _ = Var.Set.equal (fv r5) (Var.Set.of_list [w_; x_; y_; z_]) let r6 = of_eqs [(x, !1); (!1, y)] let%expect_test _ = pp_classes r6 ; pp r6 ; [%expect {| 1 = %x_5 = %y_6 {sat= true; rep= [[%x_5 ↦ 1]; [%y_6 ↦ 1]]} |}] let%test _ = entails_eq r6 x y let r7 = of_eqs [(v, x); (w, z); (y, z)] let%expect_test _ = pp_classes r7 ; pp r7 ; pp (and_eq x z r7) ; pp_classes (and_eq x z r7) ; [%expect {| %v_3 = %x_5 ∧ %w_4 = %y_6 = %z_7 {sat= true; rep= [[%v_3 ↦ ]; [%w_4 ↦ ]; [%x_5 ↦ %v_3]; [%y_6 ↦ %w_4]; [%z_7 ↦ %w_4]]} {sat= true; rep= [[%v_3 ↦ ]; [%w_4 ↦ %v_3]; [%x_5 ↦ %v_3]; [%y_6 ↦ %v_3]; [%z_7 ↦ %v_3]]} %v_3 = %w_4 = %x_5 = %y_6 = %z_7 |}] let%expect_test _ = printf (List.pp " , " Term.pp) (Equality.class_of r7 t) ; printf (List.pp " , " Term.pp) (Equality.class_of r7 x) ; printf (List.pp " , " Term.pp) (Equality.class_of r7 z) ; [%expect {| %t_1 %v_3 , %x_5 %w_4 , %z_7 , %y_6 |}] let r7' = and_eq x z r7 let%expect_test _ = pp_classes r7' ; pp r7' ; [%expect {| %v_3 = %w_4 = %x_5 = %y_6 = %z_7 {sat= true; rep= [[%v_3 ↦ ]; [%w_4 ↦ %v_3]; [%x_5 ↦ %v_3]; [%y_6 ↦ %v_3]; [%z_7 ↦ %v_3]]} |}] let%test _ = normalize r7' w |> Term.equal v let%test _ = entails_eq (of_eqs [(g w x, g y z); (x, z)]) (g w x) (g w z) let%test _ = entails_eq (of_eqs [(g w x, g y w); (x, z)]) (g w x) (g w z) let r8 = of_eqs [(x + !42, (!3 * y) + (!13 * z)); (!13 * z, x)] let%expect_test _ = pp_classes r8 ; pp r8 ; [%expect {| (13 × %z_7) = %x_5 ∧ 14 = %y_6 {sat= true; rep= [[%x_5 ↦ (13 × %z_7)]; [%y_6 ↦ 14]; [%z_7 ↦ ]]} |}] let%test _ = entails_eq r8 y !14 let r9 = of_eqs [(x, z - !16)] let%expect_test _ = pp_classes r9 ; pp r9 ; [%expect {| (%z_7 + -16) = %x_5 {sat= true; rep= [[%x_5 ↦ (%z_7 + -16)]; [%z_7 ↦ ]]} |}] let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8)) let r10 = of_eqs [(!16, z - x)] let%expect_test _ = pp_classes r10 ; pp r10 ; Format.printf "@.%a@." Term.pp (z - (x + !8)) ; Format.printf "@.%a@." Term.pp (normalize r10 (z - (x + !8))) ; Format.printf "@.%a@." Term.pp (x + !8 - z) ; Format.printf "@.%a@." Term.pp (normalize r10 (x + !8 - z)) ; [%expect {| (%z_7 + -16) = %x_5 {sat= true; rep= [[%x_5 ↦ (%z_7 + -16)]; [%z_7 ↦ ]]} (-1 × %x_5 + %z_7 + -8) 8 (%x_5 + -1 × %z_7 + 8) -8 |}] let%test _ = difference r10 z (x + !8) |> Poly.equal (Some (Z.of_int 8)) let%test _ = difference r10 (x + !8) z |> Poly.equal (Some (Z.of_int (-8))) let r11 = of_eqs [(!16, z - x); (x + !8 - z, z - !16 + !8 - z)] let%expect_test _ = pp_classes r11 ; [%expect {| (%z_7 + -16) = %x_5 |}] let r12 = of_eqs [(!16, z - x); (x + !8 - z, z + !16 + !8 - z)] let%expect_test _ = pp_classes r12 ; [%expect {| (%z_7 + -16) = %x_5 |}] let r13 = of_eqs [(Term.eq x !2, y); (Term.dq x !2, z); (y, z)] let%expect_test _ = pp r13 ; [%expect {| {sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ ]; [%z_7 ↦ %y_6]; [(%x_5 = 2) ↦ %y_6]; [(%x_5 ≠ 2) ↦ %y_6]]} |}] let%test _ = not (is_false r13) (* incomplete *) let a = Term.dq x !0 let r14 = of_eqs [(a, a); (x, !1)] let%expect_test _ = pp r14 ; [%expect {| {sat= true; rep= [[%x_5 ↦ 1]; [(%x_5 ≠ 0) ↦ -1]]} |}] let%test _ = entails_eq r14 a Term.true_ let b = Term.dq y !0 let r14 = of_eqs [(a, b); (x, !1)] let%expect_test _ = pp r14 ; [%expect {| {sat= true; rep= [[%x_5 ↦ 1]; [%y_6 ↦ ]; [(%x_5 ≠ 0) ↦ -1]; [(%y_6 ≠ 0) ↦ -1]]} |}] let%test _ = entails_eq r14 a Term.true_ let%test _ = entails_eq r14 b Term.true_ let b = Term.dq x !0 let r15 = of_eqs [(b, b); (x, !1)] let%expect_test _ = pp r15 ; [%expect {| {sat= true; rep= [[%x_5 ↦ 1]; [(%x_5 ≠ 0) ↦ -1]]} |}] let%test _ = entails_eq r15 b (Term.signed 1 !1) let%test _ = entails_eq r15 (Term.unsigned 1 b) !1 (* f(x−1)−1=x+1, f(y)+1=y−1, y+1=x ⊢ false *) let r16 = of_eqs [(f (x - !1) - !1, x + !1); (f y + !1, y - !1); (y + !1, x)] let%expect_test _ = pp r16 ; [%expect {| {sat= false; rep= [[%x_5 ↦ (%y_6 + 1)]; [%y_6 ↦ ]; [((u8) %y_6) ↦ (%y_6 + -2)]; [((u8) (%x_5 + -1)) ↦ (%y_6 + 3)]]} |}] let%test _ = is_false r16 (* f(x) = x, f(y) = y − 1, y = x ⊢ false *) let r17 = of_eqs [(f x, x); (f y, y - !1); (y, x)] let%expect_test _ = pp r17 ; [%expect {| {sat= false; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [((u8) %x_5) ↦ %x_5]; [((u8) %y_6) ↦ (%x_5 + -1)]]} |}] let%test _ = is_false r17 let%expect_test _ = let r18 = of_eqs [(f x, x); (f y, y - !1)] in pp r18 ; pp_classes r18 ; [%expect {| {sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ ]; [((u8) %x_5) ↦ %x_5]; [((u8) %y_6) ↦ (%y_6 + -1)]]} %x_5 = ((u8) %x_5) ∧ (%y_6 + -1) = ((u8) %y_6) |}] let r19 = of_eqs [(x, y + z); (x, !0); (y, !0)] let%expect_test _ = pp r19 ; [%expect {| {sat= true; rep= [[%x_5 ↦ 0]; [%y_6 ↦ 0]; [%z_7 ↦ 0]]} |}] let%test _ = entails_eq r19 z !0 let%expect_test _ = Equality.replay {|(And_eq () (Var (id 10) (name v)) (Mul (((Var (id 8) (name v)) 1) ((Var (id 9) (name v)) 1))) ((xs ()) (sat true) (rep ())))|} ; [%expect {| |}] end )