(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Symbolic Heap Formulas *) open Fol (** Segment of memory. *) type seg = { loc: Term.t (** location (address) where segment starts *) ; bas: Term.t (** base address of enclosing allocation-block *) ; len: Term.t (** length of enclosing allocation-block *) ; siz: Term.t (** size of segment / length of the contents *) ; cnt: Term.t (** contents of segment, a sequence / byte array *) } type starjunction = private { us: Var.Set.t (** vocabulary / variable context of formula *) ; xs: Var.Set.t (** existentially-bound variables *) ; ctx: Context.t (** first-order logical context induced by rest of formula *) ; pure: Formula.t (** pure boolean constraints *) ; heap: seg list (** star-conjunction of segment atomic formulas *) ; djns: disjunction list (** star-conjunction of disjunctions *) } and disjunction = starjunction list type t = starjunction [@@deriving compare, equal, sexp] val pp_seg_norm : Context.t -> seg pp val pp_us : ?pre:('a, 'a) fmt -> ?vs:Var.Set.t -> unit -> Var.Set.t pp val pp : t pp val pp_raw : t pp val pp_diff_eq : ?us:Var.Set.t -> ?xs:Var.Set.t -> Context.t -> t pp val pp_djn : disjunction pp val simplify : t -> t include Invariant.S with type t := t (** Construct *) val emp : t (** Empty heap formula. *) val false_ : Var.Set.t -> t (** Inconsistent formula with given vocabulary. *) val seg : seg -> t (** Atomic segment formula. *) val star : t -> t -> t (** Star-conjoin formulas, extending to a common vocabulary, and avoiding capturing existentials. *) val or_ : t -> t -> t (** Disjoin formulas, extending to a common vocabulary, and avoiding capturing existentials. *) val pure : Formula.t -> t (** Atomic pure boolean constraint formula. *) val and_ : Formula.t -> t -> t (** Conjoin a boolean constraint to a formula. *) val and_ctx : Context.t -> t -> t (** Conjoin a context to that of a formula, extending to a common vocabulary, and avoiding capturing existentials. *) val and_subst : Context.Subst.t -> t -> t (** Conjoin constraints of a solution substitution to a formula, extending to a common vocabulary, and avoiding capturing existentials. *) (** Update *) val rem_seg : seg -> t -> t (** [star (seg s) (rem_seg s q)] is equivalent to [q], assuming that [s] is (physically equal to) one of the elements of [q.heap]. Raises if [s] is not an element of [q.heap]. *) val filter_heap : f:(seg -> bool) -> t -> t (** [filter_heap q f] Remove all segments in [q] for which [f] returns false *) val norm : Context.Subst.t -> t -> t (** [norm s q] is [q] where subterms have been normalized with a substitution. *) (** Quantification and Vocabulary *) val exists : Var.Set.t -> t -> t (** Existential quantification, binding variables thereby removing them from vocabulary. *) val bind_exists : t -> wrt:Var.Set.t -> Var.Set.t * t (** Bind existentials, freshened with respect to [wrt], extends vocabulary. *) val rename : Var.Subst.t -> t -> t (** Apply a substitution, remove its domain from vocabulary and add its range. *) val subst : Var.Subst.t -> t -> t (** Apply a substitution, remove its domain from vocabulary and add its range. *) val freshen : t -> wrt:Var.Set.t -> t * Var.Subst.t (** Freshen free variables with respect to [wrt], and extend vocabulary with [wrt], renaming bound variables as needed. *) val extend_us : Var.Set.t -> t -> t (** Extend vocabulary, renaming existentials as needed. *) (** Query *) val is_unsat : t -> bool (** Holds only of inconsistent formulas, does not hold of all inconsistent formulas. *) val is_empty : t -> bool (** Holds only if all satisfying states have empty heap. *) val pure_approx : t -> Formula.t (** [pure_approx q] is inconsistent only if [q] is inconsistent. If [is_empty q], then [pure_approx q] is equivalent to [pure (pure_approx q)]. *) val fv : ?ignore_ctx:unit -> ?ignore_pure:unit -> t -> Var.Set.t (** Free variables, a subset of vocabulary. *) val fold_dnf : conj:(starjunction -> 'conjuncts -> 'conjuncts) -> disj:(Var.Set.t * 'conjuncts -> 'disjuncts -> 'disjuncts) -> t -> Var.Set.t * 'conjuncts -> 'disjuncts -> 'disjuncts (** Enumerate the cubes and clauses of a disjunctive-normal form expansion. *) val dnf : t -> disjunction (** Convert to disjunctive-normal form. *)