(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Equality over uninterpreted functions and linear rational arithmetic *) (** Classification of Terms by Theory *) type kind = Interpreted | Simplified | Atomic | Uninterpreted [@@deriving compare, equal] let classify e = match (e : Term.t) with | Add _ | Mul _ -> Interpreted | Ap2 (Memory, _, _) | Ap3 (Extract, _, _, _) | ApN (Concat, _) -> Interpreted | Ap2 ((Eq | Dq), _, _) -> Simplified | Ap1 _ | Ap2 _ | Ap3 _ | ApN _ -> Uninterpreted | RecN _ | Var _ | Integer _ | Float _ | Nondet _ | Label _ -> Atomic let interpreted e = equal_kind (classify e) Interpreted let non_interpreted e = not (interpreted e) let uninterpreted e = equal_kind (classify e) Uninterpreted let rec fold_max_solvables e ~init ~f = if non_interpreted e then f e init else Term.fold e ~init ~f:(fun d s -> fold_max_solvables ~f d ~init:s) let rec iter_max_solvables e ~f = if non_interpreted e then f e else Term.iter ~f:(iter_max_solvables ~f) e (** Solution Substitutions *) module Subst : sig type t [@@deriving compare, equal, sexp] val pp : t pp val pp_diff : (t * t) pp val empty : t val is_empty : t -> bool val length : t -> int val mem : t -> Term.t -> bool val find : t -> Term.t -> Term.t option val fold : t -> init:'a -> f:(key:Term.t -> data:Term.t -> 'a -> 'a) -> 'a val iteri : t -> f:(key:Term.t -> data:Term.t -> unit) -> unit val for_alli : t -> f:(key:Term.t -> data:Term.t -> bool) -> bool val apply : t -> Term.t -> Term.t val subst : t -> Term.t -> Term.t val norm : t -> Term.t -> Term.t val compose : t -> t -> t val compose1 : key:Term.t -> data:Term.t -> t -> t val extend : Term.t -> t -> t option val map_entries : f:(Term.t -> Term.t) -> t -> t val to_alist : t -> (Term.t * Term.t) list val partition_valid : Var.Set.t -> t -> t * Var.Set.t * t end = struct type t = Term.t Term.Map.t [@@deriving compare, equal, sexp_of] let t_of_sexp = Term.Map.t_of_sexp Term.t_of_sexp let pp = Term.Map.pp Term.pp Term.pp let pp_diff = Term.Map.pp_diff ~data_equal:Term.equal Term.pp Term.pp Term.pp_diff let empty = Term.Map.empty let is_empty = Term.Map.is_empty let length = Term.Map.length let mem = Term.Map.mem let find = Term.Map.find let fold = Term.Map.fold let iteri = Term.Map.iteri let for_alli = Term.Map.for_alli let to_alist = Term.Map.to_alist ~key_order:`Increasing (** look up a term in a substitution *) let apply s a = Term.Map.find s a |> Option.value ~default:a let rec subst s a = apply s (Term.map ~f:(subst s) a) (** apply a substitution to maximal non-interpreted subterms *) let rec norm s a = match classify a with | Interpreted -> Term.map ~f:(norm s) a | Simplified -> apply s (Term.map ~f:(norm s) a) | Atomic | Uninterpreted -> apply s a (** compose two substitutions *) let compose r s = let r' = Term.Map.map ~f:(norm s) r in Term.Map.merge_skewed r' s ~combine:(fun ~key v1 v2 -> if Term.equal v1 v2 then v1 else fail "domains intersect: %a" Term.pp key () ) (** compose a substitution with a mapping *) let compose1 ~key ~data s = if Term.equal key data then s else compose s (Term.Map.set Term.Map.empty ~key ~data) (** add an identity entry if the term is not already present *) let extend e s = let exception Found in match Term.Map.update s e ~f:(function | Some _ -> Exn.raise_without_backtrace Found | None -> e ) with | exception Found -> None | s -> Some s (** map over a subst, applying [f] to both domain and range, requires that [f] is injective and for any set of terms [E], [f\[E\]] is disjoint from [E] *) let map_entries ~f s = Term.Map.fold s ~init:s ~f:(fun ~key ~data s -> let key' = f key in let data' = f data in if Term.equal key' key then if Term.equal data' data then s else Term.Map.set s ~key ~data:data' else Term.Map.remove s key |> Term.Map.add_exn ~key:key' ~data:data' ) (** Holds only if [true ⊢ ∃xs. e=f]. Clients assume [not (is_valid_eq xs e f)] implies [not (is_valid_eq ys e f)] for [ys ⊆ xs]. *) let is_valid_eq xs e f = let is_var_in xs e = Option.exists ~f:(Var.Set.mem xs) (Var.of_term e) in ( is_var_in xs e || is_var_in xs f || (uninterpreted e && Term.exists ~f:(is_var_in xs) e) || (uninterpreted f && Term.exists ~f:(is_var_in xs) f) ) $> fun b -> [%Trace.info "is_valid_eq %a%a=%a = %b" Var.Set.pp_xs xs Term.pp e Term.pp f b] (** Partition ∃xs. σ into equivalent ∃xs. τ ∧ ∃ks. ν where ks and ν are maximal where ∃ks. ν is universally valid, xs ⊇ ks and ks ∩ fv(τ) = ∅. *) let partition_valid xs s = (* Move equations e=f from s to t when ∃ks.e=f fails to be provably valid. When moving an equation, reduce ks by fv(e=f) to maintain ks ∩ fv(t) = ∅. This reduction may cause equations in s to no longer be valid, so loop until no change. *) let rec partition_valid_ t ks s = let t', ks', s' = Term.Map.fold s ~init:(t, ks, s) ~f:(fun ~key ~data (t, ks, s) -> if is_valid_eq ks key data then (t, ks, s) else let t = Term.Map.set ~key ~data t and ks = Var.Set.diff ks (Var.Set.union (Term.fv key) (Term.fv data)) and s = Term.Map.remove s key in (t, ks, s) ) in if s' != s then partition_valid_ t' ks' s' else (t', ks', s') in partition_valid_ empty xs s end (** Theory Solver *) (** orient equations s.t. Var < Memory < Extract < Concat < others, then using height of aggregate nesting, and then using Term.compare *) let orient e f = let compare e f = let rank e = match (e : Term.t) with | Var _ -> 0 | Ap2 (Memory, _, _) -> 1 | Ap3 (Extract, _, _, _) -> 2 | ApN (Concat, _) -> 3 | _ -> 4 in let rec height e = match (e : Term.t) with | Ap2 (Memory, _, x) -> 1 + height x | Ap3 (Extract, x, _, _) -> 1 + height x | ApN (Concat, xs) -> 1 + IArray.fold ~init:0 ~f:(fun h x -> max h (height x)) xs | _ -> 0 in let o = compare (rank e) (rank f) in if o <> 0 then o else let o = compare (height e) (height f) in if o <> 0 then o else Term.compare e f in match Ordering.of_int (compare e f) with | Less -> Some (e, f) | Equal -> None | Greater -> Some (f, e) let norm (_, _, s) e = Subst.norm s e let extend ?f ~var ~rep (us, xs, s) = let s = match f with | Some f when not (f var rep) -> s | _ -> Subst.compose1 ~key:var ~data:rep s in Some (us, xs, s) let fresh name (us, xs, s) = let x, us = Var.fresh name ~wrt:us in let xs = Var.Set.add xs x in (Term.var x, (us, xs, s)) let solve_poly ?f p q s = match Term.sub p q with | Integer {data} -> if Z.equal Z.zero data then Some s else None | Var _ as var -> extend ?f ~var ~rep:Term.zero s | p_q -> ( match Term.solve_zero_eq p_q with | Some (var, rep) -> extend ?f ~var ~rep s | None -> extend ?f ~var:p_q ~rep:Term.zero s ) (* α[o,l) = β ==> l = |β| ∧ α = (⟨n,c⟩[0,o) ^ β ^ ⟨n,c⟩[o+l,n-o-l)) where n = |α| and c fresh *) let rec solve_extract ?f a o l b s = let n = Term.agg_size_exn a in let c, s = fresh "c" s in let n_c = Term.memory ~siz:n ~arr:c in let o_l = Term.add o l in let n_o_l = Term.sub n o_l in let c0 = Term.extract ~agg:n_c ~off:Term.zero ~len:o in let c1 = Term.extract ~agg:n_c ~off:o_l ~len:n_o_l in let b, s = match Term.agg_size b with | None -> (Term.memory ~siz:l ~arr:b, Some s) | Some m -> (b, solve_ ?f l m s) in s >>= solve_ ?f a (Term.concat [|c0; b; c1|]) (* α₀^…^αᵢ^αⱼ^…^αᵥ = β ==> |α₀^…^αᵥ| = |β| ∧ … ∧ αⱼ = β[n₀+…+nᵢ,nⱼ) ∧ … where nₓ ≡ |αₓ| and m = |β| *) and solve_concat ?f a0V b m s = IArray.fold_until a0V ~init:(s, Term.zero) ~f:(fun (s, oI) aJ -> let nJ = Term.agg_size_exn aJ in let oJ = Term.add oI nJ in match solve_ ?f aJ (Term.extract ~agg:b ~off:oI ~len:nJ) s with | Some s -> Continue (s, oJ) | None -> Stop None ) ~finish:(fun (s, n0V) -> solve_ ?f n0V m s) and solve_ ?f d e s = [%Trace.call fun {pf} -> pf "%a@[%a@ %a@ %a@]" Var.Set.pp_xs (snd3 s) Term.pp d Term.pp e Subst.pp (trd3 s)] ; ( match orient (norm s d) (norm s e) with (* e' = f' ==> true when e' ≡ f' *) | None -> Some s (* i = j ==> false when i ≠ j *) | Some (Integer _, Integer _) -> None (* ⟨0,a⟩ = β ==> a = β = ⟨⟩ *) | Some (Ap2 (Memory, n, a), b) when Term.equal n Term.zero -> s |> solve_ ?f a (Term.concat [||]) >>= solve_ ?f b (Term.concat [||]) | Some (b, Ap2 (Memory, n, a)) when Term.equal n Term.zero -> s |> solve_ ?f a (Term.concat [||]) >>= solve_ ?f b (Term.concat [||]) (* v = ⟨n,a⟩ ==> v = a *) | Some ((Var _ as v), Ap2 (Memory, _, a)) -> s |> solve_ ?f v a (* ⟨n,a⟩ = ⟨m,b⟩ ==> n = m ∧ a = β *) | Some (Ap2 (Memory, n, a), Ap2 (Memory, m, b)) -> s |> solve_ ?f n m >>= solve_ ?f a b (* ⟨n,a⟩ = β ==> n = |β| ∧ a = β *) | Some (Ap2 (Memory, n, a), b) -> ( match Term.agg_size b with | None -> Some s | Some m -> solve_ ?f n m s ) >>= solve_ ?f a b | Some ((Var _ as v), (Ap3 (Extract, _, _, l) as e)) -> if not (Var.Set.mem (Term.fv e) (Var.of_ v)) then (* v = α[o,l) ==> v ↦ α[o,l) when v ∉ fv(α[o,l)) *) extend ?f ~var:v ~rep:e s else (* v = α[o,l) ==> α[o,l) ↦ ⟨l,v⟩ when v ∈ fv(α[o,l)) *) extend ?f ~var:e ~rep:(Term.memory ~siz:l ~arr:v) s | Some ((Var _ as v), (ApN (Concat, a0V) as c)) -> if not (Var.Set.mem (Term.fv c) (Var.of_ v)) then (* v = α₀^…^αᵥ ==> v ↦ α₀^…^αᵥ when v ∉ fv(α₀^…^αᵥ) *) extend ?f ~var:v ~rep:c s else (* v = α₀^…^αᵥ ==> ⟨|α₀^…^αᵥ|,v⟩ = α₀^…^αᵥ when v ∈ fv(α₀^…^αᵥ) *) let m = Term.agg_size_exn c in solve_concat ?f a0V (Term.memory ~siz:m ~arr:v) m s | Some ((Ap3 (Extract, _, _, l) as e), ApN (Concat, a0V)) -> solve_concat ?f a0V e l s | Some (ApN (Concat, a0V), (ApN (Concat, _) as c)) -> solve_concat ?f a0V c (Term.agg_size_exn c) s | Some (Ap3 (Extract, a, o, l), e) -> solve_extract ?f a o l e s (* p = q ==> p-q = 0 *) | Some ( ((Add _ | Mul _ | Integer _) as p), q | q, ((Add _ | Mul _ | Integer _) as p) ) -> solve_poly ?f p q s | Some (rep, var) -> assert (non_interpreted var) ; assert (non_interpreted rep) ; extend ?f ~var ~rep s ) |> [%Trace.retn fun {pf} -> function | Some (_, xs, s) -> pf "%a%a" Var.Set.pp_xs xs Subst.pp s | None -> pf "false"] let solve ?f ~us ~xs d e = [%Trace.call fun {pf} -> pf "%a@ %a" Term.pp d Term.pp e] ; (solve_ ?f d e (us, xs, Subst.empty) >>| fun (_, xs, s) -> (xs, s)) |> [%Trace.retn fun {pf} -> function | Some (xs, s) -> pf "%a%a" Var.Set.pp_xs xs Subst.pp s | None -> pf "false"] (** Equality Relations *) (** see also [invariant] *) type t = { xs: Var.Set.t (** existential variables that did not appear in input equations *) ; sat: bool (** [false] only if constraints are inconsistent *) ; rep: Subst.t (** functional set of oriented equations: map [a] to [a'], indicating that [a = a'] holds, and that [a'] is the 'rep(resentative)' of [a] *) } [@@deriving compare, equal, sexp] let classes r = let add key data cls = if Term.equal key data then cls else Term.Map.add_multi cls ~key:data ~data:key in Subst.fold r.rep ~init:Term.Map.empty ~f:(fun ~key ~data cls -> match classify key with | Interpreted | Atomic -> add key data cls | Simplified | Uninterpreted -> add (Term.map ~f:(Subst.apply r.rep) key) data cls ) let cls_of r e = let e' = Subst.apply r.rep e in Term.Map.find (classes r) e' |> Option.value ~default:[e'] (** Pretty-printing *) let pp fs {sat; rep} = let pp_alist pp_k pp_v fs alist = let pp_assoc fs (k, v) = Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_k k pp_v (k, v) in Format.fprintf fs "[@[%a@]]" (List.pp ";@ " pp_assoc) alist in let pp_term_v fs (k, v) = if not (Term.equal k v) then Term.pp fs v in Format.fprintf fs "@[{@[sat= %b;@ rep= %a@]}@]" sat (pp_alist Term.pp pp_term_v) (Subst.to_alist rep) let pp_diff fs (r, s) = let pp_sat fs = if not (Bool.equal r.sat s.sat) then Format.fprintf fs "sat= @[-- %b@ ++ %b@];@ " r.sat s.sat in let pp_rep fs = if not (Subst.is_empty r.rep) then Format.fprintf fs "rep= %a" Subst.pp_diff (r.rep, s.rep) in Format.fprintf fs "@[{@[%t%t@]}@]" pp_sat pp_rep let ppx_cls x = List.pp "@ = " (Term.ppx x) let pp_cls = ppx_cls (fun _ -> None) let pp_diff_cls = List.pp_diff ~compare:Term.compare "@ = " Term.pp let ppx_clss x fs cs = List.pp "@ @<2>∧ " (fun fs (key, data) -> Format.fprintf fs "@[%a@ = %a@]" (Term.ppx x) key (ppx_cls x) (List.sort ~compare:Term.compare data) ) fs (Term.Map.to_alist cs) let pp_clss fs cs = ppx_clss (fun _ -> None) fs cs let pp_diff_clss = Term.Map.pp_diff ~data_equal:(List.equal Term.equal) Term.pp pp_cls pp_diff_cls (** Invariant *) (** test membership in carrier *) let in_car r e = Subst.mem r.rep e let invariant r = Invariant.invariant [%here] r [%sexp_of: t] @@ fun () -> Subst.iteri r.rep ~f:(fun ~key:a ~data:_ -> (* no interpreted terms in carrier *) assert (non_interpreted a) ; (* carrier is closed under subterms *) iter_max_solvables a ~f:(fun b -> assert ( in_car r b || fail "@[subterm %a of %a not in carrier of@ %a@]" Term.pp b Term.pp a pp r () ) ) ) (** Core operations *) let true_ = {xs= Var.Set.empty; sat= true; rep= Subst.empty} |> check invariant let false_ = {true_ with sat= false} (** terms are congruent if equal after normalizing subterms *) let congruent r a b = Term.equal (Term.map ~f:(Subst.norm r.rep) a) (Term.map ~f:(Subst.norm r.rep) b) (** [lookup r a] is [b'] if [a ~ b = b'] for some equation [b = b'] in rep *) let lookup r a = [%Trace.call fun {pf} -> pf "%a@ %a" Term.pp a pp r] ; ( with_return @@ fun {return} -> (* congruent specialized to assume [a] canonized and [b] non-interpreted *) let semi_congruent r a b = Term.equal a (Term.map ~f:(Subst.apply r.rep) b) in Subst.iteri r.rep ~f:(fun ~key ~data -> if semi_congruent r a key then return data ) ; a ) |> [%Trace.retn fun {pf} -> pf "%a" Term.pp] (** rewrite a term into canonical form using rep and, for non-interpreted terms, congruence composed with rep *) let rec canon r a = [%Trace.call fun {pf} -> pf "%a@ %a" Term.pp a pp r] ; ( match classify a with | Atomic -> Subst.apply r.rep a | Interpreted -> Term.map ~f:(canon r) a | Simplified | Uninterpreted -> ( let a' = Term.map ~f:(canon r) a in match classify a' with | Atomic -> Subst.apply r.rep a' | Interpreted -> Term.map ~f:(canon r) a' | Simplified | Uninterpreted -> lookup r a' ) ) |> [%Trace.retn fun {pf} -> pf "%a" Term.pp] let rec extend_ a r = match classify a with | Interpreted | Simplified -> Term.fold ~f:extend_ a ~init:r | Uninterpreted -> ( match Subst.extend a r with | Some r -> Term.fold ~f:extend_ a ~init:r | None -> r ) | Atomic -> r (** add a term to the carrier *) let extend a r = let rep = extend_ a r.rep in if rep == r.rep then r else {r with rep} |> check invariant let merge us a b r = [%Trace.call fun {pf} -> pf "%a@ %a@ %a" Term.pp a Term.pp b pp r] ; ( match solve ~us ~xs:r.xs a b with | Some (xs, s) -> {r with xs= Var.Set.union r.xs xs; rep= Subst.compose r.rep s} | None -> {r with sat= false} ) |> [%Trace.retn fun {pf} r' -> pf "%a" pp_diff (r, r') ; invariant r'] (** find an unproved equation between congruent terms *) let find_missing r = with_return @@ fun {return} -> Subst.iteri r.rep ~f:(fun ~key:a ~data:a' -> Subst.iteri r.rep ~f:(fun ~key:b ~data:b' -> if Term.compare a b < 0 && (not (Term.equal a' b')) && congruent r a b then return (Some (a', b')) ) ) ; None let rec close us r = if not r.sat then r else match find_missing r with | Some (a', b') -> close us (merge us a' b' r) | None -> r let close us r = [%Trace.call fun {pf} -> pf "%a" pp r] ; close us r |> [%Trace.retn fun {pf} r' -> pf "%a" pp_diff (r, r') ; invariant r'] let and_eq us a b r = if not r.sat then r else let a' = canon r a in let b' = canon r b in let r = extend a' r in let r = extend b' r in if Term.equal a' b' then r else close us (merge us a' b' r) let extract_xs r = (r.xs, {r with xs= Var.Set.empty}) (** Exposed interface *) let is_true {sat; rep} = sat && Subst.for_alli rep ~f:(fun ~key:a ~data:a' -> Term.equal a a') let is_false {sat} = not sat let entails_eq r d e = Term.is_true (canon r (Term.eq d e)) let entails r s = Subst.for_alli s.rep ~f:(fun ~key:e ~data:e' -> entails_eq r e e') let normalize = canon let class_of r e = let e' = normalize r e in e' :: Term.Map.find_multi (classes r) e' let fold_uses_of r t ~init ~f = let rec fold_ e ~init:s ~f = let s = Term.fold e ~init:s ~f:(fun sub s -> if Term.equal t sub then f s e else s ) in if interpreted e then Term.fold e ~init:s ~f:(fun d s -> fold_ ~f d ~init:s) else s in Subst.fold r.rep ~init ~f:(fun ~key:trm ~data:rep s -> let f trm s = fold_ trm ~init:s ~f in f trm (f rep s) ) let difference r a b = [%Trace.call fun {pf} -> pf "%a@ %a@ %a" Term.pp a Term.pp b pp r] ; let a = canon r a in let b = canon r b in ( if Term.equal a b then Some Z.zero else match normalize r (Term.sub a b) with | Integer {data} -> Some data | _ -> None ) |> [%Trace.retn fun {pf} -> function Some d -> pf "%a" Z.pp_print d | None -> pf ""] let apply_subst us s r = [%Trace.call fun {pf} -> pf "%a@ %a" Subst.pp s pp r] ; Term.Map.fold (classes r) ~init:true_ ~f:(fun ~key:rep ~data:cls r -> let rep' = Subst.subst s rep in List.fold cls ~init:r ~f:(fun r trm -> let trm' = Subst.subst s trm in and_eq us trm' rep' r ) ) |> extract_xs |> [%Trace.retn fun {pf} (xs, r') -> pf "%a%a" Var.Set.pp_xs xs pp r'] let and_ us r s = ( if not r.sat then r else if not s.sat then s else let s, r = if Subst.length s.rep <= Subst.length r.rep then (s, r) else (r, s) in Subst.fold s.rep ~init:r ~f:(fun ~key:e ~data:e' r -> and_eq us e e' r) ) |> extract_xs let or_ us r s = [%Trace.call fun {pf} -> pf "@[ %a@ @<2>∨ %a@]" pp r pp s] ; ( if not s.sat then r else if not r.sat then s else let merge_mems rs r s = Term.Map.fold (classes s) ~init:rs ~f:(fun ~key:rep ~data:cls rs -> List.fold cls ~init:([rep], rs) ~f:(fun (reps, rs) exp -> match List.find ~f:(entails_eq r exp) reps with | Some rep -> (reps, and_eq us exp rep rs) | None -> (exp :: reps, rs) ) |> snd ) in let rs = true_ in let rs = merge_mems rs r s in let rs = merge_mems rs s r in rs ) |> extract_xs |> [%Trace.retn fun {pf} (_, r) -> pf "%a" pp r] let orN us rs = match rs with | [] -> (us, false_) | r :: rs -> List.fold ~f:(fun (us, s) r -> or_ us s r) ~init:(us, r) rs let rec and_term_ us e r = let eq_false b r = and_eq us b Term.false_ r in match (e : Term.t) with | Integer {data} -> if Z.is_false data then false_ else r | Ap2 (And, a, b) -> and_term_ us a (and_term_ us b r) | Ap2 (Eq, a, b) -> and_eq us a b r | Ap2 (Xor, Integer {data}, a) when Z.is_true data -> eq_false a r | Ap2 (Xor, a, Integer {data}) when Z.is_true data -> eq_false a r | _ -> r let and_term us e r = and_term_ us e r |> extract_xs let and_eq us a b r = [%Trace.call fun {pf} -> pf "%a = %a@ %a" Term.pp a Term.pp b pp r] ; and_eq us a b r |> extract_xs |> [%Trace.retn fun {pf} (_, r') -> pf "%a" pp_diff (r, r') ; invariant r'] let rename r sub = [%Trace.call fun {pf} -> pf "%a" pp r] ; let rep = Subst.map_entries ~f:(Term.rename sub) r.rep in (if rep == r.rep then r else {r with rep}) |> [%Trace.retn fun {pf} r' -> pf "%a" pp_diff (r, r') ; invariant r'] let fold_terms r ~init ~f = Subst.fold r.rep ~f:(fun ~key ~data z -> f (f z data) key) ~init let fold_vars r ~init ~f = fold_terms r ~init ~f:(fun init -> Term.fold_vars ~f ~init) let fv e = fold_vars e ~f:Var.Set.add ~init:Var.Set.empty let pp_classes fs r = pp_clss fs (classes r) let ppx_classes x fs r = ppx_clss x fs (classes r) let ppx_classes_diff x fs (r, s) = let clss = classes s in let clss = Term.Map.filter_mapi clss ~f:(fun ~key:rep ~data:cls -> match List.filter cls ~f:(fun exp -> not (entails_eq r rep exp)) with | [] -> None | cls -> Some cls ) in List.pp "@ @<2>∧ " (fun fs (rep, cls) -> Format.fprintf fs "@[%a@ = %a@]" (Term.ppx x) rep (List.pp "@ = " (Term.ppx x)) (List.dedup_and_sort ~compare:Term.compare cls) ) fs (Term.Map.to_alist clss) (** Existential Witnessing and Elimination *) let subst_invariant us s0 s = assert (s0 == s || not (Subst.equal s0 s)) ; assert ( Subst.iteri s ~f:(fun ~key ~data -> (* dom of new entries not ito us *) assert ( Option.for_all ~f:(Term.equal data) (Subst.find s0 key) || not (Var.Set.is_subset (Term.fv key) ~of_:us) ) ; (* rep not ito us implies trm not ito us *) assert ( Var.Set.is_subset (Term.fv data) ~of_:us || not (Var.Set.is_subset (Term.fv key) ~of_:us) ) ) ; true ) type 'a zom = Zero | One of 'a | Many (** try to solve [p = q] such that [fv (p - q) ⊆ us ∪ xs] and [p - q] has at most one maximal solvable subterm, [kill], where [fv kill ⊈ us]; solve [p = q] for [kill]; extend subst mapping [kill] to the solution *) let solve_poly_eq us p' q' subst = let diff = Term.sub p' q' in let max_solvables_not_ito_us = fold_max_solvables diff ~init:Zero ~f:(fun solvable_subterm -> function | Many -> Many | zom when Var.Set.is_subset (Term.fv solvable_subterm) ~of_:us -> zom | One _ -> Many | Zero -> One solvable_subterm ) in match max_solvables_not_ito_us with | One kill -> let+ kill, keep = Term.solve_zero_eq diff ~for_:kill in Subst.compose1 ~key:kill ~data:keep subst | Many | Zero -> None let solve_memory_eq us e' f' subst = [%Trace.call fun {pf} -> pf "%a = %a" Term.pp e' Term.pp f'] ; let f x u = (not (Var.Set.is_subset (Term.fv x) ~of_:us)) && Var.Set.is_subset (Term.fv u) ~of_:us in let solve_concat ms n a = let a, n = match Term.agg_size a with | Some n -> (a, n) | None -> (Term.memory ~siz:n ~arr:a, n) in let+ _, xs, s = solve_concat ~f ms a n (us, Var.Set.empty, subst) in assert (Var.Set.is_empty xs) ; s in ( match ((e' : Term.t), (f' : Term.t)) with | (ApN (Concat, ms) as c), a when f c a -> solve_concat ms (Term.agg_size_exn c) a | a, (ApN (Concat, ms) as c) when f c a -> solve_concat ms (Term.agg_size_exn c) a | (Ap2 (Memory, _, (Var _ as v)) as m), u when f m u -> Some (Subst.compose1 ~key:v ~data:u subst) | u, (Ap2 (Memory, _, (Var _ as v)) as m) when f m u -> Some (Subst.compose1 ~key:v ~data:u subst) | _ -> None ) |> [%Trace.retn fun {pf} subst' -> pf "@[%a@]" Subst.pp_diff (subst, Option.value subst' ~default:subst)] let solve_interp_eq us e' (cls, subst) = [%Trace.call fun {pf} -> pf "trm: @[%a@]@ cls: @[%a@]@ subst: @[%a@]" Term.pp e' pp_cls cls Subst.pp subst] ; List.find_map cls ~f:(fun f -> let f' = Subst.norm subst f in match solve_memory_eq us e' f' subst with | Some subst -> Some subst | None -> solve_poly_eq us e' f' subst ) |> [%Trace.retn fun {pf} subst' -> pf "@[%a@]" Subst.pp_diff (subst, Option.value subst' ~default:subst) ; Option.iter ~f:(subst_invariant us subst) subst'] (** move equations from [cls] to [subst] which are between interpreted terms and can be expressed, after normalizing with [subst], as [x ↦ u] where [us ∪ xs ⊇ fv x ⊈ us] and [fv u ⊆ us] or else [fv u ⊆ us ∪ xs] *) let rec solve_interp_eqs us (cls, subst) = [%Trace.call fun {pf} -> pf "cls: @[%a@]@ subst: @[%a@]" pp_cls cls Subst.pp subst] ; let rec solve_interp_eqs_ cls' (cls, subst) = match cls with | [] -> (cls', subst) | trm :: cls -> let trm' = Subst.norm subst trm in if interpreted trm' then match solve_interp_eq us trm' (cls, subst) with | Some subst -> solve_interp_eqs_ cls' (cls, subst) | None -> solve_interp_eqs_ (trm' :: cls') (cls, subst) else solve_interp_eqs_ (trm' :: cls') (cls, subst) in let cls', subst' = solve_interp_eqs_ [] (cls, subst) in ( if subst' != subst then solve_interp_eqs us (cls', subst') else (cls', subst') ) |> [%Trace.retn fun {pf} (cls', subst') -> pf "cls: @[%a@]@ subst: @[%a@]" pp_diff_cls (cls, cls') Subst.pp_diff (subst, subst')] type cls_solve_state = { rep_us: Term.t option (** rep, that is ito us, for class *) ; cls_us: Term.t list (** cls that is ito us, or interpreted *) ; rep_xs: Term.t option (** rep, that is *not* ito us, for class *) ; cls_xs: Term.t list (** cls that is *not* ito us *) } let dom_trm e = match (e : Term.t) with | Ap2 (Memory, _, (Var _ as v)) -> Some v | _ when non_interpreted e -> Some e | _ -> None (** move equations from [cls] (which is assumed to be normalized by [subst]) to [subst] which can be expressed as [x ↦ u] where [x] is non-interpreted [us ∪ xs ⊇ fv x ⊈ us] and [fv u ⊆ us] or else [fv u ⊆ us ∪ xs] *) let solve_uninterp_eqs us (cls, subst) = [%Trace.call fun {pf} -> pf "cls: @[%a@]@ subst: @[%a@]" pp_cls cls Subst.pp subst] ; let compare e f = [%compare: kind * Term.t] (classify e, e) (classify f, f) in let {rep_us; cls_us; rep_xs; cls_xs} = List.fold cls ~init:{rep_us= None; cls_us= []; rep_xs= None; cls_xs= []} ~f:(fun ({rep_us; cls_us; rep_xs; cls_xs} as s) trm -> if Var.Set.is_subset (Term.fv trm) ~of_:us then match rep_us with | Some rep when compare rep trm <= 0 -> {s with cls_us= trm :: cls_us} | Some rep -> {s with rep_us= Some trm; cls_us= rep :: cls_us} | None -> {s with rep_us= Some trm} else match rep_xs with | Some rep -> ( if compare rep trm <= 0 then match dom_trm trm with | Some trm -> {s with cls_xs= trm :: cls_xs} | None -> {s with cls_us= trm :: cls_us} else match dom_trm rep with | Some rep -> {s with rep_xs= Some trm; cls_xs= rep :: cls_xs} | None -> {s with rep_xs= Some trm; cls_us= rep :: cls_us} ) | None -> {s with rep_xs= Some trm} ) in ( match rep_us with | Some rep_us -> let cls = rep_us :: cls_us in let cls, cls_xs = match rep_xs with | Some rep -> ( match dom_trm rep with | Some rep -> (cls, rep :: cls_xs) | None -> (rep :: cls, cls_xs) ) | None -> (cls, cls_xs) in let subst = List.fold cls_xs ~init:subst ~f:(fun subst trm_xs -> Subst.compose1 ~key:trm_xs ~data:rep_us subst ) in (cls, subst) | None -> ( match rep_xs with | Some rep_xs -> let cls = rep_xs :: cls_us in let subst = List.fold cls_xs ~init:subst ~f:(fun subst trm_xs -> Subst.compose1 ~key:trm_xs ~data:rep_xs subst ) in (cls, subst) | None -> (cls, subst) ) ) |> [%Trace.retn fun {pf} (cls', subst') -> pf "cls: @[%a@]@ subst: @[%a@]" pp_diff_cls (cls, cls') Subst.pp_diff (subst, subst') ; subst_invariant us subst subst'] (** move equations between terms in [rep]'s class [cls] from [classes] to [subst] which can be expressed, after normalizing with [subst], as [x ↦ u] where [us ∪ xs ⊇ fv x ⊈ us] and [fv u ⊆ us] or else [fv u ⊆ us ∪ xs] *) let solve_class us us_xs ~key:rep ~data:cls (classes, subst) = let classes0 = classes in [%Trace.call fun {pf} -> pf "rep: @[%a@]@ cls: @[%a@]@ subst: @[%a@]" Term.pp rep pp_cls cls Subst.pp subst] ; let cls, cls_not_ito_us_xs = List.partition_tf ~f:(fun e -> Var.Set.is_subset (Term.fv e) ~of_:us_xs) (rep :: cls) in let cls, subst = solve_interp_eqs us (cls, subst) in let cls, subst = solve_uninterp_eqs us (cls, subst) in let cls = List.rev_append cls_not_ito_us_xs cls in let cls = List.remove ~equal:Term.equal cls (Subst.norm subst rep) |> Option.value ~default:cls in let classes = if List.is_empty cls then Term.Map.remove classes rep else Term.Map.set classes ~key:rep ~data:cls in (classes, subst) |> [%Trace.retn fun {pf} (classes', subst') -> pf "subst: @[%a@]@ classes: @[%a@]" Subst.pp_diff (subst, subst') pp_diff_clss (classes0, classes')] let solve_concat_extracts_eq r x = [%Trace.call fun {pf} -> pf "%a@ %a" Term.pp x pp r] ; let uses = fold_uses_of r x ~init:[] ~f:(fun uses -> function | Ap2 (Memory, _, _) as m -> fold_uses_of r m ~init:uses ~f:(fun uses -> function | Ap3 (Extract, _, _, _) as e -> e :: uses | _ -> uses ) | _ -> uses ) in let find_extracts_at_off off = List.filter uses ~f:(fun use -> match (use : Term.t) with | Ap3 (Extract, _, o, _) -> entails_eq r o off | _ -> false ) in let rec find_extracts full_rev_extracts rev_prefix off = List.fold (find_extracts_at_off off) ~init:full_rev_extracts ~f:(fun full_rev_extracts e -> match e with | Ap3 (Extract, Ap2 (Memory, n, _), o, l) -> let o_l = Term.add o l in if entails_eq r n o_l then (e :: rev_prefix) :: full_rev_extracts else find_extracts full_rev_extracts (e :: rev_prefix) o_l | _ -> full_rev_extracts ) in find_extracts [] [] Term.zero |> [%Trace.retn fun {pf} -> pf "@[[%a]@]" (List.pp ";@ " (List.pp ",@ " Term.pp))] let solve_concat_extracts r us x (classes, subst, us_xs) = match List.filter_map (solve_concat_extracts_eq r x) ~f:(fun rev_extracts -> List.fold_option rev_extracts ~init:[] ~f:(fun suffix e -> let+ rep_ito_us = List.fold (cls_of r e) ~init:None ~f:(fun rep_ito_us trm -> match rep_ito_us with | Some rep when Term.compare rep trm <= 0 -> rep_ito_us | _ when Var.Set.is_subset (Term.fv trm) ~of_:us -> Some trm | _ -> rep_ito_us ) in Term.memory ~siz:(Term.agg_size_exn e) ~arr:rep_ito_us :: suffix ) ) |> List.min_elt ~compare:[%compare: Term.t list] with | Some extracts -> let concat = Term.concat (Array.of_list extracts) in let subst = Subst.compose1 ~key:x ~data:concat subst in (classes, subst, us_xs) | None -> (classes, subst, us_xs) let solve_for_xs r us xs (classes, subst, us_xs) = Var.Set.fold xs ~init:(classes, subst, us_xs) ~f:(fun (classes, subst, us_xs) x -> let x = Term.var x in if Subst.mem subst x then (classes, subst, us_xs) else solve_concat_extracts r us x (classes, subst, us_xs) ) (** move equations from [classes] to [subst] which can be expressed, after normalizing with [subst], as [x ↦ u] where [us ∪ xs ⊇ fv x ⊈ us] and [fv u ⊆ us] or else [fv u ⊆ us ∪ xs]. *) let solve_classes r (classes, subst, us) xs = [%Trace.call fun {pf} -> pf "us: {@[%a@]}@ xs: {@[%a@]}" Var.Set.pp us Var.Set.pp xs] ; let rec solve_classes_ (classes0, subst0, us_xs) = let classes, subst = Term.Map.fold ~f:(solve_class us us_xs) classes0 ~init:(classes0, subst0) in if subst != subst0 then solve_classes_ (classes, subst, us_xs) else (classes, subst, us_xs) in (classes, subst, Var.Set.union us xs) |> solve_classes_ |> solve_for_xs r us xs |> [%Trace.retn fun {pf} (classes', subst', _) -> pf "subst: @[%a@]@ classes: @[%a@]" Subst.pp_diff (subst, subst') pp_diff_clss (classes, classes')] let pp_vss fs vss = Format.fprintf fs "[@[%a@]]" (List.pp ";@ " (fun fs vs -> Format.fprintf fs "{@[%a@]}" Var.Set.pp vs)) vss (** enumerate variable contexts vᵢ in [v₁;…] and accumulate a solution subst with entries [x ↦ u] where [r] entails [x = u] and [⋃ⱼ₌₁ⁱ vⱼ ⊇ fv x ⊈ ⋃ⱼ₌₁ⁱ⁻¹ vⱼ] and [fv u ⊆ ⋃ⱼ₌₁ⁱ⁻¹ vⱼ] if possible and otherwise [fv u ⊆ ⋃ⱼ₌₁ⁱ vⱼ] *) let solve_for_vars vss r = [%Trace.call fun {pf} -> pf "%a@ @[%a@]" pp_vss vss pp_classes r] ; let us, vss = match vss with us :: vss -> (us, vss) | [] -> (Var.Set.empty, vss) in List.fold ~f:(solve_classes r) ~init:(classes r, Subst.empty, us) vss |> snd3 |> [%Trace.retn fun {pf} subst -> pf "%a" Subst.pp subst ; Subst.iteri subst ~f:(fun ~key ~data -> assert ( entails_eq r key data || fail "@[%a = %a not entailed by@ %a@]" Term.pp key Term.pp data pp_classes r () ) ; assert ( List.fold_until vss ~init:us ~f:(fun us xs -> let us_xs = Var.Set.union us xs in let ks = Term.fv key in let ds = Term.fv data in if Var.Set.is_subset ks ~of_:us_xs && Var.Set.is_subset ds ~of_:us_xs && ( Var.Set.is_subset ds ~of_:us || not (Var.Set.is_subset ks ~of_:us) ) then Stop true else Continue us_xs ) ~finish:(fun _ -> false) ) )]