(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Qset - Set with (signed) rational multiplicity for each element *) open Import0 module type S = sig type elt type t val compare : t -> t -> int val equal : t -> t -> bool val hash_fold_t : elt Hash.folder -> t Hash.folder val sexp_of_t : t -> Sexp.t val t_of_sexp : (Sexp.t -> elt) -> Sexp.t -> t val pp : (unit, unit) fmt -> (elt * Q.t) pp -> t pp (* constructors *) val empty : t (** The empty multiset over the provided order. *) val of_ : elt -> Q.t -> t val add : t -> elt -> Q.t -> t (** Add to multiplicity of single element. [O(log n)] *) val remove : t -> elt -> t (** Set the multiplicity of an element to zero. [O(log n)] *) val union : t -> t -> t (** Sum multiplicities pointwise. [O(n + m)] *) val map : t -> f:(elt -> Q.t -> elt * Q.t) -> t (** Map over the elements in ascending order. Preserves physical equality if [f] does. *) val map_counts : t -> f:(elt -> Q.t -> Q.t) -> t (** Map over the multiplicities of the elements in ascending order. *) (* queries *) val is_empty : t -> bool val length : t -> int (** Number of elements with non-zero multiplicity. [O(1)]. *) val count : t -> elt -> Q.t (** Multiplicity of an element. [O(log n)]. *) val choose : t -> (elt * Q.t) option val pop : t -> (elt * Q.t * t) option val min_elt_exn : t -> elt * Q.t (** Minimum element. *) val min_elt : t -> (elt * Q.t) option (** Minimum element. *) val to_list : t -> (elt * Q.t) list (** Convert to a list of elements in ascending order. *) (* traversals *) val iter : t -> f:(elt -> Q.t -> unit) -> unit (** Iterate over the elements in ascending order. *) val exists : t -> f:(elt -> Q.t -> bool) -> bool (** Search for an element satisfying a predicate. *) val fold : t -> f:(elt -> Q.t -> 's -> 's) -> init:'s -> 's (** Fold over the elements in ascending order. *) end