(* * Copyright (c) 2009 - 2013 Monoidics ltd. * Copyright (c) 2013 - present Facebook, Inc. * All rights reserved. * * This source code is licensed under the BSD style license found in the * LICENSE file in the root directory of this source tree. An additional grant * of patent rights can be found in the PATENTS file in the same directory. *) (** Propositions seen as graphs *) module F = Format module L = Logging open Utils type t = Prop.normal Prop.t type node = Sil.exp type sub_entry = Ident.t * Sil.exp type edge = Ehpred of Sil.hpred | Eatom of Sil.atom | Esub_entry of sub_entry let from_prop p = p (** Return [true] if root node *) let rec is_root = function | Sil.Var id -> Ident.is_normal id | Sil.Const _ | Sil.Lvar _ -> true | Sil.Cast (_, e) -> is_root e | Sil.UnOp _ | Sil.BinOp _ | Sil.Lfield _ | Sil.Lindex _ | Sil.Sizeof _ -> false (** Return [true] if the nodes are connected. Used to compute reachability. *) let nodes_connected g n1 n2 = Sil.exp_equal n1 n2 (* Implemented as equality for now, later it might contain offset by a constant *) (** Return [true] if the edge is an hpred, and [false] if it is an atom *) let edge_is_hpred = function | Ehpred _ -> true | Eatom _ -> false | Esub_entry _ -> false (** Return the source of the edge *) let edge_get_source = function | Ehpred (Sil.Hpointsto(e, _, _)) -> e | Ehpred (Sil.Hlseg(_, _, e, _, _)) -> e | Ehpred (Sil.Hdllseg(_, _, e1, _, _, e2, _)) -> e1 (* :: e2 only one direction supported for now *) | Eatom (Sil.Aeq (e1, _)) -> e1 | Eatom (Sil.Aneq (e1, _)) -> e1 | Esub_entry (x, e) -> Sil.Var x (** Return the successor nodes of the edge *) let edge_get_succs = function | Ehpred hpred -> Sil.ExpSet.elements (Prop.hpred_get_targets hpred) | Eatom (Sil.Aeq (_, e2)) -> [e2] | Eatom (Sil.Aneq (_, e2)) -> [e2] | Esub_entry (s, e) -> [e] let get_sigma footprint_part g = if footprint_part then Prop.get_sigma_footprint g else Prop.get_sigma g let get_pi footprint_part g = if footprint_part then Prop.get_pi_footprint g else Prop.get_pi g let get_subl footprint_part g = if footprint_part then [] else Sil.sub_to_list (Prop.get_sub g) (** [edge_from_source g n footprint_part is_hpred] finds and edge with the given source [n] in prop [g]. [footprint_part] indicates whether to search the edge in the footprint part, and [is_pred] whether it is an hpred edge. *) let edge_from_source g n footprint_part is_hpred = let edges = if is_hpred then list_map (fun hpred -> Ehpred hpred ) (get_sigma footprint_part g) else list_map (fun a -> Eatom a) (get_pi footprint_part g) @ list_map (fun entry -> Esub_entry entry) (get_subl footprint_part g) in match list_filter (fun hpred -> Sil.exp_equal n (edge_get_source hpred)) edges with | [] -> None | edge:: _ -> Some edge (** [get_succs g n footprint_part is_hpred] returns the successor nodes of [n] in [g]. [footprint_part] indicates whether to search the successors in the footprint part, and [is_pred] whether to follow hpred edges. *) let get_succs g n footprint_part is_hpred = match edge_from_source g n footprint_part is_hpred with | None -> [] | Some e -> edge_get_succs e (** [get_edges footprint_part g] returns the list of edges in [g], in the footprint part if [fotprint_part] is true *) let get_edges footprint_part g = let hpreds = get_sigma footprint_part g in let atoms = get_pi footprint_part g in let subst_entries = get_subl footprint_part g in list_map (fun hpred -> Ehpred hpred) hpreds @ list_map (fun a -> Eatom a) atoms @ list_map (fun entry -> Esub_entry entry) subst_entries let edge_equal e1 e2 = match e1, e2 with | Ehpred hp1, Ehpred hp2 -> Sil.hpred_equal hp1 hp2 | Eatom a1, Eatom a2 -> Sil.atom_equal a1 a2 | Esub_entry (x1, e1), Esub_entry (x2, e2) -> Ident.equal x1 x2 && Sil.exp_equal e1 e2 | _ -> false (** [contains_edge footprint_part g e] returns true if the graph [g] contains edge [e], searching the footprint part if [footprint_part] is true. *) let contains_edge (footprint_part: bool) (g: t) (e: edge) = try ignore (list_find (fun e' -> edge_equal e e') (get_edges footprint_part g)); true with Not_found -> false (** [iter_edges footprint_part f g] iterates function [f] on the edges in [g] in the same order as returned by [get_edges]; if [footprint_part] is true the edges are taken from the footprint part. *) let iter_edges footprint_part f g = list_iter f (get_edges footprint_part g) (* For now simple iterator; later might use a specific traversal *) (** Graph annotated with the differences w.r.t. a previous graph *) type diff = { diff_newgraph : t; (** the new graph *) diff_changed_norm : Obj.t list; (** objects changed in the normal part *) diff_cmap_norm : colormap; (** colormap for the normal part *) diff_changed_foot : Obj.t list; (** objects changed in the footprint part *) diff_cmap_foot : colormap (** colormap for the footprint part *) } (** Compute the subobjects in [e2] which are different from those in [e1] *) let compute_exp_diff (e1: Sil.exp) (e2: Sil.exp) : Obj.t list = if Sil.exp_equal e1 e2 then [] else [Obj.repr e2] (** Compute the subobjects in [se2] which are different from those in [se1] *) let rec compute_sexp_diff (se1: Sil.strexp) (se2: Sil.strexp) : Obj.t list = match se1, se2 with | Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) -> if Sil.exp_equal e1 e2 then [] else [Obj.repr se2] | Sil.Estruct (fsel1, _), Sil.Estruct (fsel2, _) -> compute_fsel_diff fsel1 fsel2 | Sil.Earray (e1, esel1, _), Sil.Earray (e2, esel2, _) -> compute_exp_diff e1 e2 @ compute_esel_diff esel1 esel2 | _ -> [Obj.repr se2] and compute_fsel_diff fsel1 fsel2 : Obj.t list = match fsel1, fsel2 with | ((f1, se1):: fsel1'), (((f2, se2) as x):: fsel2') -> (match Sil.fld_compare f1 f2 with | n when n < 0 -> compute_fsel_diff fsel1' fsel2 | 0 -> compute_sexp_diff se1 se2 @ compute_fsel_diff fsel1' fsel2' | _ -> (Obj.repr x) :: compute_fsel_diff fsel1 fsel2') | _, [] -> [] | [], x:: fsel2' -> (Obj.repr x) :: compute_fsel_diff [] fsel2' and compute_esel_diff esel1 esel2 : Obj.t list = match esel1, esel2 with | ((e1, se1):: esel1'), (((e2, se2) as x):: esel2') -> (match Sil.exp_compare e1 e2 with | n when n < 0 -> compute_esel_diff esel1' esel2 | 0 -> compute_sexp_diff se1 se2 @ compute_esel_diff esel1' esel2' | _ -> (Obj.repr x) :: compute_esel_diff esel1 esel2') | _, [] -> [] | [], x:: esel2' -> (Obj.repr x) :: compute_esel_diff [] esel2' (** Compute the subobjects in [newedge] which are different from those in [oldedge] *) let compute_edge_diff (oldedge: edge) (newedge: edge) : Obj.t list = match oldedge, newedge with | Ehpred (Sil.Hpointsto(_, se1, e1)), Ehpred (Sil.Hpointsto(_, se2, e2)) -> compute_sexp_diff se1 se2 @ compute_exp_diff e1 e2 | Eatom (Sil.Aeq (_, e1)), Eatom (Sil.Aeq (_, e2)) -> compute_exp_diff e1 e2 | Eatom (Sil.Aneq (_, e1)), Eatom (Sil.Aneq (_, e2)) -> compute_exp_diff e1 e2 | Esub_entry (_, e1), Esub_entry (_, e2) -> compute_exp_diff e1 e2 | _ -> [Obj.repr newedge] (** [compute_diff oldgraph newgraph] returns the list of edges which are only in [newgraph] *) let compute_diff default_color oldgraph newgraph : diff = let compute_changed footprint_part = let newedges = get_edges footprint_part newgraph in let changed = ref [] in let build_changed edge = if not (contains_edge footprint_part oldgraph edge) then begin match edge_from_source oldgraph (edge_get_source edge) footprint_part (edge_is_hpred edge) with | None -> let changed_obj = match edge with | Ehpred hpred -> Obj.repr hpred | Eatom a -> Obj.repr a | Esub_entry entry -> Obj.repr entry in changed := changed_obj :: !changed | Some oldedge -> changed := compute_edge_diff oldedge edge @ !changed end in list_iter build_changed newedges; let colormap (o: Obj.t) = if list_exists (fun x -> x == o) !changed then Red else default_color in !changed, colormap in let changed_norm, colormap_norm = compute_changed false in let changed_foot, colormap_foot = compute_changed true in { diff_newgraph = newgraph; diff_changed_norm = changed_norm; diff_cmap_norm = colormap_norm; diff_changed_foot = changed_foot; diff_cmap_foot = colormap_foot } (** [diff_get_colormap footprint_part diff] returns the colormap of a computed diff, selecting the footprint colormap if [footprint_part] is true. *) let diff_get_colormap footprint_part diff = if footprint_part then diff.diff_cmap_foot else diff.diff_cmap_norm (** Print a list of propositions, prepending each one with the given string. If !Config.pring_using_diff is true, print the diff w.r.t. the given prop, extracting its local stack vars if the boolean is true. *) let pp_proplist pe0 s (base_prop, extract_stack) f plist = let num = list_length plist in let base_stack = fst (Prop.sigma_get_stack_nonstack true (Prop.get_sigma base_prop)) in let add_base_stack prop = if extract_stack then Prop.replace_sigma (base_stack @ Prop.get_sigma prop) prop else Prop.expose prop in let update_pe_diff (prop: Prop.normal Prop.t) : printenv = if !Config.print_using_diff then let diff = compute_diff Blue (from_prop base_prop) (from_prop prop) in let cmap_norm = diff_get_colormap false diff in let cmap_foot = diff_get_colormap true diff in { pe0 with pe_cmap_norm = cmap_norm; pe_cmap_foot = cmap_foot } else pe0 in let rec pp_seq_newline n f = function | [] -> () | [_x] -> let pe = update_pe_diff _x in let x = add_base_stack _x in (match pe.pe_kind with | PP_TEXT -> F.fprintf f "%s %d of %d:@\n%a" s n num (Prop.pp_prop pe) x | PP_HTML -> F.fprintf f "%s %d of %d:@\n%a@\n" s n num (Prop.pp_prop pe) x | PP_LATEX -> F.fprintf f "@[%a@]@\n" (Prop.pp_prop pe) x) | _x:: l -> let pe = update_pe_diff _x in let x = add_base_stack _x in (match pe.pe_kind with | PP_TEXT -> F.fprintf f "%s %d of %d:@\n%a@\n%a" s n num (Prop.pp_prop pe) x (pp_seq_newline (n + 1)) l | PP_HTML -> F.fprintf f "%s %d of %d:@\n%a@\n%a" s n num (Prop.pp_prop pe) x (pp_seq_newline (n + 1)) l | PP_LATEX -> F.fprintf f "@[%a@]\\\\@\n\\bigvee\\\\@\n%a" (Prop.pp_prop pe) x (pp_seq_newline (n + 1)) l) in pp_seq_newline 1 f plist (** dump a propset *) let d_proplist (p: 'a Prop.t) (pl: 'b Prop.t list) = L.add_print_action (L.PTproplist, Obj.repr (p, pl))