(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Qset - Set with (signed) rational multiplicity for each element *) open Import0 include Qset_intf module Make (Elt : OrderedType) = struct module M = Stdlib.Map.Make (Elt) type elt = Elt.t type t = Q.t M.t let compare = M.compare Q.compare let equal = M.equal Q.equal let hash_fold_t hash_fold_elt s m = let hash_fold_q s q = Hash.fold_int s (Hashtbl.hash q) in M.fold (fun key data state -> hash_fold_q (hash_fold_elt state key) data) m (Hash.fold_int s (M.cardinal m)) let sexp_of_t s = let sexp_of_q q = Sexp.Atom (Q.to_string q) in List.sexp_of_t (Sexplib.Conv.sexp_of_pair Elt.sexp_of_t sexp_of_q) (M.bindings s) let t_of_sexp elt_of_sexp sexp = let q_of_sexp = function | Sexp.Atom s -> Q.of_string s | _ -> assert false in List.fold_left ~f:(fun m (k, v) -> M.add k v m) ~init:M.empty (List.t_of_sexp (Sexplib.Conv.pair_of_sexp elt_of_sexp q_of_sexp) sexp) let pp sep pp_elt fs s = List.pp sep pp_elt fs (M.bindings s) let empty = M.empty let if_nz q = if Q.equal Q.zero q then None else Some q let add m x i = M.update x (function Some j -> if_nz Q.(i + j) | None -> if_nz i) m let remove m x = M.remove x m let union m n = M.merge (fun _ m_q n_q -> match (m_q, n_q) with | Some i, Some j -> if_nz Q.(i + j) | Some i, None | None, Some i -> Some i | None, None -> None ) m n let map m ~f = let m' = M.empty in let m, m' = M.fold (fun x i (m, m') -> let x', i' = f x i in if x' == x then if Q.equal i' i then (m, m') else (M.add x i' m, m') else (M.remove x m, add m' x' i') ) m (m, m') in M.fold (fun x i m -> add m x i) m' m let map_counts m ~f = M.mapi f m let length m = M.cardinal m let count m x = try M.find x m with Not_found -> Q.zero let min_elt_exn = M.min_binding let min_elt = M.min_binding_opt let to_list m = M.bindings m let iter m ~f = M.iter f m let exists m ~f = M.exists f m let fold m ~f ~init = M.fold f m init end