(* * Copyright (c) Facebook, Inc. and its affiliates. * * This source code is licensed under the MIT license found in the * LICENSE file in the root directory of this source tree. *) (** Symbolic Execution *) [@@@warning "+9"] (** generic command: [∀xs. {foot ∧ sub} ms := - {post}] *) type spec = {xs: Var.Set.t; foot: Sh.t; sub: Var.Subst.t; ms: Var.Set.t; post: Sh.t} type xseg = {us: Var.Set.t; xs: Var.Set.t; seg: Sh.seg} let fresh_var nam us xs = let var, us = Var.fresh nam ~wrt:us in (Term.var var, us, Var.Set.add xs var) let fresh_seg ~loc ?bas ?len ?siz ?arr ?(xs = Var.Set.empty) us = let freshen term nam us xs = match term with | Some term -> (term, us, xs) | None -> fresh_var nam us xs in let bas, us, xs = freshen bas "b" us xs in let len, us, xs = freshen len "m" us xs in let siz, us, xs = freshen siz "n" us xs in let arr, us, xs = freshen arr "a" us xs in {us; xs; seg= {loc; bas; len; siz; arr}} let null_eq ptr = Sh.pure (Term.eq Term.null ptr) (* Overwritten variables renaming and remaining modified variables. [ws] are the written variables; [rs] are the variables read or in the precondition; [us] are the variables to which ghosts must be chosen fresh. *) let assign ~ws ~rs ~us = let ovs = Var.Set.inter ws rs in let sub = Var.Subst.freshen ovs ~wrt:us in let us = Var.Set.union us (Var.Subst.range sub) in let ms = Var.Set.diff ws (Var.Subst.domain sub) in (sub, ms, us) (* * Instruction small axioms *) (* { emp } * rs := es * { *ᵢ rᵢ=eᵢΘ } *) let move_spec us reg_exps = let xs = Var.Set.empty in let foot = Sh.emp in let ws, rs = IArray.fold reg_exps ~init:(Var.Set.empty, Var.Set.empty) ~f:(fun (ws, rs) (reg, exp) -> (Var.Set.add ws reg, Var.Set.union rs (Term.fv exp)) ) in let sub, ms, _ = assign ~ws ~rs ~us in let post = IArray.fold reg_exps ~init:Sh.emp ~f:(fun post (reg, exp) -> Sh.and_ (Term.eq (Term.var reg) (Term.rename sub exp)) post ) in {xs; foot; sub; ms; post} (* { p-[b;m)->⟨l,α⟩ } * load l r p * { r=αΘ * (p-[b;m)->⟨l,α⟩)Θ } *) let load_spec us reg ptr len = let {us; xs; seg} = fresh_seg ~loc:ptr ~siz:len us in let foot = Sh.seg seg in let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in let post = Sh.and_ (Term.eq (Term.var reg) (Term.rename sub seg.arr)) (Sh.rename sub foot) in {xs; foot; sub; ms; post} (* { p-[b;m)->⟨l,α⟩ } * store l p e * { p-[b;m)->⟨l,e⟩ } *) let store_spec us ptr exp len = let {us= _; xs; seg} = fresh_seg ~loc:ptr ~siz:len us in let foot = Sh.seg seg in let post = Sh.seg {seg with arr= exp} in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d-[b;m)->⟨l,α⟩ } * memset l d b * { d-[b;m)->⟨l,b^⟩ } *) let memset_spec us dst byt len = let {us= _; xs; seg} = fresh_seg ~loc:dst ~siz:len us in let foot = Sh.seg seg in let post = Sh.seg {seg with arr= Term.splat byt} in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d=s * l=0 * d-[b;m)->⟨l,α⟩ } * memcpy l d s * { d-[b;m)->⟨l,α⟩ } *) let memcpy_eq_spec us dst src len = let {us= _; xs; seg} = fresh_seg ~loc:dst ~len us in let dst_heap = Sh.seg seg in let foot = Sh.and_ (Term.eq dst src) (Sh.and_ (Term.eq len Term.zero) dst_heap) in let post = dst_heap in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ } * memcpy l d s * { d-[b;m)->⟨l,α'⟩ * s-[b';m')->⟨l,α'⟩ } *) let memcpy_dj_spec us dst src len = let {us; xs; seg= dst_seg} = fresh_seg ~loc:dst ~siz:len us in let dst_heap = Sh.seg dst_seg in let {us= _; xs; seg= src_seg} = fresh_seg ~loc:src ~siz:len ~xs us in let src_heap = Sh.seg src_seg in let dst_seg' = {dst_seg with arr= src_seg.arr} in let dst_heap' = Sh.seg dst_seg' in let foot = Sh.star dst_heap src_heap in let post = Sh.star dst_heap' src_heap in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} let memcpy_specs us dst src len = [memcpy_eq_spec us dst src len; memcpy_dj_spec us dst src len] (* { d=s * d-[b;m)->⟨l,α⟩ } * memmov l d s * { d-[b;m)->⟨l,α⟩ } *) let memmov_eq_spec us dst src len = let {us= _; xs; seg= dst_seg} = fresh_seg ~loc:dst ~len us in let dst_heap = Sh.seg dst_seg in let foot = Sh.and_ (Term.eq dst src) dst_heap in let post = dst_heap in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ } * memmov l d s * { d-[b;m)->⟨l,α'⟩ * s-[b';m')->⟨l,α'⟩ } *) let memmov_dj_spec = memcpy_dj_spec (* memmov footprint for dst < src case *) let memmov_foot us dst src len = let xs = Var.Set.empty in let bas, us, xs = fresh_var "b" us xs in let siz, us, xs = fresh_var "m" us xs in let arr_dst, us, xs = fresh_var "a" us xs in let arr_mid, us, xs = fresh_var "a" us xs in let arr_src, us, xs = fresh_var "a" us xs in let src_dst = Term.sub src dst in let mem_dst = (src_dst, arr_dst) in let siz_mid = Term.sub len src_dst in let mem_mid = (siz_mid, arr_mid) in let mem_src = (src_dst, arr_src) in let mem_dst_mid_src = [|mem_dst; mem_mid; mem_src|] in let siz_dst_mid_src, us, xs = fresh_var "m" us xs in let arr_dst_mid_src, us, xs = fresh_var "a" us xs in let eq_mem_dst_mid_src = Term.eq_concat (siz_dst_mid_src, arr_dst_mid_src) mem_dst_mid_src in let seg = Sh.seg {loc= dst; bas; len= siz; siz= siz_dst_mid_src; arr= arr_dst_mid_src} in let foot = Sh.and_ eq_mem_dst_mid_src (Sh.and_ (Term.lt dst src) (Sh.and_ (Term.lt src (Term.add dst len)) seg)) in (us, xs, bas, siz, mem_dst, mem_mid, mem_src, foot) (* { d⟨s-d,α⟩^⟨l-(s-d),β⟩^⟨s-d,γ⟩ } * memmov l d s * { d-[b;m)->⟨l-(s-d),β⟩^⟨s-d,γ⟩^⟨s-d,γ⟩ } *) let memmov_dn_spec us dst src len = let us, xs, bas, siz, _, mem_mid, mem_src, foot = memmov_foot us dst src len in let mem_mid_src_src = [|mem_mid; mem_src; mem_src|] in let siz_mid_src_src, us, xs = fresh_var "m" us xs in let arr_mid_src_src, _, xs = fresh_var "a" us xs in let eq_mem_mid_src_src = Term.eq_concat (siz_mid_src_src, arr_mid_src_src) mem_mid_src_src in let post = Sh.and_ eq_mem_mid_src_src (Sh.seg { loc= dst ; bas ; len= siz ; siz= siz_mid_src_src ; arr= arr_mid_src_src }) in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { s⟨d-s,α⟩^⟨l-(d-s),β⟩^⟨d-s,γ⟩ } * memmov l d s * { s-[b;m)->⟨d-s,α⟩^⟨d-s,α⟩^⟨l-(d-s),β⟩ } *) let memmov_up_spec us dst src len = let us, xs, bas, siz, mem_src, mem_mid, _, foot = memmov_foot us src dst len in let mem_src_src_mid = [|mem_src; mem_src; mem_mid|] in let siz_src_src_mid, us, xs = fresh_var "m" us xs in let arr_src_src_mid, _, xs = fresh_var "a" us xs in let eq_mem_src_src_mid = Term.eq_concat (siz_src_src_mid, arr_src_src_mid) mem_src_src_mid in let post = Sh.and_ eq_mem_src_src_mid (Sh.seg { loc= src ; bas ; len= siz ; siz= siz_src_src_mid ; arr= arr_src_src_mid }) in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} let memmov_specs us dst src len = [ memmov_eq_spec us dst src len ; memmov_dj_spec us dst src len ; memmov_dn_spec us dst src len ; memmov_up_spec us dst src len ] (* { emp } * alloc r [n × l] * { ∃α'. r-[r;(n×l)Θ)->⟨(n×l)Θ,α'⟩ } *) let alloc_spec us reg num len = let foot = Sh.emp in let siz = Term.mul num len in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in let loc = Term.var reg in let siz = Term.rename sub siz in let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in let post = Sh.seg seg in {xs; foot; sub; ms; post} (* * Memory management - see e.g. http://jemalloc.net/jemalloc.3.html *) (* { p=0 ∨ p-[p;m)->⟨m,α⟩ } * free p * { emp } *) let free_spec us ptr = let len, us, xs = fresh_var "m" us Var.Set.empty in let {us= _; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in let foot = Sh.or_ (null_eq ptr) (Sh.seg seg) in let post = Sh.emp in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { p-[p;m)->⟨m,α⟩ } * dallocx p * { emp } *) let dallocx_spec us ptr = let len, us, xs = fresh_var "m" us Var.Set.empty in let {us= _; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in let foot = Sh.seg seg in let post = Sh.emp in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { emp } * malloc r s * { r=0 ∨ ∃α'. r-[r;sΘ)->⟨sΘ,α'⟩ } *) let malloc_spec us reg siz = let foot = Sh.emp in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in let loc = Term.var reg in let siz = Term.rename sub siz in let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in {xs; foot; sub; ms; post} (* { s≠0 } * mallocx r s * { r=0 ∨ ∃α'. r-[r;sΘ)->⟨sΘ,α'⟩ } *) let mallocx_spec us reg siz = let foot = Sh.pure Term.(dq siz zero) in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in let loc = Term.var reg in let siz = Term.rename sub siz in let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in {xs; foot; sub; ms; post} (* { emp } * calloc r [n × l] * { r=0 ∨ r-[r;(n×l)Θ)->⟨(n×l)Θ,0^⟩ } *) let calloc_spec us reg num len = let foot = Sh.emp in let siz = Term.mul num len in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in let loc = Term.var reg in let siz = Term.rename sub siz in let arr = Term.splat Term.zero in let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~arr us in let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in {xs; foot; sub; ms; post} let size_of_ptr = Term.integer (Z.of_int (Typ.size_of Typ.ptr)) (* { p-[_;_)->⟨W,_⟩ } * posix_memalign r p s * { r=ENOMEM * (p-[_;_)->⟨W,_⟩)Θ * ∨ ∃α',q. r=0 * (p-[_;_)->⟨W,q⟩ * q-[q;s)->⟨s,α'⟩)Θ } * where W = sizeof void* *) let posix_memalign_spec us reg ptr siz = let {us; xs; seg= pseg} = fresh_seg ~loc:ptr ~siz:size_of_ptr us in let foot = Sh.seg pseg in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Var.Set.union foot.us (Term.fv siz)) ~us in let q, us, xs = fresh_var "q" us xs in let pseg' = {pseg with arr= q} in let {us= _; xs; seg= qseg} = fresh_seg ~loc:q ~bas:q ~len:siz ~siz ~xs us in let eok = Term.zero in let enomem = Term.integer (Z.of_int 12) in let post = Sh.or_ (Sh.and_ (Term.eq (Term.var reg) enomem) (Sh.rename sub foot)) (Sh.and_ (Term.eq (Term.var reg) eok) (Sh.rename sub (Sh.star (Sh.seg pseg') (Sh.seg qseg)))) in {xs; foot; sub; ms; post} (* { p=0 ∨ p-[p;m)->⟨m,α⟩ } * realloc r p s * { (r=0 * (pΘ=0 ∨ pΘ-[pΘ;m)->⟨m,α⟩)) * ∨ ∃α',α'' . r-[r;sΘ)->⟨sΘ,α'⟩ * * (m≤sΘ ? ⟨sΘ,α'⟩=⟨m,α⟩^⟨sΘ-m,α''⟩ : ⟨m,α⟩=⟨sΘ,α'⟩^⟨m-sΘ,α''⟩) } *) let realloc_spec us reg ptr siz = let len, us, xs = fresh_var "m" us Var.Set.empty in let {us; xs; seg= pseg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in let foot = Sh.or_ (null_eq ptr) (Sh.seg pseg) in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Var.Set.union foot.us (Term.fv siz)) ~us in let loc = Term.var reg in let siz = Term.rename sub siz in let {us; xs; seg= rseg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~xs us in let a0 = pseg.arr in let a1 = rseg.arr in let a2, _, xs = fresh_var "a" us xs in let post = Sh.or_ (Sh.and_ Term.(eq loc null) (Sh.rename sub foot)) (Sh.and_ Term.( conditional ~cnd:(le len siz) ~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|]) ~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|])) (Sh.seg rseg)) in {xs; foot; sub; ms; post} (* { s≠0 * p-[p;m)->⟨m,α⟩ } * rallocx r p s * { (r=0 * pΘ-[pΘ;m)->⟨m,α⟩) * ∨ ∃α',α'' . r-[r;sΘ)->⟨sΘ,α'⟩ * * (m≤sΘ ? ⟨sΘ,α'⟩=⟨m,α⟩^⟨sΘ-m,α''⟩ : ⟨m,α⟩=⟨sΘ,α'⟩^⟨m-sΘ,α''⟩) } *) let rallocx_spec us reg ptr siz = let len, us, xs = fresh_var "m" us Var.Set.empty in let {us; xs; seg= pseg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in let pheap = Sh.seg pseg in let foot = Sh.and_ Term.(dq siz zero) pheap in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in let loc = Term.var reg in let siz = Term.rename sub siz in let {us; xs; seg= rseg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~xs us in let a0 = pseg.arr in let a1 = rseg.arr in let a2, _, xs = fresh_var "a" us xs in let post = Sh.or_ (Sh.and_ Term.(eq loc null) (Sh.rename sub pheap)) (Sh.and_ Term.( conditional ~cnd:(le len siz) ~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|]) ~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|])) (Sh.seg rseg)) in {xs; foot; sub; ms; post} (* { s≠0 * p-[p;m)->⟨m,α⟩ } * xallocx r p s e * { ∃α',α'' . sΘ≤r≤(s+e)Θ * pΘ-[pΘ;r)->⟨r,α'⟩ * * (m≤r ? ⟨r,α'⟩=⟨m,α⟩^⟨r-m,α''⟩ : ⟨m,α⟩=⟨r,α'⟩^⟨m-r,α''⟩) } *) let xallocx_spec us reg ptr siz ext = let len, us, xs = fresh_var "m" us Var.Set.empty in let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in let foot = Sh.and_ Term.(dq siz zero) (Sh.seg seg) in let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:Var.Set.(union foot.us (union (Term.fv siz) (Term.fv ext))) ~us in let reg = Term.var reg in let ptr = Term.rename sub ptr in let siz = Term.rename sub siz in let ext = Term.rename sub ext in let {us; xs; seg= seg'} = fresh_seg ~loc:ptr ~bas:ptr ~len:reg ~siz:reg ~xs us in let a0 = seg.arr in let a1 = seg'.arr in let a2, _, xs = fresh_var "a" us xs in let post = Sh.and_ Term.( and_ (conditional ~cnd:(le len siz) ~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|]) ~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|])) (and_ (le siz reg) (le reg (add siz ext)))) (Sh.seg seg') in {xs; foot; sub; ms; post} (* { p-[p;m)->⟨m,α⟩ } * sallocx r p * { r=m * (p-[p;m)->⟨m,α⟩)Θ } *) let sallocx_spec us reg ptr = let len, us, xs = fresh_var "m" us Var.Set.empty in let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in let foot = Sh.seg seg in let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in let post = Sh.and_ Term.(eq (var reg) len) (Sh.rename sub foot) in {xs; foot; sub; ms; post} (* { p-[p;m)->⟨m,α⟩ } * malloc_usable_size r p * { m≤r * (p-[p;m)->⟨m,α⟩)Θ } *) let malloc_usable_size_spec us reg ptr = let len, us, xs = fresh_var "m" us Var.Set.empty in let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in let foot = Sh.seg seg in let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in let post = Sh.and_ Term.(le len (var reg)) (Sh.rename sub foot) in {xs; foot; sub; ms; post} (* { s≠0 } * r = nallocx s * { r=0 ∨ r=sΘ } *) let nallocx_spec us reg siz = let xs = Var.Set.empty in let foot = Sh.pure (Term.dq siz Term.zero) in let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in let loc = Term.var reg in let siz = Term.rename sub siz in let post = Sh.or_ (null_eq loc) (Sh.pure (Term.eq loc siz)) in {xs; foot; sub; ms; post} let size_of_int_mul = Term.mul (Term.integer (Z.of_int (Typ.size_of Typ.siz))) (* { r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨_,m⟩ * w=0 * n=0 } * mallctl r i w n * { ∃α'. r-[_;_)->⟨m,α'⟩ * i-[_;_)->⟨_,m⟩ } *) let mallctl_read_spec us r i w n = let {us; xs; seg= iseg} = fresh_seg ~loc:i us in let {us; xs; seg= rseg} = fresh_seg ~loc:r ~siz:iseg.arr ~xs us in let a, _, xs = fresh_var "a" us xs in let foot = Sh.and_ Term.(eq w null) (Sh.and_ Term.(eq n zero) (Sh.star (Sh.seg iseg) (Sh.seg rseg))) in let rseg' = {rseg with arr= a} in let post = Sh.star (Sh.seg rseg') (Sh.seg iseg) in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨_,m⟩ * w=0 * n=0 } * mallctlbymib p l r i w n * { ∃α'. p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,α'⟩ * i-[_;_)->⟨_,m⟩ } * where W = sizeof int *) let mallctlbymib_read_spec us p l r i w n = let wl = size_of_int_mul l in let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wl us in let {us; xs; seg= iseg} = fresh_seg ~loc:i ~xs us in let m = iseg.arr in let {us; xs; seg= rseg} = fresh_seg ~loc:r ~siz:m ~xs us in let const = Sh.star (Sh.seg pseg) (Sh.seg iseg) in let a, _, xs = fresh_var "a" us xs in let foot = Sh.and_ Term.(eq w null) (Sh.and_ Term.(eq n zero) (Sh.star const (Sh.seg rseg))) in let rseg' = {rseg with arr= a} in let post = Sh.star (Sh.seg rseg') const in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { r=0 * i=0 * w-[_;_)->⟨n,_⟩ } * mallctl r i w n * { w-[_;_)->⟨n,_⟩ } *) let mallctl_write_spec us r i w n = let {us= _; xs; seg} = fresh_seg ~loc:w ~siz:n us in let post = Sh.seg seg in let foot = Sh.and_ Term.(eq r null) (Sh.and_ Term.(eq i zero) post) in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* { p-[_;_)->⟨W×l,_⟩ * r=0 * i=0 * w-[_;_)->⟨n,_⟩ } * mallctl r i w n * { p-[_;_)->⟨W×l,_⟩ * w-[_;_)->⟨n,_⟩ } * where W = sizeof int *) let mallctlbymib_write_spec us p l r i w n = let wl = size_of_int_mul l in let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wl us in let {us= _; xs; seg= wseg} = fresh_seg ~loc:w ~siz:n ~xs us in let post = Sh.star (Sh.seg pseg) (Sh.seg wseg) in let foot = Sh.and_ Term.(eq r null) (Sh.and_ Term.(eq i zero) post) in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} let mallctl_specs us r i w n = [mallctl_read_spec us r i w n; mallctl_write_spec us r i w n] let mallctlbymib_specs us p j r i w n = [ mallctlbymib_read_spec us p j r i w n ; mallctlbymib_write_spec us p j r i w n ] (* { p-[_;_)->⟨W×n,α⟩ * o-[_;_)->⟨_,n⟩ } * mallctlnametomib p o * { ∃α'. * p-[_;_)->⟨W×n,α'⟩ * o-[_;_)->⟨_,n⟩ } * where W = sizeof int * * Note: post is too strong, more accurate would be: * { ∃α',α²,α³,n'. ⟨W×n,α⟩=⟨W×n',α³⟩^⟨W×(n-n'),α²⟩ * * p-[_;_)->⟨W×n',α'⟩ * p+W×n'-[_;_)->⟨W×(n-n'),α²⟩ * o-[_;_)->⟨_,n'⟩ } *) let mallctlnametomib_spec us p o = let {us; xs; seg= oseg} = fresh_seg ~loc:o us in let n = oseg.arr in let wn = size_of_int_mul n in let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wn ~xs us in let a, _, xs = fresh_var "a" us xs in let foot = Sh.star (Sh.seg oseg) (Sh.seg pseg) in let pseg' = {pseg with arr= a} in let post = Sh.star (Sh.seg pseg') (Sh.seg oseg) in {xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post} (* * cstring - see e.g. http://www.cplusplus.com/reference/cstring/ *) (* { p-[b;m)->⟨l,α⟩ } * r = strlen p * { r=(b+m-p-1)Θ * (p-[b;m)->⟨l,α⟩)Θ } *) let strlen_spec us reg ptr = let {us; xs; seg} = fresh_seg ~loc:ptr us in let foot = Sh.seg seg in let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in let {Sh.loc= p; bas= b; len= m; _} = seg in let ret = Term.sub (Term.sub (Term.add b m) p) Term.one in let post = Sh.and_ (Term.eq (Term.var reg) (Term.rename sub ret)) (Sh.rename sub foot) in {xs; foot; sub; ms; post} (* * Symbolic Execution *) let check_preserve_us (q0 : Sh.t) (q1 : Sh.t) = let gain_us = Var.Set.diff q1.us q0.us in let lose_us = Var.Set.diff q0.us q1.us in (Var.Set.is_empty gain_us || fail "gain us: %a" Var.Set.pp gain_us ()) && (Var.Set.is_empty lose_us || fail "lose us: %a" Var.Set.pp lose_us ()) (* execute a command with given spec from pre *) let exec_spec pre0 {xs; foot; sub; ms; post} = ([%Trace.call fun {pf} -> pf "@[%a@]@ @[<2>%a@,@[{%a %a}@;<1 -1>%a--@ {%a }@]@]" Sh.pp pre0 (Sh.pp_us ~pre:"@<2>∀ " ()) xs Sh.pp foot (fun fs sub -> if not (Var.Subst.is_empty sub) then Format.fprintf fs "∧ %a" Var.Subst.pp sub ) sub (fun fs ms -> if not (Var.Set.is_empty ms) then Format.fprintf fs "%a := " Var.Set.pp ms ) ms Sh.pp post ; assert ( let vs = Var.Set.diff (Var.Set.diff foot.us xs) pre0.us in Var.Set.is_empty vs || fail "unbound foot: {%a}" Var.Set.pp vs () ) ; assert ( let vs = Var.Set.diff (Var.Set.diff post.us xs) pre0.us in Var.Set.is_empty vs || fail "unbound post: {%a}" Var.Set.pp vs () )] ; let foot = Sh.extend_us xs foot in let zs, pre = Sh.bind_exists pre0 ~wrt:xs in let+ frame = Solver.infer_frame pre xs foot in Sh.exists (Var.Set.union zs xs) (Sh.star post (Sh.exists ms (Sh.rename sub frame)))) |> [%Trace.retn fun {pf} r -> pf "%a" (Option.pp "%a" Sh.pp) r ; assert (Option.for_all ~f:(check_preserve_us pre0) r)] (* execute a multiple-spec command, where the disjunction of the specs preconditions are known to be tautologous *) let rec exec_specs pre = function | ({xs; foot; _} as spec) :: specs -> let foot = Sh.extend_us xs foot in let pre_pure = Sh.star (Sh.exists xs (Sh.pure_approx foot)) pre in let* post = exec_spec pre_pure spec in let+ posts = exec_specs pre specs in Sh.or_ post posts | [] -> Some (Sh.false_ pre.us) let exec_specs pre specs = [%Trace.call fun _ -> ()] ; exec_specs pre specs |> [%Trace.retn fun _ r -> assert (Option.for_all ~f:(check_preserve_us pre) r)] (* * Exposed interface *) let assume pre cnd = let post = Sh.and_ cnd pre in if Sh.is_false post then None else Some post let kill pre reg = let ms = Var.Set.of_ reg in Sh.extend_us ms (Sh.exists ms pre) let move pre reg_exps = exec_spec pre (move_spec pre.us reg_exps) |> function Some post -> post | _ -> fail "Exec.move failed" () let load pre ~reg ~ptr ~len = exec_spec pre (load_spec pre.us reg ptr len) let store pre ~ptr ~exp ~len = exec_spec pre (store_spec pre.us ptr exp len) let memset pre ~dst ~byt ~len = exec_spec pre (memset_spec pre.us dst byt len) let memcpy pre ~dst ~src ~len = exec_specs pre (memcpy_specs pre.us dst src len) let memmov pre ~dst ~src ~len = exec_specs pre (memmov_specs pre.us dst src len) let alloc pre ~reg ~num ~len = exec_spec pre (alloc_spec pre.us reg num len) let free pre ~ptr = exec_spec pre (free_spec pre.us ptr) let nondet pre = function Some reg -> kill pre reg | None -> pre let abort _ = None let intrinsic ~skip_throw : Sh.t -> Var.t option -> Var.t -> Term.t list -> Sh.t option option = fun pre areturn intrinsic actuals -> let us = pre.us in let name = let n = Var.name intrinsic in match String.index n '.' with None -> n | Some i -> String.prefix n i in let skip pre = Some (Some pre) in ( match (areturn, name, actuals) with (* * cstdlib - memory management *) (* void* malloc(size_t size) *) | Some reg, "malloc", [size] (* void* aligned_alloc(size_t alignment, size_t size) *) |Some reg, "aligned_alloc", [size; _] -> Some (exec_spec pre (malloc_spec us reg size)) (* void* calloc(size_t number, size_t size) *) | Some reg, "calloc", [size; number] -> Some (exec_spec pre (calloc_spec us reg number size)) (* int posix_memalign(void** ptr, size_t alignment, size_t size) *) | Some reg, "posix_memalign", [size; _; ptr] -> Some (exec_spec pre (posix_memalign_spec us reg ptr size)) (* void* realloc(void* ptr, size_t size) *) | Some reg, "realloc", [size; ptr] -> Some (exec_spec pre (realloc_spec us reg ptr size)) (* * jemalloc - non-standard API *) (* void* mallocx(size_t size, int flags) *) | Some reg, "mallocx", [_; size] -> Some (exec_spec pre (mallocx_spec us reg size)) (* void* rallocx(void* ptr, size_t size, int flags) *) | Some reg, "rallocx", [_; size; ptr] -> Some (exec_spec pre (rallocx_spec us reg ptr size)) (* size_t xallocx(void* ptr, size_t size, size_t extra, int flags) *) | Some reg, "xallocx", [_; extra; size; ptr] -> Some (exec_spec pre (xallocx_spec us reg ptr size extra)) (* size_t sallocx(void* ptr, int flags) *) | Some reg, "sallocx", [_; ptr] -> Some (exec_spec pre (sallocx_spec us reg ptr)) (* void dallocx(void* ptr, int flags) *) | None, "dallocx", [_; ptr] (* void sdallocx(void* ptr, size_t size, int flags) *) |None, "sdallocx", [_; _; ptr] -> Some (exec_spec pre (dallocx_spec us ptr)) (* size_t nallocx(size_t size, int flags) *) | Some reg, "nallocx", [_; size] -> Some (exec_spec pre (nallocx_spec us reg size)) (* size_t malloc_usable_size(void* ptr) *) | Some reg, "malloc_usable_size", [ptr] -> Some (exec_spec pre (malloc_usable_size_spec us reg ptr)) (* int mallctl(const char* name, void* oldp, size_t* oldlenp, void* newp, size_t newlen) *) | Some _, "mallctl", [newlen; newp; oldlenp; oldp; _] -> Some (exec_specs pre (mallctl_specs us oldp oldlenp newp newlen)) (* int mallctlnametomib(const char* name, size_t* mibp, size_t* miblenp) *) | Some _, "mallctlnametomib", [miblenp; mibp; _] -> Some (exec_spec pre (mallctlnametomib_spec us mibp miblenp)) (* int mallctlbymib(const size_t* mib, size_t miblen, void* oldp, size_t* oldlenp, void* newp, size_t newlen); *) | Some _, "mallctlbymib", [newlen; newp; oldlenp; oldp; miblen; mib] -> Some (exec_specs pre (mallctlbymib_specs us mib miblen oldp oldlenp newp newlen)) | _, "malloc_stats_print", _ -> skip pre (* * cstring *) (* size_t strlen (const char* ptr) *) | Some reg, "strlen", [ptr] -> Some (exec_spec pre (strlen_spec us reg ptr)) (* * cxxabi *) | Some _, "__cxa_allocate_exception", [_] when skip_throw -> skip (Sh.false_ pre.us) (* * folly *) (* bool folly::usingJEMalloc() *) | Some _, "_ZN5folly13usingJEMallocEv", [] -> skip pre | _ -> None ) $> function | None -> () | Some _ -> [%Trace.info "@[<2>exec intrinsic@ @[%a%a(@[%a@])@] from@ @[{ %a@ }@]@]" (Option.pp "%a := " Var.pp) areturn Var.pp intrinsic (List.pp ",@ " Term.pp) (List.rev actuals) Sh.pp pre]