You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

591 lines
16 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* A mini-LLAIR model, based on the files in sledge/src/llair *)
open HolKernel boolLib bossLib Parse;
open settingsTheory memory_modelTheory;
new_theory "llair";
numLib.prefer_num ();
(* ----- Abstract syntax ----- *)
Datatype:
typ =
| FunctionT typ (typ list)
(* How many bits the integer occupies *)
| IntegerT num
| PointerT typ
| ArrayT typ num
| TupleT (typ list)
End
Datatype:
var = Var_name string typ
End
(* These labels have more structure than in the OCaml, but this makes it much
* easier to reason about generating many labels from a single LLVM label when
* splitting blocks at calls and phi instructions. We don't have to worry about
* l1, l2, l3, etc already being in use when working from a block labelled l.
* The semantics doesn't look inside of labels, other than for the function
* name, so the extra structure could be flattened as long as the flattening
* doesn't introduce clashes. It's probably not worth the hassle to do so. *)
Datatype:
label =
(* Args: function name, block name which is None for the entry block, numerical index *)
| Lab_name string (string option) num
(* A move block that was created from a phi instruction.
* Args: function name, from block label, to block label *)
| Mov_name string (string option) string
End
Definition label_to_fname_def:
(label_to_fname (Lab_name fname _ _) = fname)
(label_to_fname (Mov_name fname _ _) = fname)
End
(* Based on the constructor functions in exp.mli rather than the type definition *)
Datatype:
exp =
(* Args: variable name, true for globals *)
| Var var bool
| Nondet
(* Args: function name, block name *)
| Label label
(* Args: byte, size *)
| Splat exp exp
(* Args: size, byte array *)
| Memory exp exp
(* Byte array concatenation *)
| Concat (exp list)
| Integer int typ
| Eq exp exp
| Lt exp exp
| Ult exp exp
| Sub typ exp exp
| Record (exp list)
(* Args: Record, index *)
| Select exp exp
(* Args: Record, index, value *)
| Update exp exp exp
(* Args: number of bits, integer expression, result type *)
| Signed num exp typ
(* Args: number of bits, integer expression, result type *)
| Unsigned num exp typ
End
Datatype:
inst =
(* Args: the list of variable, expression assignments to do *)
| Move ((var # exp) list)
(* Args: result reg, pointer, length *)
| Load var exp num
(* Args: pointer, value, length *)
| Store exp exp num
(* Args: destination, contents, length *)
| Memset exp exp exp
(* Args: destination, source, length *)
| Memcpy exp exp exp
(* Args: destination, source, length *)
| Memmov exp exp exp
(* Args : result, number of elements, size *)
| Alloc var exp exp
(* Args: pointer *)
| Free exp
(* Args: result reg *)
| NondetI var
| Abort
End
Datatype:
term =
(* Args: key, branch table, default exp *)
| Switch exp ((int # label) list) label
(* Args: int to switch on, jump table *)
| Iswitch exp (label list)
(* Args: result reg, function to call, arguments, return type of callee,
* return target, exception target *)
| Call var string (exp list) typ label label
| Return exp
| Throw exp
| Unreachable
| Exit exp
End
Datatype:
block = <| cmnd : inst list; term : term |>
End
(* The llair code doesn't have params here yet, but it will need to *)
Datatype:
func = <| params : var list;
locals : var set;
entry : label;
cfg : (label, block) alist;
freturn : var;
fthrow : var |>
End
(* The int is how much space the global needs *)
Datatype:
global = <| var : var; init : (exp # int) option; typ: typ |>
End
Datatype:
llair = <| glob_init : global list; functions : (string, func) alist |>
End
(* ----- Semantic states ----- *)
(* These are the values that can be stored in registers. The implementation uses
* integers with a bit-width to represent numbers and pointers. Here we
* interpret the bit width b as meaning the int should be in the range [-2^(b-1),2^(b-1))
*)
Datatype:
flat_v =
| IntV int num
End
Type v = ``:flat_v reg_v``
Datatype:
frame = <| ret : label; exn_ret : label; ret_var : var; saved_locals : var |-> v; |>
End
Datatype:
state =
<| bp : label; (* Pointer to the next block to execute *)
glob_addrs : var |-> num;
locals : var |-> v;
stack : frame list;
heap : unit heap;
status : trace_type |>
End
(* Assume that all pointers can fit in 64 bits *)
Definition pointer_size_def:
pointer_size = 64
End
(* ----- Semantic transitions ----- *)
(* The size of a type in bytes, rounded up *)
Definition sizeof_def:
(sizeof (IntegerT n) = (n+7) DIV 8)
(sizeof (PointerT t) = (pointer_size+7) DIV 8)
(sizeof (ArrayT t n) = n * sizeof t)
(sizeof (TupleT ts) = sum (map sizeof ts))
Termination
WF_REL_TAC `measure typ_size` >> simp [] >>
Induct >> rw [definition "typ_size_def"] >> simp [] >>
first_x_assum drule >> decide_tac
End
(* The size of a type in bits *)
Definition sizeof_bits_def:
(sizeof_bits (IntegerT n) = n)
(sizeof_bits (PointerT t) = pointer_size)
(sizeof_bits (ArrayT t n) = n * sizeof_bits t)
(sizeof_bits (TupleT ts) = sum (map sizeof_bits ts))
Termination
WF_REL_TAC `measure typ_size` >> simp [] >>
Induct >> rw [definition "typ_size_def"] >> simp [] >>
first_x_assum drule >> decide_tac
End
Definition first_class_type_def:
(first_class_type (IntegerT _) T)
(first_class_type (PointerT _) T)
(first_class_type (ArrayT t _) first_class_type t)
(first_class_type (TupleT ts) every first_class_type ts)
(first_class_type _ F)
Termination
WF_REL_TAC `measure typ_size` >>
rw [] >>
Induct_on `ts` >> rw [definition "typ_size_def"] >>
res_tac >> decide_tac
End
Inductive value_type:
(∀n i. value_type (IntegerT n) (FlatV (IntV i n)))
(∀t vs n.
every (value_type t) vs length vs = n first_class_type t
value_type (ArrayT t n) (AggV vs))
(∀ts vs.
list_rel value_type ts vs
value_type (TupleT ts) (AggV vs))
End
Definition bool2v_def:
bool2v b = FlatV (IntV (if b then 1 else 0) 1)
End
(* The natural number, interpreted as unsigned, fits in the given number of bits *)
Definition nfits_def:
nfits (n:num) size
0 < size n < 2 ** size
End
Definition signed2unsigned_def:
signed2unsigned i size =
if i < 0 then Num (2 ** size + i) else Num i
End
(* Convert an integer to an unsigned number, following the 2's complement
* representation, assuming (ifits i size). This is what OCaml's Z.extract does,
* which is used in LLAIR for Convert expressions and unsigned operations, e.g.,
* <. *)
Definition i2n_def:
i2n (IntV i size) : num =
signed2unsigned i size
End
(* Convert an unsigned number into the integer that it would be in 2's
* compliment with the given size, assuming (nfits n size) *)
Definition n2i_def:
n2i n size =
if 2 ** (size - 1) n then
(IntV (&n - &(2 ** size)) size)
else
(IntV (&n) size)
End
Inductive eval_exp:
(∀s v r.
flookup s.locals v = Some r
eval_exp s (Var v F) r)
(∀s v r.
flookup s.glob_addrs v = Some r
eval_exp s (Var v T) (FlatV (n2i r pointer_size)))
(* TODO: Nondet I guess we need to know the type here *)
(* TODO: Label *)
(∀s e1 e2 n byte n_size.
eval_exp s e1 (FlatV (IntV byte 8))
(* This idiom means that e2 evaluates to a non-negative integer n, and is
* used throughout *)
eval_exp s e2 (FlatV (IntV (&n) n_size))
eval_exp s (Splat e1 e2) (AggV (replicate n (FlatV (IntV byte 8)))))
(* TODO Question: What if size <> vals? *)
(∀s e1 e2 l vals n_size.
eval_exp s e1 (AggV vals)
eval_exp s e2 (FlatV (IntV (&l) n_size))
l = length vals
eval_exp s (Memory e1 e2) (AggV vals))
(∀s es vals.
list_rel (eval_exp s) es (map AggV vals)
eval_exp s (Concat es) (AggV (flat vals)))
(∀s i size.
eval_exp s (Integer i (IntegerT size)) (FlatV (IntV (truncate_2comp i size) size)))
(* TODO Question: Should the same integer with two different sizes be equal *)
(∀s e1 e2 r1 r2.
eval_exp s e1 r1
eval_exp s e2 r2
eval_exp s (Eq e1 e2) (bool2v (r1 = r2)))
(∀s e1 e2 i1 size1 i2 size2.
eval_exp s e1 (FlatV (IntV i1 size1))
eval_exp s e2 (FlatV (IntV i2 size2))
ifits i1 size1
ifits i2 size2
eval_exp s (Lt e1 e2) (bool2v (i1 < i2)))
(∀s e1 e2 i1 i2 size1 size2.
eval_exp s e1 (FlatV (IntV i1 size1))
eval_exp s e2 (FlatV (IntV i2 size2))
ifits i1 size1
ifits i2 size2
eval_exp s (Ult e1 e2) (bool2v (i2n (IntV i1 size1) < i2n (IntV i2 size2))))
(∀s size e1 e2 i1 i2.
eval_exp s e1 (FlatV (IntV i1 size))
eval_exp s e2 (FlatV (IntV i2 size))
eval_exp s (Sub (IntegerT size) e1 e2) (FlatV (IntV (truncate_2comp (i1 - i2) size) size)))
(∀s es vals.
list_rel (eval_exp s) es vals
eval_exp s (Record es) (AggV vals))
(∀s e1 e2 vals idx idx_size.
eval_exp s e1 (AggV vals)
eval_exp s e2 (FlatV (IntV (&idx) idx_size))
idx < length vals
eval_exp s (Select e1 e2) (el idx vals))
(∀s e1 e2 e3 vals r idx idx_size.
eval_exp s e1 (AggV vals)
eval_exp s e2 (FlatV (IntV (&idx) idx_size))
eval_exp s e3 r
idx < length vals
eval_exp s (Update e1 e2 e3) (AggV (list_update r idx vals)))
(∀s e i size to_t size1.
eval_exp s e (FlatV (IntV i size1))
size < sizeof_bits to_t
eval_exp s (Unsigned size e to_t)
(FlatV (IntV (&(signed2unsigned (truncate_2comp i size) size)) (sizeof_bits to_t))))
(∀s e size size1 i to_t.
eval_exp s e (FlatV (IntV i size1))
size sizeof_bits to_t
eval_exp s (Signed size e to_t) (FlatV (IntV (truncate_2comp i size) (sizeof_bits to_t))))
End
(* BEGIN Functions to interface to the generic memory model *)
Definition type_to_shape_def:
(type_to_shape (IntegerT n) = Flat (sizeof (IntegerT n)) (IntegerT n))
(type_to_shape (PointerT t) = Flat (sizeof (PointerT t)) (PointerT t))
(type_to_shape (ArrayT t n) = Array (type_to_shape t) n)
(type_to_shape (TupleT ts) = Tuple (map type_to_shape ts))
Termination
WF_REL_TAC `measure typ_size` >>
rw [] >>
Induct_on `ts` >> rw [definition "typ_size_def"] >>
res_tac >> decide_tac
End
Definition convert_value_def:
(convert_value (IntegerT size) n =
if size = 1 then
IntV (if n = 0 then 0 else -1) size
else
n2i n size)
(convert_value (PointerT t) n =
n2i n pointer_size)
End
Definition bytes_to_llair_value_def:
bytes_to_llair_value t bs =
(bytes_to_value (λn t w. convert_value t w) (type_to_shape t) bs)
End
Definition unconvert_value_def:
unconvert_value (IntV i size) = ((size + 7) DIV 8, i2n (IntV i size))
End
Definition llair_value_to_bytes_def:
llair_value_to_bytes v =
value_to_bytes unconvert_value v
End
(* END Functions to interface to the generic memory model *)
Definition update_results_def:
update_results xvs s = s with locals := s.locals |++ xvs
End
Inductive get_obs:
(∀s ptr bytes x. flookup s.glob_addrs x = Some ptr get_obs s ptr bytes (W x bytes))
(∀s ptr bytes. ptr FRANGE s.glob_addrs get_obs s ptr bytes Tau)
End
Inductive step_inst:
(∀s ves rs.
list_rel (eval_exp s) (map snd ves) rs
step_inst s
(Move ves) Tau
(update_results (map (λ(v,r). (v, r)) (zip (map fst ves, rs))) s))
(∀s x t e size ptr freeable interval bytes.
eval_exp s e (FlatV ptr)
interval = Interval freeable (i2n ptr) (i2n ptr + size)
is_allocated interval s.heap
bytes = map snd (get_bytes s.heap interval)
step_inst s
(Load (Var_name x t) e size) Tau
(update_results [(Var_name x t, fst (bytes_to_llair_value t bytes))] s))
(∀s e1 e2 size ptr bytes freeable interval r obs.
eval_exp s e1 (FlatV ptr)
eval_exp s e2 r
interval = Interval freeable (i2n ptr) (i2n ptr + size)
is_allocated interval s.heap
bytes = llair_value_to_bytes r
length bytes = size
get_obs s (i2n ptr) bytes obs
step_inst s
(Store e1 e2 size) obs
(s with heap := set_bytes () bytes (i2n ptr) s.heap))
(* TODO memset *)
(∀s e1 e2 e3 dest_ptr src_ptr size src_interval freeable1 freeable2 bytes.
eval_exp s e1 (FlatV dest_ptr)
eval_exp s e2 (FlatV src_ptr)
eval_exp s e3 (FlatV size)
src_interval = Interval freeable1 (i2n src_ptr) (i2n src_ptr + i2n size)
is_allocated src_interval s.heap
is_allocated (Interval freeable2 (i2n dest_ptr) (i2n dest_ptr + i2n size)) s.heap
(* TODO Question: should we allow overlap? *)
bytes = map snd (get_bytes s.heap src_interval)
step_inst s
(Memcpy e1 e2 e3) Tau
(s with heap := set_bytes () bytes (i2n dest_ptr) s.heap))
(* TODO memmove *)
(∀s v e1 e2 n size ptr new_h size_size.
eval_exp s e1 (FlatV n)
eval_exp s e2 (FlatV (IntV (&size) size_size))
allocate s.heap (i2n n * size) () (ptr, new_h)
nfits ptr pointer_size
step_inst s
(Alloc v e1 e2) Tau
(update_results [(v, FlatV (n2i ptr pointer_size))] (s with heap := new_h)))
(∀s e ptr.
eval_exp s e (FlatV ptr)
step_inst s
(Free e) Tau
(s with heap := deallocate [A (i2n ptr)] s.heap))
(∀s x t nondet.
value_type t nondet
step_inst s
(NondetI (Var_name x t)) Tau
(update_results [(Var_name x t, nondet)] s))
End
Inductive step_term:
(∀prog s e table default idx idx_size.
eval_exp s e (FlatV (IntV idx idx_size))
step_term prog s
(Switch e table default) Tau
(s with bp := (case alookup table idx of Some lab => lab | None => default)))
(∀prog s e labs i idx idx_size.
eval_exp s e (FlatV (IntV (&idx) idx_size))
idx < length labs
step_term prog s
(Iswitch e labs) Tau
(s with bp := el i labs))
(∀prog s v callee es t ret1 ret2 vals f.
alookup prog.functions callee = Some f
list_rel (eval_exp s) es vals
step_term prog s
(Call v callee es t ret1 ret2) Tau
<| bp := f.entry;
glob_addrs := s.glob_addrs;
locals := alist_to_fmap (zip (f.params, vals));
stack :=
<| ret := ret1;
exn_ret := ret2;
ret_var := v;
saved_locals := s.locals |> :: s.stack;
heap := s.heap |>)
(∀prog s e r top rest.
eval_exp s e r
s.stack = top::rest
step_term prog s
(Return e) Tau
<| bp := top.ret;
glob_addrs := s.glob_addrs;
locals := top.saved_locals |+ (top.ret_var, r);
stack := rest;
heap := s.heap |>)
(∀prog s e i size.
eval_exp s e (FlatV (IntV i size))
step_term prog s (Exit e) (Exit i) (s with status := Complete i))
(* TODO Throw *)
End
(* With function calls terminating blocks, it's very easy to get rid of the
* instruction pointer and do a big-step evaluation for each block *)
Inductive step_block:
(∀prog s1 t l s2.
step_term prog s1 t l s2
step_block prog s1 [] t [l] s2)
(∀prog s1 t.
¬(∃s2 (l:var obs). step_term prog s1 t l s2)
step_block prog s1 [] t [Error] (s1 with status := Stuck))
(∀prog s1 i1 is t.
(¬∃l s2. step_inst s1 i1 l s2)
step_block prog s1 (i1::is) t [Error] (s1 with status := Stuck))
(∀prog s1 i l is ls t s2 s3.
step_inst s1 i l s2
step_block prog s2 is t ls s3
step_block prog s1 (i::is) t (l::ls) s3)
End
Inductive get_block:
∀prog bp f b.
alookup prog.functions (label_to_fname bp) = Some f
alookup f.cfg bp = Some b
get_block prog bp b
End
Inductive step:
∀prog s b ls s'.
get_block prog s.bp b
step_block prog s b.cmnd b.term ls s'
s.status = Partial
step prog s ls s'
End
Definition sem_def:
sem p s1 =
{ l1 | ∃path l2. l1 observation_prefixes ((last path).status, flat l2)
toList (labels path) = Some l2
finite path okpath (step p) path first path = s1 }
End
export_theory ();