|
|
(*
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
*
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
*)
|
|
|
|
|
|
let%test_module _ =
|
|
|
( module struct
|
|
|
let () =
|
|
|
Trace.init ~margin:68
|
|
|
~config:(Result.ok_exn (Trace.parse "+Solver.infer_frame"))
|
|
|
()
|
|
|
|
|
|
(* let () =
|
|
|
* Trace.init ~margin:160
|
|
|
* ~config:
|
|
|
* (Result.ok_exn (Trace.parse "+Solver.infer_frame+Solver.excise"))
|
|
|
* ()
|
|
|
*
|
|
|
* [@@@warning "-32"] *)
|
|
|
|
|
|
let infer_frame p xs q =
|
|
|
Solver.infer_frame p (Var.Set.of_list xs) q
|
|
|
|> (ignore : Sh.t option -> _)
|
|
|
|
|
|
let check_frame p xs q =
|
|
|
Solver.infer_frame p (Var.Set.of_list xs) q
|
|
|
|> fun r -> assert (Option.is_some r)
|
|
|
|
|
|
let ( ! ) i = Term.integer (Z.of_int i)
|
|
|
let ( + ) = Term.add
|
|
|
let ( - ) = Term.sub
|
|
|
let ( * ) = Term.mul
|
|
|
let wrt = Var.Set.empty
|
|
|
let a_, wrt = Var.fresh "a" ~wrt
|
|
|
let a2_, wrt = Var.fresh "a" ~wrt
|
|
|
let a3_, wrt = Var.fresh "a" ~wrt
|
|
|
let b_, wrt = Var.fresh "b" ~wrt
|
|
|
let k_, wrt = Var.fresh "k" ~wrt
|
|
|
let l_, wrt = Var.fresh "l" ~wrt
|
|
|
let l2_, wrt = Var.fresh "l" ~wrt
|
|
|
let m_, wrt = Var.fresh "m" ~wrt
|
|
|
let n_, _ = Var.fresh "n" ~wrt
|
|
|
let a = Term.var a_
|
|
|
let a2 = Term.var a2_
|
|
|
let a3 = Term.var a3_
|
|
|
let b = Term.var b_
|
|
|
let k = Term.var k_
|
|
|
let l = Term.var l_
|
|
|
let l2 = Term.var l2_
|
|
|
let m = Term.var m_
|
|
|
let n = Term.var n_
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame Sh.emp [] Sh.emp ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame: emp \- emp
|
|
|
) infer_frame: emp |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame (Sh.false_ Var.Set.empty) [] Sh.emp ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame: false \- emp
|
|
|
) infer_frame: false |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame Sh.emp [n_; m_] (Sh.and_ (Term.eq m n) Sh.emp) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame: emp \- ∃ %m_8, %n_9 . %m_8 = %n_9 ∧ emp
|
|
|
) infer_frame: %m_8 = %n_9 ∧ emp |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a})
|
|
|
[] Sh.emp ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame: %l_6 -[ %b_4, %m_8 )-> ⟨%n_9,%a_1⟩ \- emp
|
|
|
) infer_frame: %l_6 -[ %b_4, %m_8 )-> ⟨%n_9,%a_1⟩ |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a})
|
|
|
[]
|
|
|
(Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a}) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%l_6 -[ %b_4, %m_8 )-> ⟨%n_9,%a_1⟩
|
|
|
\- %l_6 -[ %b_4, %m_8 )-> ⟨%n_9,%a_1⟩
|
|
|
) infer_frame: emp |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
let common = Sh.seg {loc= l2; bas= b; len= !10; siz= !10; arr= a2} in
|
|
|
let seg1 = Sh.seg {loc= l; bas= b; len= !10; siz= !10; arr= a} in
|
|
|
let minued = Sh.star common seg1 in
|
|
|
let subtrahend =
|
|
|
Sh.and_ (Term.eq m n)
|
|
|
(Sh.exists
|
|
|
(Var.Set.of_list [m_])
|
|
|
(Sh.extend_us (Var.Set.of_list [m_]) common))
|
|
|
in
|
|
|
infer_frame minued [n_; m_] subtrahend ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%l_6 -[ %b_4, 10 )-> ⟨10,%a_1⟩ * %l_7 -[ %b_4, 10 )-> ⟨10,%a_2⟩
|
|
|
\- ∃ %m_8, %n_9 .
|
|
|
∃ %m_10 . %m_8 = %n_9 ∧ %l_7 -[ %b_4, 10 )-> ⟨10,%a_2⟩
|
|
|
) infer_frame:
|
|
|
∃ %m_10 . %m_8 = %n_9 ∧ %l_6 -[ %b_4, 10 )-> ⟨10,%a_1⟩ |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a})
|
|
|
(Sh.seg {loc= l2; bas= b; len= m; siz= n; arr= a2}))
|
|
|
[]
|
|
|
(Sh.seg {loc= l; bas= b; len= m; siz= n; arr= a}) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%l_6 -[ %b_4, %m_8 )-> ⟨%n_9,%a_1⟩
|
|
|
* %l_7 -[ %b_4, %m_8 )-> ⟨%n_9,%a_2⟩
|
|
|
\- %l_6 -[ %b_4, %m_8 )-> ⟨%n_9,%a_1⟩
|
|
|
) infer_frame: %l_7 -[ %b_4, %m_8 )-> ⟨%n_9,%a_2⟩ |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= l; bas= l; len= !16; siz= !8; arr= a})
|
|
|
(Sh.seg {loc= l + !8; bas= l; len= !16; siz= !8; arr= a2}))
|
|
|
[a3_]
|
|
|
(Sh.seg {loc= l; bas= l; len= !16; siz= !16; arr= a3}) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%l_6 -[)-> ⟨8,%a_1⟩^⟨8,%a_2⟩ \- ∃ %a_3 . %l_6 -[)-> ⟨16,%a_3⟩
|
|
|
) infer_frame: %a_2 = _ ∧ (⟨8,%a_1⟩^⟨8,%a_2⟩) = %a_3 ∧ emp |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= l; bas= l; len= !16; siz= !8; arr= a})
|
|
|
(Sh.seg {loc= l + !8; bas= l; len= !16; siz= !8; arr= a2}))
|
|
|
[a3_; m_]
|
|
|
(Sh.seg {loc= l; bas= l; len= m; siz= !16; arr= a3}) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%l_6 -[)-> ⟨8,%a_1⟩^⟨8,%a_2⟩
|
|
|
\- ∃ %a_3, %m_8 .
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨16,%a_3⟩
|
|
|
) infer_frame:
|
|
|
%a_2 = _ ∧ (⟨8,%a_1⟩^⟨8,%a_2⟩) = %a_3 ∧ 16 = %m_8 ∧ emp |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= l; bas= l; len= !16; siz= !8; arr= a})
|
|
|
(Sh.seg {loc= l + !8; bas= l; len= !16; siz= !8; arr= a2}))
|
|
|
[a3_; m_]
|
|
|
(Sh.seg {loc= l; bas= l; len= m; siz= m; arr= a3}) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%l_6 -[)-> ⟨8,%a_1⟩^⟨8,%a_2⟩
|
|
|
\- ∃ %a_3, %m_8 .
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨%m_8,%a_3⟩
|
|
|
) infer_frame:
|
|
|
%a_2 = _ ∧ (⟨8,%a_1⟩^⟨8,%a_2⟩) = %a_3 ∧ 16 = %m_8 ∧ emp |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= k; bas= k; len= !16; siz= !32; arr= a})
|
|
|
(Sh.seg {loc= l; bas= l; len= !8; siz= !8; arr= !16}))
|
|
|
[a2_; m_; n_]
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= l; bas= l; len= !8; siz= !8; arr= n})
|
|
|
(Sh.seg {loc= k; bas= k; len= m; siz= n; arr= a2})) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%k_5 -[ %k_5, 16 )-> ⟨32,%a_1⟩ * %l_6 -[)-> ⟨8,16⟩
|
|
|
\- ∃ %a_2, %m_8, %n_9 .
|
|
|
%k_5 -[ %k_5, %m_8 )-> ⟨%n_9,%a_2⟩ * %l_6 -[)-> ⟨8,%n_9⟩
|
|
|
) infer_frame:
|
|
|
∃ %a0_10, %a1_11 .
|
|
|
%a_2 = %a0_10
|
|
|
∧ (⟨16,%a_2⟩^⟨16,%a1_11⟩) = %a_1
|
|
|
∧ 16 = %m_8 = %n_9
|
|
|
∧ (%k_5 + 16) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
infer_frame
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= k; bas= k; len= !16; siz= !32; arr= a})
|
|
|
(Sh.seg {loc= l; bas= l; len= !8; siz= !8; arr= !16}))
|
|
|
[a2_; m_; n_]
|
|
|
(Sh.star
|
|
|
(Sh.seg {loc= k; bas= k; len= m; siz= n; arr= a2})
|
|
|
(Sh.seg {loc= l; bas= l; len= !8; siz= !8; arr= n})) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%k_5 -[ %k_5, 16 )-> ⟨32,%a_1⟩ * %l_6 -[)-> ⟨8,16⟩
|
|
|
\- ∃ %a_2, %m_8, %n_9 .
|
|
|
%k_5 -[ %k_5, %m_8 )-> ⟨%n_9,%a_2⟩ * %l_6 -[)-> ⟨8,%n_9⟩
|
|
|
) infer_frame:
|
|
|
∃ %a0_10, %a1_11 .
|
|
|
%a_2 = %a0_10
|
|
|
∧ (⟨16,%a_2⟩^⟨16,%a1_11⟩) = %a_1
|
|
|
∧ 16 = %m_8 = %n_9
|
|
|
∧ (%k_5 + 16) -[ %k_5, 16 )-> ⟨16,%a1_11⟩ |}]
|
|
|
|
|
|
let seg_split_symbolically =
|
|
|
Sh.star
|
|
|
(Sh.seg {loc= l; bas= l; len= !16; siz= !8 * n; arr= a2})
|
|
|
(Sh.seg
|
|
|
{ loc= l + (!8 * n)
|
|
|
; bas= l
|
|
|
; len= !16
|
|
|
; siz= !16 - (!8 * n)
|
|
|
; arr= a3 })
|
|
|
|
|
|
let%expect_test _ =
|
|
|
check_frame
|
|
|
(Sh.and_
|
|
|
Term.(or_ (or_ (eq n !0) (eq n !1)) (eq n !2))
|
|
|
seg_split_symbolically)
|
|
|
[m_; a_]
|
|
|
(Sh.seg {loc= l; bas= l; len= m; siz= m; arr= a}) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
%l_6 -[ %l_6, 16 )-> ⟨(8 × %n_9),%a_2⟩^⟨(-8 × %n_9 + 16),%a_3⟩
|
|
|
* ( ( 2 = %n_9 ∧ emp)
|
|
|
∨ ( 0 = %n_9 ∧ emp)
|
|
|
∨ ( 1 = %n_9 ∧ emp)
|
|
|
)
|
|
|
\- ∃ %a_1, %m_8 .
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨%m_8,%a_1⟩
|
|
|
) infer_frame:
|
|
|
( ( %a_1 = %a_2
|
|
|
∧ 2 = %n_9
|
|
|
∧ 16 = %m_8
|
|
|
∧ (%l_6 + 16) -[ %l_6, 16 )-> ⟨0,%a_3⟩)
|
|
|
∨ ( %a_3 = _
|
|
|
∧ (⟨8,%a_2⟩^⟨8,%a_3⟩) = %a_1
|
|
|
∧ 1 = %n_9
|
|
|
∧ 16 = %m_8
|
|
|
∧ emp)
|
|
|
∨ ( %a_3 = _
|
|
|
∧ (⟨0,%a_2⟩^⟨16,%a_3⟩) = %a_1
|
|
|
∧ 0 = %n_9
|
|
|
∧ 16 = %m_8
|
|
|
∧ emp)
|
|
|
) |}]
|
|
|
|
|
|
(* Incompleteness: equivalent to above but using ≤ instead of ∨ *)
|
|
|
let%expect_test _ =
|
|
|
infer_frame
|
|
|
(Sh.and_ (Term.le n !2) seg_split_symbolically)
|
|
|
[m_; a_]
|
|
|
(Sh.seg {loc= l; bas= l; len= m; siz= m; arr= a}) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame:
|
|
|
(%n_9 ≤ 2)
|
|
|
∧ %l_6 -[ %l_6, 16 )-> ⟨(8 × %n_9),%a_2⟩^⟨(-8 × %n_9 + 16),%a_3⟩
|
|
|
\- ∃ %a_1, %m_8 .
|
|
|
%l_6 -[ %l_6, %m_8 )-> ⟨%m_8,%a_1⟩
|
|
|
) infer_frame: |}]
|
|
|
|
|
|
(* Incompleteness: cannot witness existentials to satisfy non-equality
|
|
|
pure constraints *)
|
|
|
let%expect_test _ =
|
|
|
let subtrahend = Sh.and_ (Term.eq m a) (Sh.pure (Term.dq m !0)) in
|
|
|
let minuend = Sh.extend_us (Var.Set.of_ a_) Sh.emp in
|
|
|
infer_frame minuend [m_] subtrahend ;
|
|
|
[%expect
|
|
|
{|
|
|
|
( infer_frame: emp \- ∃ %m_8 . %a_1 = %m_8 ∧ (%a_1 ≠ 0) ∧ emp
|
|
|
) infer_frame: |}]
|
|
|
end )
|