You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

140 lines
4.3 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Formulas *)
module Prop = Propositional.Make (Trm)
module Set = Prop.Fmls
type set = Set.t
include Prop.Fml
let pp_boxed fs fmt =
Format.pp_open_box fs 2 ;
Format.kfprintf (fun fs -> Format.pp_close_box fs ()) fs fmt
let ppx strength fs fml =
let pp_t = Trm.ppx strength in
let rec pp fs fml =
let pf fmt = pp_boxed fs fmt in
let pp_arith op x =
let a, c = Trm.Arith.split_const (Trm.Arith.trm x) in
pf "(%a@ @<2>%s %a)" Q.pp (Q.neg c) op (Trm.Arith.ppx strength) a
in
let pp_join sep pos neg =
pf "(%a%t%a)" (Set.pp ~sep pp) pos
(fun ppf ->
if (not (Set.is_empty pos)) && not (Set.is_empty neg) then
Format.fprintf ppf sep )
(Set.pp ~sep (fun fs fml -> pp fs (_Not fml)))
neg
in
match fml with
| Tt -> pf "tt"
| Not Tt -> pf "ff"
| Eq (x, y) -> pf "(%a@ = %a)" pp_t x pp_t y
| Not (Eq (x, y)) -> pf "(%a@ @<2>≠ %a)" pp_t x pp_t y
| Eq0 x -> pp_arith "=" x
| Not (Eq0 x) -> pp_arith "" x
| Pos x -> pp_arith "<" x
| Not (Pos x) -> pp_arith "" x
| Not x -> pf "@<1>¬%a" pp x
| And {pos; neg} -> pp_join "@ @<2>∧ " pos neg
| Or {pos; neg} -> pp_join "@ @<2> " pos neg
| Iff (x, y) -> pf "(%a@ <=> %a)" pp x pp y
| Cond {cnd; pos; neg} ->
pf "@[<hv 1>(%a@ ? %a@ : %a)@]" pp cnd pp pos pp neg
| Lit (p, xs) -> pf "%a(%a)" Ses.Predsym.pp p (Array.pp ",@ " pp_t) xs
in
pp fs fml
let pp = ppx (fun _ -> None)
let tt = mk_Tt ()
let ff = _Not tt
let bool b = if b then tt else ff
let _Eq0 x =
match (x : Trm.t) with
| Z z -> bool (Z.equal Z.zero z)
| Q q -> bool (Q.equal Q.zero q)
| x -> _Eq0 x
let _Pos x =
match (x : Trm.t) with
| Z z -> bool (Z.gt z Z.zero)
| Q q -> bool (Q.gt q Q.zero)
| x -> _Pos x
let _Eq x y =
if x == Trm.zero then _Eq0 y
else if y == Trm.zero then _Eq0 x
else
let sort_eq x y =
match Sign.of_int (Trm.compare x y) with
| Neg -> _Eq x y
| Zero -> tt
| Pos -> _Eq y x
in
match (x, y) with
(* x = y ==> 0 = x - y when x = y is an arithmetic equality *)
| (Z _ | Q _ | Arith _), _ | _, (Z _ | Q _ | Arith _) ->
_Eq0 (Trm.sub x y)
(* α^β^δ = α^γ^δ ==> β = γ *)
| Concat a, Concat b ->
let m = Array.length a in
let n = Array.length b in
let l = min m n in
let length_common_prefix =
let rec find_lcp i =
if i < l && Trm.equal a.(i) b.(i) then find_lcp (i + 1) else i
in
find_lcp 0
in
if length_common_prefix = l then tt
else
let length_common_suffix =
let rec find_lcs i =
if Trm.equal a.(m - 1 - i) b.(n - 1 - i) then find_lcs (i + 1)
else i
in
find_lcs 0
in
let length_common = length_common_prefix + length_common_suffix in
if length_common = 0 then sort_eq x y
else
let pos = length_common_prefix in
let a = Array.sub ~pos ~len:(m - length_common) a in
let b = Array.sub ~pos ~len:(n - length_common) b in
_Eq (Trm._Concat a) (Trm._Concat b)
| (Sized _ | Extract _ | Concat _), (Sized _ | Extract _ | Concat _) ->
sort_eq x y
(* x = α ==> ⟨x,|α|⟩ = α *)
| x, ((Sized _ | Extract _ | Concat _) as a)
|((Sized _ | Extract _ | Concat _) as a), x ->
_Eq (Trm._Sized x (Trm.seq_size_exn a)) a
| _ -> sort_eq x y
let map_pos_neg f e cons ~pos ~neg =
map2 (Set.map ~f) e (fun pos neg -> cons ~pos ~neg) pos neg
let rec map_trms b ~f =
match b with
| Tt -> b
| Eq (x, y) -> map2 f b _Eq x y
| Eq0 x -> map1 f b _Eq0 x
| Pos x -> map1 f b _Pos x
| Not x -> map1 (map_trms ~f) b _Not x
| And {pos; neg} -> map_pos_neg (map_trms ~f) b _And ~pos ~neg
| Or {pos; neg} -> map_pos_neg (map_trms ~f) b _Or ~pos ~neg
| Iff (x, y) -> map2 (map_trms ~f) b _Iff x y
| Cond {cnd; pos; neg} -> map3 (map_trms ~f) b _Cond cnd pos neg
| Lit (p, xs) -> mapN f b (_Lit p) xs
let map_vars b ~f = map_trms ~f:(Trm.map_vars ~f) b
let vars p = Iter.flat_map ~f:Trm.vars (trms p)