You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
2049 lines
76 KiB
2049 lines
76 KiB
(*
|
|
* Copyright (c) 2009 -2013 Monoidics ltd.
|
|
* Copyright (c) 2013 - Facebook.
|
|
* All rights reserved.
|
|
*)
|
|
|
|
(** Operators for the abstract domain. In particular, join and meet. *)
|
|
|
|
module L = Logging
|
|
module F = Format
|
|
open Utils
|
|
|
|
let (++) = Sil.Int.add
|
|
let (--) = Sil.Int.sub
|
|
|
|
type pi = Sil.atom list
|
|
type sigma = Sil.hpred list
|
|
|
|
(** {2 Object representing the status of the join operation} *)
|
|
|
|
module JoinState : sig
|
|
|
|
type mode = Pre | Post
|
|
val get_footprint : unit -> bool
|
|
val set_footprint : bool -> unit
|
|
|
|
end = struct
|
|
|
|
type mode = Pre | Post
|
|
let footprint = ref false (* set to true when we are doing join of footprints *)
|
|
let get_footprint () = !footprint
|
|
let set_footprint b = footprint := b
|
|
|
|
end
|
|
|
|
(** {2 Utility functions for ids} *)
|
|
|
|
let can_rename id =
|
|
Ident.is_primed id || Ident.is_footprint id
|
|
|
|
(** {2 Utility functions for sigma} *)
|
|
|
|
let sigma_equal sigma1 sigma2 =
|
|
let rec f sigma1_rest sigma2_rest =
|
|
match (sigma1_rest, sigma2_rest) with
|
|
| [], [] -> ()
|
|
| [], _:: _ | _:: _, [] ->
|
|
(L.d_strln "failure reason 1"; raise Fail)
|
|
| hpred1:: sigma1_rest', hpred2:: sigma2_rest' ->
|
|
if Sil.hpred_equal hpred1 hpred2 then f sigma1_rest' sigma2_rest'
|
|
else (L.d_strln "failure reason 2"; raise Fail) in
|
|
let sigma1_sorted = list_sort Sil.hpred_compare sigma1 in
|
|
let sigma2_sorted = list_sort Sil.hpred_compare sigma2 in
|
|
f sigma1_sorted sigma2_sorted
|
|
|
|
let sigma_get_start_lexps_sort sigma =
|
|
let exp_compare_neg e1 e2 = - (Sil.exp_compare e1 e2) in
|
|
let filter e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
|
|
let lexps = Sil.hpred_list_get_lexps filter sigma in
|
|
list_sort exp_compare_neg lexps
|
|
|
|
(** {2 Utility functions for side} *)
|
|
|
|
type side = Lhs | Rhs
|
|
|
|
let select side e1 e2 =
|
|
match side with
|
|
| Lhs -> e1
|
|
| Rhs -> e2
|
|
|
|
let opposite side =
|
|
match side with
|
|
| Lhs -> Rhs
|
|
| Rhs -> Lhs
|
|
|
|
let do_side side f e1 e2 =
|
|
match side with
|
|
| Lhs -> f e1 e2
|
|
| Rhs -> f e2 e1
|
|
|
|
(** {2 Sets for expression pairs} *)
|
|
|
|
module EPset = Set.Make
|
|
(struct
|
|
type t = Sil.exp * Sil.exp
|
|
let compare (e1, e1') (e2, e2') =
|
|
match (Sil.exp_compare e1 e2) with
|
|
| i when i <> 0 -> i
|
|
| _ -> Sil.exp_compare e1' e2'
|
|
end)
|
|
|
|
let epset_add e e' set =
|
|
match (Sil.exp_compare e e') with
|
|
| i when i <= 0 -> EPset.add (e, e') set
|
|
| _ -> EPset.add (e', e) set
|
|
|
|
(** {2 Module for maintaining information about noninjectivity during join} *)
|
|
|
|
module NonInj : sig
|
|
|
|
val init : unit -> unit
|
|
val final : unit -> unit
|
|
val add : side -> Sil.exp -> Sil.exp -> unit
|
|
val check : side -> Sil.exp list -> bool
|
|
|
|
end = struct
|
|
|
|
(* mappings from primed or footprint var exps to primed or footprint var exps *)
|
|
let equiv_tbl1 = Hashtbl.create 32
|
|
let equiv_tbl2 = Hashtbl.create 32
|
|
|
|
(* mappings from primed or footprint var exps to normal var, lvar or const exps *)
|
|
let const_tbl1 = Hashtbl.create 32
|
|
let const_tbl2 = Hashtbl.create 32
|
|
|
|
let reset () =
|
|
Hashtbl.clear equiv_tbl1;
|
|
Hashtbl.clear equiv_tbl2;
|
|
Hashtbl.clear const_tbl1;
|
|
Hashtbl.clear const_tbl2
|
|
|
|
let init () = reset ()
|
|
let final () = reset ()
|
|
|
|
let lookup' tbl e default =
|
|
match e with
|
|
| Sil.Var _ ->
|
|
begin
|
|
try Hashtbl.find tbl e
|
|
with Not_found -> (Hashtbl.replace tbl e default; default)
|
|
end
|
|
| _ -> assert false
|
|
|
|
let lookup_equiv' tbl e =
|
|
lookup' tbl e e
|
|
let lookup_const' tbl e =
|
|
lookup' tbl e Sil.ExpSet.empty
|
|
|
|
let rec find' tbl e =
|
|
let e' = lookup_equiv' tbl e in
|
|
match e' with
|
|
| Sil.Var _ ->
|
|
if Sil.exp_equal e e' then e
|
|
else
|
|
begin
|
|
let root = find' tbl e' in
|
|
Hashtbl.replace tbl e root;
|
|
root
|
|
end
|
|
| _ -> assert false
|
|
|
|
let union' tbl const_tbl e1 e2 =
|
|
let r1 = find' tbl e1 in
|
|
let r2 = find' tbl e2 in
|
|
let new_r, old_r =
|
|
match (Sil.exp_compare r1 r2) with
|
|
| i when i <= 0 -> r1, r2
|
|
| _ -> r2, r1 in
|
|
let new_c = lookup_const' const_tbl new_r in
|
|
let old_c = lookup_const' const_tbl old_r in
|
|
let res_c = Sil.ExpSet.union new_c old_c in
|
|
if Sil.ExpSet.cardinal res_c > 1 then (L.d_strln "failure reason 3"; raise Fail);
|
|
Hashtbl.replace tbl old_r new_r;
|
|
Hashtbl.replace const_tbl new_r res_c
|
|
|
|
let replace_const' tbl const_tbl e c =
|
|
let r = find' tbl e in
|
|
let set = Sil.ExpSet.add c (lookup_const' const_tbl r) in
|
|
if Sil.ExpSet.cardinal set > 1 then (L.d_strln "failure reason 4"; raise Fail);
|
|
Hashtbl.replace const_tbl r set
|
|
|
|
let add side e e' =
|
|
let tbl, const_tbl =
|
|
match side with
|
|
| Lhs -> equiv_tbl1, const_tbl1
|
|
| Rhs -> equiv_tbl2, const_tbl2
|
|
in
|
|
match e, e' with
|
|
| Sil.Var id, Sil.Var id' ->
|
|
begin
|
|
match can_rename id, can_rename id' with
|
|
| true, true -> union' tbl const_tbl e e'
|
|
| true, false -> replace_const' tbl const_tbl e e'
|
|
| false, true -> replace_const' tbl const_tbl e' e
|
|
| _ -> L.d_strln "failure reason 5"; raise Fail
|
|
end
|
|
| Sil.Var id, Sil.Const _ | Sil.Var id, Sil.Lvar _ ->
|
|
if (can_rename id) then replace_const' tbl const_tbl e e'
|
|
else (L.d_strln "failure reason 6"; raise Fail)
|
|
| Sil.Const _, Sil.Var id' | Sil.Lvar _, Sil.Var id' ->
|
|
if (can_rename id') then replace_const' tbl const_tbl e' e
|
|
else (L.d_strln "failure reason 7"; raise Fail)
|
|
| _ ->
|
|
if not (Sil.exp_equal e e') then (L.d_strln "failure reason 8"; raise Fail) else ()
|
|
|
|
let check side es =
|
|
let f = function Sil.Var id -> can_rename id | _ -> false in
|
|
let vars, nonvars = list_partition f es in
|
|
let tbl, const_tbl =
|
|
match side with
|
|
| Lhs -> equiv_tbl1, const_tbl1
|
|
| Rhs -> equiv_tbl2, const_tbl2
|
|
in
|
|
if (list_length nonvars > 1) then false
|
|
else
|
|
match vars, nonvars with
|
|
| [], _ | [_], [] -> true
|
|
| v:: vars', _ ->
|
|
let r = find' tbl v in
|
|
let set = lookup_const' const_tbl r in
|
|
(list_for_all (fun v' -> Sil.exp_equal (find' tbl v') r) vars') &&
|
|
(list_for_all (fun c -> Sil.ExpSet.mem c set) nonvars)
|
|
|
|
end
|
|
|
|
(** {2 Modules for checking whether join or meet loses too much info} *)
|
|
|
|
module type InfoLossCheckerSig =
|
|
sig
|
|
val init : sigma -> sigma -> unit
|
|
val final : unit -> unit
|
|
val lost_little : side -> Sil.exp -> Sil.exp list -> bool
|
|
val add : side -> Sil.exp -> Sil.exp -> unit
|
|
end
|
|
|
|
module Dangling : sig
|
|
|
|
val init : sigma -> sigma -> unit
|
|
val final : unit -> unit
|
|
val check : side -> Sil.exp -> bool
|
|
|
|
end = struct
|
|
|
|
let lexps1 = ref Sil.ExpSet.empty
|
|
let lexps2 = ref Sil.ExpSet.empty
|
|
|
|
let get_lexp_set' sigma =
|
|
let lexp_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma in
|
|
list_fold_left (fun set e -> Sil.ExpSet.add e set) Sil.ExpSet.empty lexp_lst
|
|
let init sigma1 sigma2 =
|
|
lexps1 := get_lexp_set' sigma1;
|
|
lexps2 := get_lexp_set' sigma2
|
|
let final () =
|
|
lexps1 := Sil.ExpSet.empty;
|
|
lexps2 := Sil.ExpSet.empty
|
|
|
|
(* conservatively checks whether e is dangling *)
|
|
let check side e =
|
|
let lexps =
|
|
match side with
|
|
| Lhs -> !lexps1
|
|
| Rhs -> !lexps2
|
|
in
|
|
match e with
|
|
| Sil.Var id -> can_rename id && not (Sil.ExpSet.mem e lexps)
|
|
| Sil.Const _ -> not (Sil.ExpSet.mem e lexps)
|
|
| Sil.BinOp _ -> not (Sil.ExpSet.mem e lexps)
|
|
| _ -> false
|
|
end
|
|
|
|
module CheckJoinPre : InfoLossCheckerSig = struct
|
|
|
|
let init sigma1 sigma2 =
|
|
NonInj.init ();
|
|
Dangling.init sigma1 sigma2
|
|
|
|
let final () =
|
|
NonInj.final ();
|
|
Dangling.final ()
|
|
|
|
let fail_case side e es =
|
|
let side_op = opposite side in
|
|
match e with
|
|
| Sil.Lvar _ -> false
|
|
| Sil.Var id when Ident.is_normal id -> list_length es >= 1
|
|
| Sil.Var id ->
|
|
if !Config.join_cond = 0 then
|
|
list_exists (Sil.exp_equal Sil.exp_zero) es
|
|
else if Dangling.check side e then
|
|
begin
|
|
let r = list_exists (fun e' -> not (Dangling.check side_op e')) es in
|
|
if r then begin
|
|
L.d_str ".... Dangling Check (dang e:"; Sil.d_exp e;
|
|
L.d_str ") (? es:"; Sil.d_exp_list es; L.d_strln ") ....";
|
|
L.d_ln ()
|
|
end;
|
|
r
|
|
end
|
|
else
|
|
begin
|
|
let r = list_exists (Dangling.check side_op) es in
|
|
if r then begin
|
|
L.d_str ".... Dangling Check (notdang e:"; Sil.d_exp e;
|
|
L.d_str ") (? es:"; Sil.d_exp_list es; L.d_strln ") ....";
|
|
L.d_ln ()
|
|
end;
|
|
r
|
|
end
|
|
| _ -> false
|
|
|
|
let lost_little side e es =
|
|
let side_op = opposite side in
|
|
let es = match e with Sil.Const _ -> [] | _ -> es in
|
|
if (fail_case side e es) then false
|
|
else
|
|
match es with
|
|
| [] | [_] -> true
|
|
| _ -> (NonInj.check side_op es)
|
|
|
|
let add = NonInj.add
|
|
end
|
|
|
|
module CheckJoinPost : InfoLossCheckerSig = struct
|
|
|
|
let init sigma1 sigma2 =
|
|
NonInj.init ()
|
|
|
|
let final () =
|
|
NonInj.final ()
|
|
|
|
let fail_case side e es =
|
|
match e with
|
|
| Sil.Lvar _ -> false
|
|
| Sil.Var id when Ident.is_normal id -> list_length es >= 1
|
|
| Sil.Var id -> false
|
|
| _ -> false
|
|
|
|
let lost_little side e es =
|
|
let side_op = opposite side in
|
|
let es = match e with Sil.Const _ -> [] | _ -> es in
|
|
if (fail_case side e es) then false
|
|
else
|
|
match es with
|
|
| [] | [_] -> true
|
|
| _ -> NonInj.check side_op es
|
|
|
|
let add = NonInj.add
|
|
end
|
|
|
|
module CheckJoin : sig
|
|
|
|
val init : JoinState.mode -> sigma -> sigma -> unit
|
|
val final : unit -> unit
|
|
val lost_little : side -> Sil.exp -> Sil.exp list -> bool
|
|
val add : side -> Sil.exp -> Sil.exp -> unit
|
|
|
|
end = struct
|
|
|
|
let mode_ref : JoinState.mode ref = ref JoinState.Post
|
|
|
|
let init mode sigma1 sigma2 =
|
|
mode_ref := mode;
|
|
match mode with
|
|
| JoinState.Pre -> CheckJoinPre.init sigma1 sigma2
|
|
| JoinState.Post -> CheckJoinPost.init sigma1 sigma2
|
|
|
|
let final () =
|
|
match !mode_ref with
|
|
| JoinState.Pre -> CheckJoinPre.final (); mode_ref := JoinState.Post
|
|
| JoinState.Post -> CheckJoinPost.final (); mode_ref := JoinState.Post
|
|
|
|
let lost_little side e es =
|
|
match !mode_ref with
|
|
| JoinState.Pre -> CheckJoinPre.lost_little side e es
|
|
| JoinState.Post -> CheckJoinPost.lost_little side e es
|
|
|
|
let add side e1 e2 =
|
|
match !mode_ref with
|
|
| JoinState.Pre -> CheckJoinPre.add side e1 e2
|
|
| JoinState.Post -> CheckJoinPost.add side e1 e2
|
|
end
|
|
|
|
module CheckMeet : InfoLossCheckerSig = struct
|
|
|
|
let lexps1 = ref Sil.ExpSet.empty
|
|
let lexps2 = ref Sil.ExpSet.empty
|
|
|
|
let init sigma1 sigma2 =
|
|
let lexps1_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma1 in
|
|
let lexps2_lst = Sil.hpred_list_get_lexps (fun _ -> true) sigma2 in
|
|
lexps1 := Sil.elist_to_eset lexps1_lst;
|
|
lexps2 := Sil.elist_to_eset lexps2_lst
|
|
|
|
let final () =
|
|
lexps1 := Sil.ExpSet.empty;
|
|
lexps2 := Sil.ExpSet.empty
|
|
|
|
let lost_little side e es =
|
|
let lexps = match side with
|
|
| Lhs -> !lexps1
|
|
| Rhs -> !lexps2
|
|
in
|
|
match es, e with
|
|
| [], _ ->
|
|
true
|
|
| [Sil.Const _], Sil.Lvar _ ->
|
|
false
|
|
| [Sil.Const _], Sil.Var _ ->
|
|
not (Sil.ExpSet.mem e lexps)
|
|
| [Sil.Const _], _ ->
|
|
assert false
|
|
| [_], Sil.Lvar _ | [_], Sil.Var _ ->
|
|
true
|
|
| [_], _ ->
|
|
assert false
|
|
| _, Sil.Lvar _ | _, Sil.Var _ ->
|
|
false
|
|
| _, Sil.Const _ ->
|
|
assert false
|
|
| _ -> assert false
|
|
|
|
let add = NonInj.add
|
|
end
|
|
|
|
(** {2 Module for worklist} *)
|
|
|
|
module Todo : sig
|
|
|
|
exception Empty
|
|
type t
|
|
val init : unit -> unit
|
|
val final : unit -> unit
|
|
val reset : (Sil.exp * Sil.exp * Sil.exp) list -> unit
|
|
val push : (Sil.exp * Sil.exp * Sil.exp) -> unit
|
|
val pop : unit -> (Sil.exp * Sil.exp * Sil.exp)
|
|
val set : t -> unit
|
|
val take : unit -> t
|
|
|
|
end = struct
|
|
|
|
exception Empty
|
|
type t = (Sil.exp * Sil.exp * Sil.exp) list
|
|
|
|
let tbl = ref []
|
|
|
|
let init () = tbl := []
|
|
let final () = tbl := []
|
|
let reset todo = tbl := todo
|
|
|
|
let push e =
|
|
tbl := e :: !tbl
|
|
let pop () =
|
|
match !tbl with
|
|
| h:: t -> tbl := t; h
|
|
| _ -> raise Empty
|
|
|
|
let set todo = tbl := todo
|
|
let take () = let res = !tbl in tbl := []; res
|
|
|
|
end
|
|
|
|
(** {2 Module for introducing fresh variables} *)
|
|
|
|
module FreshVarExp : sig
|
|
|
|
val init : unit -> unit
|
|
val get_fresh_exp : Sil.exp -> Sil.exp -> Sil.exp
|
|
val get_induced_pi : unit -> Sil.atom list
|
|
val lookup : side -> Sil.exp -> (Sil.exp * Sil.exp) option
|
|
val final : unit -> unit
|
|
|
|
end = struct
|
|
|
|
let t = ref []
|
|
|
|
let init () = t := []
|
|
let final () = t := []
|
|
|
|
let entry_compare (e1, e2, _) (e1', e2', _) =
|
|
let n1 = Sil.exp_compare e1 e2 in
|
|
if n1 <> 0 then n1 else Sil.exp_compare e2 e2'
|
|
|
|
let get_fresh_exp e1 e2 =
|
|
try
|
|
let (_, _, e) = list_find (fun (e1', e2', _) -> Sil.exp_equal e1 e1' && Sil.exp_equal e2 e2') !t in
|
|
e
|
|
with Not_found ->
|
|
let e = Sil.exp_get_undefined (JoinState.get_footprint ()) in
|
|
t := (e1, e2, e)::!t;
|
|
e
|
|
|
|
let lookup side e =
|
|
try
|
|
let (e1, e2, e) = list_find (fun (e1', e2', _) -> Sil.exp_equal e (select side e1' e2')) !t in
|
|
Some (e, select (opposite side) e1 e2)
|
|
with Not_found ->
|
|
None
|
|
|
|
let get_induced_atom acc strict_lower upper e =
|
|
let ineq_lower = Prop.mk_inequality (Sil.BinOp(Sil.Lt, strict_lower, e)) in
|
|
let ineq_upper = Prop.mk_inequality (Sil.BinOp(Sil.Le, e, upper)) in
|
|
ineq_lower:: ineq_upper:: acc
|
|
|
|
let minus2_to_2 = list_map Sil.Int.of_int [-2; -1; 0; 1; 2]
|
|
|
|
let get_induced_pi () =
|
|
let t_sorted = list_sort entry_compare !t in
|
|
|
|
let add_and_chk_eq e1 e1' n =
|
|
match e1, e1' with
|
|
| Sil.Const (Sil.Cint n1), Sil.Const (Sil.Cint n1') -> Sil.Int.eq (n1 ++ n) n1'
|
|
| _ -> false in
|
|
let add_and_gen_eq e e' n =
|
|
let e_plus_n = Sil.BinOp(Sil.PlusA, e, Sil.exp_int n) in
|
|
Prop.mk_eq e_plus_n e' in
|
|
let rec f_eqs_entry ((e1, e2, e) as entry) eqs_acc t_seen = function
|
|
| [] -> eqs_acc, t_seen
|
|
| ((e1', e2', e') as entry'):: t_rest' ->
|
|
try
|
|
let n = list_find (fun n -> add_and_chk_eq e1 e1' n && add_and_chk_eq e2 e2' n) minus2_to_2 in
|
|
let eq = add_and_gen_eq e e' n in
|
|
let eqs_acc' = eq:: eqs_acc in
|
|
f_eqs_entry entry eqs_acc' t_seen t_rest'
|
|
with Not_found ->
|
|
let t_seen' = entry':: t_seen in
|
|
f_eqs_entry entry eqs_acc t_seen' t_rest' in
|
|
let rec f_eqs eqs_acc t_acc = function
|
|
| [] -> (eqs_acc, t_acc)
|
|
| entry:: t_rest ->
|
|
let eqs_acc', t_rest' = f_eqs_entry entry eqs_acc [] t_rest in
|
|
let t_acc' = entry:: t_acc in
|
|
f_eqs eqs_acc' t_acc' t_rest' in
|
|
let eqs, t_minimal = f_eqs [] [] t_sorted in
|
|
|
|
let f_ineqs acc (e1, e2, e) =
|
|
match e1, e2 with
|
|
| Sil.Const (Sil.Cint n1), Sil.Const (Sil.Cint n2) ->
|
|
let strict_lower1, upper1 = if Sil.Int.leq n1 n2 then (n1 -- Sil.Int.one, n2) else (n2 -- Sil.Int.one, n1) in
|
|
let e_strict_lower1 = Sil.exp_int strict_lower1 in
|
|
let e_upper1 = Sil.exp_int upper1 in
|
|
get_induced_atom acc e_strict_lower1 e_upper1 e
|
|
| _ -> acc in
|
|
list_fold_left f_ineqs eqs t_minimal
|
|
|
|
end
|
|
|
|
(** {2 Modules for renaming} *)
|
|
|
|
module Rename : sig
|
|
|
|
type data_opt = ExtFresh | ExtDefault of Sil.exp
|
|
|
|
val init : unit -> unit
|
|
val final : unit -> unit
|
|
val reset : unit -> (Sil.exp * Sil.exp * Sil.exp) list
|
|
|
|
val extend : Sil.exp -> Sil.exp -> data_opt -> Sil.exp
|
|
val check : (side -> Sil.exp -> Sil.exp list -> bool) -> bool
|
|
|
|
val get : Sil.exp -> Sil.exp -> Sil.exp option
|
|
val get_others : side -> Sil.exp -> (Sil.exp * Sil.exp) option
|
|
val get_other_atoms : side -> Sil.atom -> (Sil.atom * Sil.atom) option
|
|
|
|
val lookup : side -> Sil.exp -> Sil.exp
|
|
val lookup_list : side -> Sil.exp list -> Sil.exp list
|
|
val lookup_list_todo : side -> Sil.exp list -> Sil.exp list
|
|
|
|
val to_subst_proj : side -> Sil.fav -> Sil.subst
|
|
val to_subst_emb : side -> Sil.subst
|
|
val pp : printenv -> Format.formatter -> (Sil.exp * Sil.exp * Sil.exp) list -> unit
|
|
|
|
end = struct
|
|
|
|
type t = (Sil.exp * Sil.exp * Sil.exp) list
|
|
let tbl = ref []
|
|
let empty = []
|
|
|
|
let init () = tbl := []
|
|
let final () = tbl := []
|
|
let reset () =
|
|
let f = function
|
|
| Sil.Var id, e, _ | e, Sil.Var id, _ ->
|
|
(Ident.is_footprint id) &&
|
|
(Sil.fav_for_all (Sil.exp_fav e) (fun id -> not (Ident.is_primed id)))
|
|
| _ -> false in
|
|
let t' = list_filter f !tbl in
|
|
tbl := t';
|
|
t'
|
|
|
|
let push v = tbl := v :: !tbl
|
|
|
|
let check lost_little =
|
|
let f side e =
|
|
let side_op = opposite side in
|
|
let assoc_es =
|
|
match e with
|
|
| Sil.Const _ -> []
|
|
| Sil.Lvar _ | Sil.Var _
|
|
| Sil.BinOp (Sil.PlusA, Sil.Var _, _) ->
|
|
let is_same_e (e1, e2, _) = Sil.exp_equal e (select side e1 e2) in
|
|
let assoc = list_filter is_same_e !tbl in
|
|
list_map (fun (e1, e2, _) -> select side_op e1 e2) assoc
|
|
| _ ->
|
|
L.d_str "no pattern match in check lost_little e: "; Sil.d_exp e; L.d_ln ();
|
|
raise Fail in
|
|
lost_little side e assoc_es in
|
|
let lhs_es = list_map (fun (e1, _, _) -> e1) !tbl in
|
|
let rhs_es = list_map (fun (_, e2, _) -> e2) !tbl in
|
|
(list_for_all (f Rhs) rhs_es) && (list_for_all (f Lhs) lhs_es)
|
|
|
|
let lookup_side' side e =
|
|
let f (e1, e2, _) = Sil.exp_equal e (select side e1 e2) in
|
|
list_filter f !tbl
|
|
|
|
let lookup_side_induced' side e =
|
|
let res = ref [] in
|
|
let f v = match v, side with
|
|
| (Sil.BinOp (Sil.PlusA, e1', Sil.Const (Sil.Cint i)), e2, e'), Lhs
|
|
when Sil.exp_equal e e1' ->
|
|
let c' = Sil.exp_int (Sil.Int.neg i) in
|
|
let v' = (e1', Sil.BinOp(Sil.PlusA, e2, c'), Sil.BinOp (Sil.PlusA, e', c')) in
|
|
res := v'::!res
|
|
| (e1, Sil.BinOp (Sil.PlusA, e2', Sil.Const (Sil.Cint i)), e'), Rhs
|
|
when Sil.exp_equal e e2' ->
|
|
let c' = Sil.exp_int (Sil.Int.neg i) in
|
|
let v' = (Sil.BinOp(Sil.PlusA, e1, c'), e2', Sil.BinOp (Sil.PlusA, e', c')) in
|
|
res := v'::!res
|
|
| _ -> () in
|
|
begin
|
|
list_iter f !tbl;
|
|
list_rev !res
|
|
end
|
|
|
|
(* Return the triple whose side is [e], if it exists unique *)
|
|
let lookup' todo side e : Sil.exp =
|
|
match e with
|
|
| Sil.Var id when can_rename id ->
|
|
begin
|
|
let r = lookup_side' side e in
|
|
match r with
|
|
| [(e1, e2, id) as t] -> if todo then Todo.push t; id
|
|
| _ -> L.d_strln "failure reason 9"; raise Fail
|
|
end
|
|
| Sil.Var _ | Sil.Const _ | Sil.Lvar _ -> if todo then Todo.push (e, e, e); e
|
|
| _ -> L.d_strln "failure reason 10"; raise Fail
|
|
|
|
let lookup side e = lookup' false side e
|
|
let lookup_todo side e = lookup' true side e
|
|
let lookup_list side l = list_map (lookup side) l
|
|
let lookup_list_todo side l = list_map (lookup_todo side) l
|
|
|
|
let to_subst_proj (side: side) vars =
|
|
let renaming_restricted =
|
|
list_filter (function (_, _, Sil.Var i) -> Sil.fav_mem vars i | _ -> assert false) !tbl in
|
|
let sub_list_side =
|
|
list_map
|
|
(function (e1, e2, Sil.Var i) -> (i, select side e1 e2) | _ -> assert false)
|
|
renaming_restricted in
|
|
let sub_list_side_sorted =
|
|
list_sort (fun (i, e) (i', e') -> Sil.exp_compare e e') sub_list_side in
|
|
let rec find_duplicates =
|
|
function
|
|
| (i, e):: ((i', e'):: l' as t) -> Sil.exp_equal e e' || find_duplicates t
|
|
| _ -> false in
|
|
if find_duplicates sub_list_side_sorted then (L.d_strln "failure reason 11"; raise Fail)
|
|
else Sil.sub_of_list sub_list_side
|
|
|
|
let to_subst_emb (side : side) =
|
|
let renaming_restricted =
|
|
let pick_id_case (e1, e2, e) =
|
|
match select side e1 e2 with
|
|
| Sil.Var i -> can_rename i
|
|
| _ -> false in
|
|
list_filter pick_id_case !tbl in
|
|
let sub_list =
|
|
let project (e1, e2, e) =
|
|
match select side e1 e2 with
|
|
| Sil.Var i -> (i, e)
|
|
| _ -> assert false in
|
|
list_map project renaming_restricted in
|
|
let sub_list_sorted =
|
|
let compare (i, _) (i', _) = Ident.compare i i' in
|
|
list_sort compare sub_list in
|
|
let rec find_duplicates = function
|
|
| (i, _):: ((i', _):: l' as t) -> Ident.equal i i' || find_duplicates t
|
|
| _ -> false in
|
|
if find_duplicates sub_list_sorted then (L.d_strln "failure reason 12"; raise Fail)
|
|
else Sil.sub_of_list sub_list_sorted
|
|
|
|
let get e1 e2 =
|
|
let f (e1', e2', _) = Sil.exp_equal e1 e1' && Sil.exp_equal e2 e2' in
|
|
match (list_filter f !tbl) with
|
|
| [] -> None
|
|
| (_, _, e):: _ -> Some e
|
|
|
|
let get_others' f_lookup side e =
|
|
let side_op = opposite side in
|
|
let r = f_lookup side e in
|
|
match r with
|
|
| [] -> None
|
|
| [(e1, e2, e')] -> Some (e', select side_op e1 e2)
|
|
| _ -> None
|
|
let get_others = get_others' lookup_side'
|
|
let get_others_direct_or_induced side e =
|
|
let others = get_others side e in
|
|
match others with
|
|
| None -> get_others' lookup_side_induced' side e
|
|
| Some _ -> others
|
|
let get_others_deep side = function
|
|
| Sil.BinOp(op, e, e') ->
|
|
let others = get_others_direct_or_induced side e in
|
|
let others' = get_others_direct_or_induced side e' in
|
|
(match others, others' with
|
|
| None, _ | _, None -> None
|
|
| Some (e_res, e_op), Some(e_res', e_op') ->
|
|
let e_res'' = Sil.BinOp(op, e_res, e_res') in
|
|
let e_op'' = Sil.BinOp(op, e_op, e_op') in
|
|
Some (e_res'', e_op''))
|
|
| _ -> None
|
|
|
|
let get_other_atoms side atom_in =
|
|
let build_other_atoms construct side e =
|
|
if !Config.trace_join then (L.d_str "build_other_atoms: "; Sil.d_exp e; L.d_ln ());
|
|
let others1 = get_others_direct_or_induced side e in
|
|
let others2 = match others1 with None -> get_others_deep side e | Some _ -> others1 in
|
|
match others2 with
|
|
| None -> None
|
|
| Some (e_res, e_op) ->
|
|
let a_res = construct e_res in
|
|
let a_op = construct e_op in
|
|
if !Config.trace_join then begin
|
|
L.d_str "build_other_atoms (successful) ";
|
|
Sil.d_atom a_res; L.d_str ", "; Sil.d_atom a_op; L.d_ln ()
|
|
end;
|
|
Some (a_res, a_op) in
|
|
let exp_contains_only_normal_ids e =
|
|
let fav = Sil.exp_fav e in
|
|
Sil.fav_for_all fav Ident.is_normal in
|
|
let atom_contains_only_normal_ids a =
|
|
let fav = Sil.atom_fav a in
|
|
Sil.fav_for_all fav Ident.is_normal in
|
|
let normal_ids_only = atom_contains_only_normal_ids atom_in in
|
|
if normal_ids_only then Some (atom_in, atom_in)
|
|
else
|
|
begin
|
|
match atom_in with
|
|
| Sil.Aneq((Sil.Var id as e), e') | Sil.Aneq(e', (Sil.Var id as e))
|
|
when (exp_contains_only_normal_ids e' && not (Ident.is_normal id)) ->
|
|
build_other_atoms (fun e0 -> Prop.mk_neq e0 e') side e
|
|
|
|
| Sil.Aeq((Sil.Var id as e), e') | Sil.Aeq(e', (Sil.Var id as e))
|
|
when (exp_contains_only_normal_ids e' && not (Ident.is_normal id)) ->
|
|
build_other_atoms (fun e0 -> Prop.mk_eq e0 e') side e
|
|
|
|
| Sil.Aeq(Sil.BinOp(Sil.Le, e, e'), Sil.Const (Sil.Cint i))
|
|
| Sil.Aeq(Sil.Const (Sil.Cint i), Sil.BinOp(Sil.Le, e, e'))
|
|
when Sil.Int.isone i && (exp_contains_only_normal_ids e') ->
|
|
let construct e0 = Prop.mk_inequality (Sil.BinOp(Sil.Le, e0, e')) in
|
|
build_other_atoms construct side e
|
|
|
|
| Sil.Aeq(Sil.BinOp(Sil.Lt, e', e), Sil.Const (Sil.Cint i))
|
|
| Sil.Aeq(Sil.Const (Sil.Cint i), Sil.BinOp(Sil.Lt, e', e))
|
|
when Sil.Int.isone i && (exp_contains_only_normal_ids e') ->
|
|
let construct e0 = Prop.mk_inequality (Sil.BinOp(Sil.Lt, e', e0)) in
|
|
build_other_atoms construct side e
|
|
|
|
| _ -> None
|
|
end
|
|
|
|
type data_opt = ExtFresh | ExtDefault of Sil.exp
|
|
|
|
(* Extend the renaming relation. At least one of e1 and e2
|
|
* should be a primed or footprint variable *)
|
|
let extend e1 e2 default_op =
|
|
try
|
|
let eq_to_e (f1, f2, _) = Sil.exp_equal e1 f1 && Sil.exp_equal e2 f2 in
|
|
let _, _, res = list_find eq_to_e !tbl in
|
|
res
|
|
with Not_found ->
|
|
let fav1 = Sil.exp_fav e1 in
|
|
let fav2 = Sil.exp_fav e2 in
|
|
let no_ren1 = not (Sil.fav_exists fav1 can_rename) in
|
|
let no_ren2 = not (Sil.fav_exists fav2 can_rename) in
|
|
let some_primed () = Sil.fav_exists fav1 Ident.is_primed || Sil.fav_exists fav2 Ident.is_primed in
|
|
let e =
|
|
if (no_ren1 && no_ren2) then
|
|
if (Sil.exp_equal e1 e2) then e1 else (L.d_strln "failure reason 13"; raise Fail)
|
|
else
|
|
match default_op with
|
|
| ExtDefault e -> e
|
|
| ExtFresh ->
|
|
let kind = if JoinState.get_footprint () && not (some_primed ()) then Ident.kfootprint else Ident.kprimed in
|
|
Sil.Var (Ident.create_fresh kind) in
|
|
let entry = e1, e2, e in
|
|
push entry;
|
|
Todo.push entry;
|
|
e
|
|
|
|
let pp pe f renaming =
|
|
let pp_triple f (e1, e2, e3) =
|
|
F.fprintf f "(%a,%a,%a)" (Sil.pp_exp pe) e3 (Sil.pp_exp pe) e1 (Sil.pp_exp pe) e2 in
|
|
(pp_seq pp_triple) f renaming
|
|
|
|
end
|
|
|
|
(** {2 Functions for constructing fresh sil data types} *)
|
|
|
|
let extend_side' kind side e =
|
|
match Rename.get_others side e with
|
|
| None ->
|
|
let e_op = Sil.Var (Ident.create_fresh kind) in
|
|
let e_new = Sil.Var (Ident.create_fresh kind) in
|
|
let e1, e2 =
|
|
match side with
|
|
| Lhs -> e, e_op
|
|
| Rhs -> e_op, e in
|
|
Rename.extend e1 e2 (Rename.ExtDefault (e_new))
|
|
| Some (e', _) -> e'
|
|
|
|
let rec exp_construct_fresh side e =
|
|
match e with
|
|
| Sil.Var id ->
|
|
if Ident.is_normal id then
|
|
(Todo.push (e, e, e); e)
|
|
else if Ident.is_footprint id then
|
|
extend_side' Ident.kfootprint side e
|
|
else
|
|
extend_side' Ident.kprimed side e
|
|
| Sil.Const _ -> e
|
|
| Sil.Cast (t, e1) ->
|
|
let e1' = exp_construct_fresh side e1 in
|
|
Sil.Cast (t, e1')
|
|
| Sil.UnOp(unop, e1, topt) ->
|
|
let e1' = exp_construct_fresh side e1 in
|
|
Sil.UnOp(unop, e1', topt)
|
|
| Sil.BinOp(binop, e1, e2) ->
|
|
let e1' = exp_construct_fresh side e1 in
|
|
let e2' = exp_construct_fresh side e2 in
|
|
Sil.BinOp(binop, e1', e2')
|
|
| Sil.Lvar _ ->
|
|
e
|
|
| Sil.Lfield(e1, fld, typ) ->
|
|
let e1' = exp_construct_fresh side e1 in
|
|
Sil.Lfield(e1', fld, typ)
|
|
| Sil.Lindex(e1, e2) ->
|
|
let e1' = exp_construct_fresh side e1 in
|
|
let e2' = exp_construct_fresh side e2 in
|
|
Sil.Lindex(e1', e2')
|
|
| Sil.Sizeof _ ->
|
|
e
|
|
|
|
let strexp_construct_fresh side =
|
|
let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in
|
|
Sil.strexp_expmap f
|
|
|
|
let hpred_construct_fresh side =
|
|
let f (e, inst_opt) = (exp_construct_fresh side e, inst_opt) in
|
|
Sil.hpred_expmap f
|
|
|
|
(** {2 Join and Meet for Ids} *)
|
|
|
|
let ident_same_kind_primed_footprint id1 id2 =
|
|
(Ident.is_primed id1 && Ident.is_primed id2) ||
|
|
(Ident.is_footprint id1 && Ident.is_footprint id2)
|
|
|
|
let ident_partial_join (id1: Ident.t) (id2: Ident.t) =
|
|
match Ident.is_normal id1, Ident.is_normal id2 with
|
|
| true, true ->
|
|
if Ident.equal id1 id2 then Sil.Var id1 else (L.d_strln "failure reason 14"; raise Fail)
|
|
| true, _ | _, true ->
|
|
Rename.extend (Sil.Var id1) (Sil.Var id2) Rename.ExtFresh
|
|
| _ ->
|
|
begin
|
|
if not (ident_same_kind_primed_footprint id1 id2) then
|
|
(L.d_strln "failure reason 15"; raise Fail)
|
|
else
|
|
let e1 = Sil.Var id1 in
|
|
let e2 = Sil.Var id2 in
|
|
Rename.extend e1 e2 Rename.ExtFresh
|
|
end
|
|
|
|
let ident_partial_meet (id1: Ident.t) (id2: Ident.t) =
|
|
match Ident.is_normal id1, Ident.is_normal id2 with
|
|
| true, true ->
|
|
if Ident.equal id1 id2 then Sil.Var id1
|
|
else (L.d_strln "failure reason 16"; raise Fail)
|
|
| true, _ ->
|
|
let e1, e2 = Sil.Var id1, Sil.Var id2 in
|
|
Rename.extend e1 e2 (Rename.ExtDefault(e1))
|
|
| _, true ->
|
|
let e1, e2 = Sil.Var id1, Sil.Var id2 in
|
|
Rename.extend e1 e2 (Rename.ExtDefault(e2))
|
|
| _ ->
|
|
if Ident.is_primed id1 && Ident.is_primed id2 then
|
|
Rename.extend (Sil.Var id1) (Sil.Var id2) Rename.ExtFresh
|
|
else if Ident.is_footprint id1 && Ident.equal id1 id2 then
|
|
let e = Sil.Var id1 in Rename.extend e e (Rename.ExtDefault(e))
|
|
else
|
|
(L.d_strln "failure reason 17"; raise Fail)
|
|
|
|
(** {2 Join and Meet for Exps} *)
|
|
|
|
let const_partial_join c1 c2 =
|
|
if (Sil.const_equal c1 c2) then Sil.Const c1
|
|
else match c1, c2 with
|
|
| Sil.Cfun _, Sil.Cfun _
|
|
| Sil.Cstr _, Sil.Cstr _
|
|
| Sil.Cclass _, Sil.Cclass _
|
|
| Sil.Cattribute _, Sil.Cattribute _ ->
|
|
(L.d_strln "failure reason 18"; raise Fail)
|
|
| _ ->
|
|
if (!Config.abs_val >= 2) then FreshVarExp.get_fresh_exp (Sil.Const c1) (Sil.Const c2)
|
|
else (L.d_strln "failure reason 19"; raise Fail)
|
|
|
|
let rec exp_partial_join (e1: Sil.exp) (e2: Sil.exp) : Sil.exp =
|
|
(* L.d_str "exp_partial_join "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln (); *)
|
|
match e1, e2 with
|
|
| Sil.Var id1, Sil.Var id2 ->
|
|
ident_partial_join id1 id2
|
|
|
|
| Sil.Var id, Sil.Const c
|
|
| Sil.Const c, Sil.Var id ->
|
|
if Ident.is_normal id then
|
|
(L.d_strln "failure reason 20"; raise Fail)
|
|
else
|
|
Rename.extend e1 e2 Rename.ExtFresh
|
|
| Sil.Const c1, Sil.Const c2 ->
|
|
const_partial_join c1 c2
|
|
|
|
| Sil.Var id, Sil.Lvar _
|
|
| Sil.Lvar _, Sil.Var id ->
|
|
if Ident.is_normal id then (L.d_strln "failure reason 21"; raise Fail)
|
|
else Rename.extend e1 e2 Rename.ExtFresh
|
|
|
|
| Sil.BinOp(Sil.PlusA, Sil.Var id1, Sil.Const _), Sil.Var id2
|
|
| Sil.Var id1, Sil.BinOp(Sil.PlusA, Sil.Var id2, Sil.Const _)
|
|
when ident_same_kind_primed_footprint id1 id2 ->
|
|
Rename.extend e1 e2 Rename.ExtFresh
|
|
| Sil.BinOp(Sil.PlusA, Sil.Var id1, Sil.Const (Sil.Cint c1)), Sil.Const (Sil.Cint c2)
|
|
when can_rename id1 ->
|
|
let c2' = c2 -- c1 in
|
|
let e_res = Rename.extend (Sil.Var id1) (Sil.exp_int c2') Rename.ExtFresh in
|
|
Sil.BinOp(Sil.PlusA, e_res, Sil.exp_int c1)
|
|
| Sil.Const (Sil.Cint c1), Sil.BinOp(Sil.PlusA, Sil.Var id2, Sil.Const (Sil.Cint c2))
|
|
when can_rename id2 ->
|
|
let c1' = c1 -- c2 in
|
|
let e_res = Rename.extend (Sil.exp_int c1') (Sil.Var id2) Rename.ExtFresh in
|
|
Sil.BinOp(Sil.PlusA, e_res, Sil.exp_int c2)
|
|
| Sil.Cast(t1, e1), Sil.Cast(t2, e2) ->
|
|
if not (Sil.typ_equal t1 t2) then (L.d_strln "failure reason 22"; raise Fail)
|
|
else
|
|
let e1'' = exp_partial_join e1 e2 in
|
|
Sil.Cast (t1, e1'')
|
|
| Sil.UnOp(unop1, e1, topt1), Sil.UnOp(unop2, e2, topt2) ->
|
|
if not (Sil.unop_equal unop1 unop2) then (L.d_strln "failure reason 23"; raise Fail)
|
|
else Sil.UnOp (unop1, exp_partial_join e1 e2, topt1) (* should be topt1 = topt2 *)
|
|
| Sil.BinOp(Sil.PlusPI, e1, e1'), Sil.BinOp(Sil.PlusPI, e2, e2') ->
|
|
let e1'' = exp_partial_join e1 e2 in
|
|
let e2'' = match e1', e2' with
|
|
| Sil.Const _, Sil.Const _ -> exp_partial_join e1' e2'
|
|
| _ -> FreshVarExp.get_fresh_exp e1 e2 in
|
|
Sil.BinOp(Sil.PlusPI, e1'', e2'')
|
|
| Sil.BinOp(binop1, e1, e1'), Sil.BinOp(binop2, e2, e2') ->
|
|
if not (Sil.binop_equal binop1 binop2) then (L.d_strln "failure reason 24"; raise Fail)
|
|
else
|
|
let e1'' = exp_partial_join e1 e2 in
|
|
let e2'' = exp_partial_join e1' e2' in
|
|
Sil.BinOp(binop1, e1'', e2'')
|
|
| Sil.Lvar(pvar1), Sil.Lvar(pvar2) ->
|
|
if not (Sil.pvar_equal pvar1 pvar2) then (L.d_strln "failure reason 25"; raise Fail)
|
|
else e1
|
|
| Sil.Lfield(e1, f1, t1), Sil.Lfield(e2, f2, t2) ->
|
|
if not (Sil.fld_equal f1 f2) then (L.d_strln "failure reason 26"; raise Fail)
|
|
else Sil.Lfield(exp_partial_join e1 e2, f1, t1) (* should be t1 = t2 *)
|
|
| Sil.Lindex(e1, e1'), Sil.Lindex(e2, e2') ->
|
|
let e1'' = exp_partial_join e1 e2 in
|
|
let e2'' = exp_partial_join e1' e2' in
|
|
Sil.Lindex(e1'', e2'')
|
|
| Sil.Sizeof (t1, st1), Sil.Sizeof (t2, st2) ->
|
|
Sil.Sizeof (typ_partial_join t1 t2, Sil.Subtype.join st1 st2)
|
|
| _ ->
|
|
L.d_str "exp_partial_join no match "; Sil.d_exp e1; L.d_str " "; Sil.d_exp e2; L.d_ln ();
|
|
raise Fail
|
|
|
|
and size_partial_join size1 size2 = match size1, size2 with
|
|
| Sil.BinOp(Sil.PlusA, e1, Sil.Const c1), Sil.BinOp(Sil.PlusA, e2, Sil.Const c2) ->
|
|
let e' = exp_partial_join e1 e2 in
|
|
let c' = exp_partial_join (Sil.Const c1) (Sil.Const c2) in
|
|
Sil.BinOp (Sil.PlusA, e', c')
|
|
| Sil.BinOp(Sil.PlusA, _, _), Sil.BinOp(Sil.PlusA, _, _) ->
|
|
Rename.extend size1 size2 Rename.ExtFresh
|
|
| Sil.Var id1, Sil.Var id2 when Ident.equal id1 id2 ->
|
|
size1
|
|
| _ -> exp_partial_join size1 size2
|
|
|
|
and typ_partial_join t1 t2 = match t1, t2 with
|
|
| Sil.Tptr (t1, pk1), Sil.Tptr (t2, pk2) when Sil.ptr_kind_compare pk1 pk2 = 0 ->
|
|
Sil.Tptr (typ_partial_join t1 t2, pk1)
|
|
| Sil.Tarray (typ1, size1), Sil.Tarray(typ2, size2) ->
|
|
let t = typ_partial_join typ1 typ2 in
|
|
let size = size_partial_join size1 size2 in
|
|
Sil.Tarray (t, size)
|
|
| _ when Sil.typ_equal t1 t2 -> t1 (* common case *)
|
|
| _ ->
|
|
L.d_str "typ_partial_join no match "; Sil.d_typ_full t1; L.d_str " "; Sil.d_typ_full t2; L.d_ln ();
|
|
raise Fail
|
|
|
|
let rec exp_partial_meet (e1: Sil.exp) (e2: Sil.exp) : Sil.exp =
|
|
match e1, e2 with
|
|
| Sil.Var id1, Sil.Var id2 ->
|
|
ident_partial_meet id1 id2
|
|
| Sil.Var id, Sil.Const _ ->
|
|
if not (Ident.is_normal id) then
|
|
Rename.extend e1 e2 (Rename.ExtDefault(e2))
|
|
else (L.d_strln "failure reason 27"; raise Fail)
|
|
| Sil.Const _, Sil.Var id ->
|
|
if not (Ident.is_normal id) then
|
|
Rename.extend e1 e2 (Rename.ExtDefault(e1))
|
|
else (L.d_strln "failure reason 28"; raise Fail)
|
|
| Sil.Const c1, Sil.Const c2 ->
|
|
if (Sil.const_equal c1 c2) then e1 else (L.d_strln "failure reason 29"; raise Fail)
|
|
| Sil.Cast(t1, e1), Sil.Cast(t2, e2) ->
|
|
if not (Sil.typ_equal t1 t2) then (L.d_strln "failure reason 30"; raise Fail)
|
|
else
|
|
let e1'' = exp_partial_meet e1 e2 in
|
|
Sil.Cast (t1, e1'')
|
|
| Sil.UnOp(unop1, e1, topt1), Sil.UnOp(unop2, e2, topt2) ->
|
|
if not (Sil.unop_equal unop1 unop2) then (L.d_strln "failure reason 31"; raise Fail)
|
|
else Sil.UnOp (unop1, exp_partial_meet e1 e2, topt1) (* should be topt1 = topt2 *)
|
|
| Sil.BinOp(binop1, e1, e1'), Sil.BinOp(binop2, e2, e2') ->
|
|
if not (Sil.binop_equal binop1 binop2) then (L.d_strln "failure reason 32"; raise Fail)
|
|
else
|
|
let e1'' = exp_partial_meet e1 e2 in
|
|
let e2'' = exp_partial_meet e1' e2' in
|
|
Sil.BinOp(binop1, e1'', e2'')
|
|
| Sil.Var id, Sil.Lvar _ ->
|
|
if not (Ident.is_normal id) then
|
|
Rename.extend e1 e2 (Rename.ExtDefault(e2))
|
|
else (L.d_strln "failure reason 33"; raise Fail)
|
|
| Sil.Lvar _, Sil.Var id ->
|
|
if not (Ident.is_normal id) then
|
|
Rename.extend e1 e2 (Rename.ExtDefault(e1))
|
|
else (L.d_strln "failure reason 34"; raise Fail)
|
|
| Sil.Lvar(pvar1), Sil.Lvar(pvar2) ->
|
|
if not (Sil.pvar_equal pvar1 pvar2) then (L.d_strln "failure reason 35"; raise Fail)
|
|
else e1
|
|
| Sil.Lfield(e1, f1, t1), Sil.Lfield(e2, f2, t2) ->
|
|
if not (Sil.fld_equal f1 f2) then (L.d_strln "failure reason 36"; raise Fail)
|
|
else Sil.Lfield(exp_partial_meet e1 e2, f1, t1) (* should be t1 = t2 *)
|
|
| Sil.Lindex(e1, e1'), Sil.Lindex(e2, e2') ->
|
|
let e1'' = exp_partial_meet e1 e2 in
|
|
let e2'' = exp_partial_meet e1' e2' in
|
|
Sil.Lindex(e1'', e2'')
|
|
| _ -> (L.d_strln "failure reason 37"; raise Fail)
|
|
|
|
let exp_list_partial_join = list_map2 exp_partial_join
|
|
|
|
let exp_list_partial_meet = list_map2 exp_partial_meet
|
|
|
|
let run_without_absval f e1 e2 =
|
|
let old_abs_val = !Config.abs_val in
|
|
let new_abs_val = if old_abs_val = 0 then 0 else 1 in
|
|
try
|
|
begin
|
|
Config.abs_val := new_abs_val;
|
|
let e = f e1 e2 in
|
|
Config.abs_val := old_abs_val;
|
|
e
|
|
end
|
|
with exn ->
|
|
begin
|
|
Config.abs_val := old_abs_val;
|
|
raise exn
|
|
end
|
|
|
|
let exp_partial_join_without_absval e1 e2 =
|
|
run_without_absval exp_partial_join e1 e2
|
|
|
|
let exp_partial_meet_without_absval e1 e2 =
|
|
run_without_absval exp_partial_meet e1 e2
|
|
|
|
|
|
(** {2 Join and Meet for Strexp} *)
|
|
|
|
let rec strexp_partial_join mode (strexp1: Sil.strexp) (strexp2: Sil.strexp) : Sil.strexp =
|
|
|
|
let rec f_fld_se_list inst mode acc fld_se_list1 fld_se_list2 =
|
|
match fld_se_list1, fld_se_list2 with
|
|
| [], [] -> Sil.Estruct (list_rev acc, inst)
|
|
| [], other_fsel | other_fsel, [] ->
|
|
begin
|
|
match mode with
|
|
| JoinState.Pre -> (L.d_strln "failure reason 42"; raise Fail)
|
|
| JoinState.Post -> Sil.Estruct (list_rev acc, inst)
|
|
end
|
|
| (fld1, se1):: fld_se_list1', (fld2, se2):: fld_se_list2' ->
|
|
let comparison = Sil.fld_compare fld1 fld2 in
|
|
if comparison = 0 then
|
|
let strexp' = strexp_partial_join mode se1 se2 in
|
|
let fld_se_list_new = (fld1, strexp') :: acc in
|
|
f_fld_se_list inst mode fld_se_list_new fld_se_list1' fld_se_list2'
|
|
else begin
|
|
match mode with
|
|
| JoinState.Pre ->
|
|
(L.d_strln "failure reason 43"; raise Fail)
|
|
| JoinState.Post ->
|
|
if comparison < 0 then begin
|
|
f_fld_se_list inst mode acc fld_se_list1' fld_se_list2
|
|
end
|
|
else if comparison > 0 then begin
|
|
f_fld_se_list inst mode acc fld_se_list1 fld_se_list2'
|
|
end
|
|
else
|
|
assert false (* This case should not happen. *)
|
|
end in
|
|
|
|
let rec f_idx_se_list inst size idx_se_list_acc idx_se_list1 idx_se_list2 =
|
|
match idx_se_list1, idx_se_list2 with
|
|
| [], [] -> Sil.Earray (size, list_rev idx_se_list_acc, inst)
|
|
| [], other_isel | other_isel, [] ->
|
|
begin
|
|
match mode with
|
|
| JoinState.Pre -> (L.d_strln "failure reason 44"; raise Fail)
|
|
| JoinState.Post ->
|
|
Sil.Earray (size, list_rev idx_se_list_acc, inst)
|
|
end
|
|
| (idx1, se1):: idx_se_list1', (idx2, se2):: idx_se_list2' ->
|
|
let idx = exp_partial_join idx1 idx2 in
|
|
let strexp' = strexp_partial_join mode se1 se2 in
|
|
let idx_se_list_new = (idx, strexp') :: idx_se_list_acc in
|
|
f_idx_se_list inst size idx_se_list_new idx_se_list1' idx_se_list2' in
|
|
|
|
match strexp1, strexp2 with
|
|
| Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) ->
|
|
Sil.Eexp (exp_partial_join e1 e2, Sil.inst_partial_join inst1 inst2)
|
|
| Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) ->
|
|
let inst = Sil.inst_partial_join inst1 inst2 in
|
|
f_fld_se_list inst mode [] fld_se_list1 fld_se_list2
|
|
| Sil.Earray (size1, idx_se_list1, inst1), Sil.Earray (size2, idx_se_list2, inst2) ->
|
|
let size = size_partial_join size1 size2 in
|
|
let inst = Sil.inst_partial_join inst1 inst2 in
|
|
f_idx_se_list inst size [] idx_se_list1 idx_se_list2
|
|
| _ -> L.d_strln "no match in strexp_partial_join"; raise Fail
|
|
|
|
let rec strexp_partial_meet (strexp1: Sil.strexp) (strexp2: Sil.strexp) : Sil.strexp =
|
|
|
|
let construct side rev_list ref_list =
|
|
let construct_offset_se (off, se) = (off, strexp_construct_fresh side se) in
|
|
let acc = list_map construct_offset_se ref_list in
|
|
list_rev_with_acc acc rev_list in
|
|
|
|
let rec f_fld_se_list inst acc fld_se_list1 fld_se_list2 =
|
|
match fld_se_list1, fld_se_list2 with
|
|
| [], [] ->
|
|
Sil.Estruct (list_rev acc, inst)
|
|
| [], _ ->
|
|
Sil.Estruct (construct Rhs acc fld_se_list2, inst)
|
|
| _, [] ->
|
|
Sil.Estruct (construct Lhs acc fld_se_list1, inst)
|
|
| (fld1, se1):: fld_se_list1', (fld2, se2):: fld_se_list2' ->
|
|
let comparison = Sil.fld_compare fld1 fld2 in
|
|
if comparison < 0 then
|
|
let se' = strexp_construct_fresh Lhs se1 in
|
|
let acc_new = (fld1, se'):: acc in
|
|
f_fld_se_list inst acc_new fld_se_list1' fld_se_list2
|
|
else if comparison > 0 then
|
|
let se' = strexp_construct_fresh Rhs se2 in
|
|
let acc_new = (fld2, se'):: acc in
|
|
f_fld_se_list inst acc_new fld_se_list1 fld_se_list2'
|
|
else
|
|
let strexp' = strexp_partial_meet se1 se2 in
|
|
let acc_new = (fld1, strexp') :: acc in
|
|
f_fld_se_list inst acc_new fld_se_list1' fld_se_list2' in
|
|
|
|
let rec f_idx_se_list inst size acc idx_se_list1 idx_se_list2 =
|
|
match idx_se_list1, idx_se_list2 with
|
|
| [],[] ->
|
|
Sil.Earray (size, list_rev acc, inst)
|
|
| [], _ ->
|
|
Sil.Earray (size, construct Rhs acc idx_se_list2, inst)
|
|
| _, [] ->
|
|
Sil.Earray (size, construct Lhs acc idx_se_list1, inst)
|
|
| (idx1, se1):: idx_se_list1', (idx2, se2):: idx_se_list2' ->
|
|
let idx = exp_partial_meet idx1 idx2 in
|
|
let se' = strexp_partial_meet se1 se2 in
|
|
let acc_new = (idx, se') :: acc in
|
|
f_idx_se_list inst size acc_new idx_se_list1' idx_se_list2' in
|
|
|
|
match strexp1, strexp2 with
|
|
| Sil.Eexp (e1, inst1), Sil.Eexp (e2, inst2) ->
|
|
Sil.Eexp (exp_partial_meet e1 e2, Sil.inst_partial_meet inst1 inst2)
|
|
| Sil.Estruct (fld_se_list1, inst1), Sil.Estruct (fld_se_list2, inst2) ->
|
|
let inst = Sil.inst_partial_meet inst1 inst2 in
|
|
f_fld_se_list inst [] fld_se_list1 fld_se_list2
|
|
| Sil.Earray (size1, idx_se_list1, inst1), Sil.Earray (size2, idx_se_list2, inst2)
|
|
when Sil.exp_equal size1 size2 ->
|
|
let inst = Sil.inst_partial_meet inst1 inst2 in
|
|
f_idx_se_list inst size1 [] idx_se_list1 idx_se_list2
|
|
| _ -> (L.d_strln "failure reason 52"; raise Fail)
|
|
|
|
(** {2 Join and Meet for kind, hpara, hpara_dll} *)
|
|
|
|
let kind_join k1 k2 = match k1, k2 with
|
|
| Sil.Lseg_PE, _ -> Sil.Lseg_PE
|
|
| _, Sil.Lseg_PE -> Sil.Lseg_PE
|
|
| Sil.Lseg_NE, Sil.Lseg_NE -> Sil.Lseg_NE
|
|
|
|
let kind_meet k1 k2 = match k1, k2 with
|
|
| Sil.Lseg_NE, _ -> Sil.Lseg_NE
|
|
| _, Sil.Lseg_NE -> Sil.Lseg_NE
|
|
| Sil.Lseg_PE, Sil.Lseg_PE -> Sil.Lseg_PE
|
|
|
|
let hpara_partial_join (hpara1: Sil.hpara) (hpara2: Sil.hpara) : Sil.hpara =
|
|
if Match.hpara_match_with_impl true hpara2 hpara1 then
|
|
hpara1
|
|
else if Match.hpara_match_with_impl true hpara1 hpara2 then
|
|
hpara2
|
|
else
|
|
(L.d_strln "failure reason 53"; raise Fail)
|
|
|
|
let hpara_partial_meet (hpara1: Sil.hpara) (hpara2: Sil.hpara) : Sil.hpara =
|
|
if Match.hpara_match_with_impl true hpara2 hpara1 then
|
|
hpara2
|
|
else if Match.hpara_match_with_impl true hpara1 hpara2 then
|
|
hpara1
|
|
else
|
|
(L.d_strln "failure reason 54"; raise Fail)
|
|
|
|
let hpara_dll_partial_join (hpara1: Sil.hpara_dll) (hpara2: Sil.hpara_dll) : Sil.hpara_dll =
|
|
if Match.hpara_dll_match_with_impl true hpara2 hpara1 then
|
|
hpara1
|
|
else if Match.hpara_dll_match_with_impl true hpara1 hpara2 then
|
|
hpara2
|
|
else
|
|
(L.d_strln "failure reason 55"; raise Fail)
|
|
|
|
let hpara_dll_partial_meet (hpara1: Sil.hpara_dll) (hpara2: Sil.hpara_dll) : Sil.hpara_dll =
|
|
if Match.hpara_dll_match_with_impl true hpara2 hpara1 then
|
|
hpara2
|
|
else if Match.hpara_dll_match_with_impl true hpara1 hpara2 then
|
|
hpara1
|
|
else
|
|
(L.d_strln "failure reason 56"; raise Fail)
|
|
|
|
(** {2 Join and Meet for hpred} *)
|
|
|
|
let hpred_partial_join mode (todo: Sil.exp * Sil.exp * Sil.exp) (hpred1: Sil.hpred) (hpred2: Sil.hpred) : Sil.hpred =
|
|
let e1, e2, e = todo in
|
|
match hpred1, hpred2 with
|
|
| Sil.Hpointsto (e1, se1, te1), Sil.Hpointsto (e2, se2, te2) ->
|
|
let te = exp_partial_join te1 te2 in
|
|
Prop.mk_ptsto e (strexp_partial_join mode se1 se2) te
|
|
| Sil.Hlseg (k1, hpara1, root1, next1, shared1), Sil.Hlseg (k2, hpara2, root2, next2, shared2) ->
|
|
let hpara' = hpara_partial_join hpara1 hpara2 in
|
|
let next' = exp_partial_join next1 next2 in
|
|
let shared' = exp_list_partial_join shared1 shared2 in
|
|
Prop.mk_lseg (kind_join k1 k2) hpara' e next' shared'
|
|
| Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1),
|
|
Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) ->
|
|
let fwd1 = Sil.exp_equal e1 iF1 in
|
|
let fwd2 = Sil.exp_equal e2 iF2 in
|
|
let hpara' = hpara_dll_partial_join para1 para2 in
|
|
let iF', iB' =
|
|
if (fwd1 && fwd2) then (e, exp_partial_join iB1 iB2)
|
|
else if (not fwd1 && not fwd2) then (exp_partial_join iF1 iF2, e)
|
|
else (L.d_strln "failure reason 57"; raise Fail) in
|
|
let oF' = exp_partial_join oF1 oF2 in
|
|
let oB' = exp_partial_join oB1 oB2 in
|
|
let shared' = exp_list_partial_join shared1 shared2 in
|
|
Prop.mk_dllseg (kind_join k1 k2) hpara' iF' oB' oF' iB' shared'
|
|
| _ ->
|
|
assert false
|
|
|
|
let hpred_partial_meet (todo: Sil.exp * Sil.exp * Sil.exp) (hpred1: Sil.hpred) (hpred2: Sil.hpred) : Sil.hpred =
|
|
let e1, e2, e = todo in
|
|
match hpred1, hpred2 with
|
|
| Sil.Hpointsto (e1, se1, te1), Sil.Hpointsto (e2, se2, te2) when Sil.exp_equal te1 te2 ->
|
|
Prop.mk_ptsto e (strexp_partial_meet se1 se2) te1
|
|
| Sil.Hpointsto _, _ | _, Sil.Hpointsto _ ->
|
|
(L.d_strln "failure reason 58"; raise Fail)
|
|
| Sil.Hlseg (k1, hpara1, root1, next1, shared1), Sil.Hlseg (k2, hpara2, root2, next2, shared2) ->
|
|
let hpara' = hpara_partial_meet hpara1 hpara2 in
|
|
let next' = exp_partial_meet next1 next2 in
|
|
let shared' = exp_list_partial_meet shared1 shared2 in
|
|
Prop.mk_lseg (kind_meet k1 k2) hpara' e next' shared'
|
|
| Sil.Hdllseg (k1, para1, iF1, oB1, oF1, iB1, shared1),
|
|
Sil.Hdllseg (k2, para2, iF2, oB2, oF2, iB2, shared2) ->
|
|
let fwd1 = Sil.exp_equal e1 iF1 in
|
|
let fwd2 = Sil.exp_equal e2 iF2 in
|
|
let hpara' = hpara_dll_partial_meet para1 para2 in
|
|
let iF', iB' =
|
|
if (fwd1 && fwd2) then (e, exp_partial_meet iB1 iB2)
|
|
else if (not fwd1 && not fwd2) then (exp_partial_meet iF1 iF2, e)
|
|
else (L.d_strln "failure reason 59"; raise Fail) in
|
|
let oF' = exp_partial_meet oF1 oF2 in
|
|
let oB' = exp_partial_meet oB1 oB2 in
|
|
let shared' = exp_list_partial_meet shared1 shared2 in
|
|
Prop.mk_dllseg (kind_meet k1 k2) hpara' iF' oB' oF' iB' shared'
|
|
| _ ->
|
|
assert false
|
|
|
|
(** {2 Join and Meet for Sigma} *)
|
|
|
|
let find_hpred_by_address (e: Sil.exp) (sigma: sigma) : Sil.hpred option * sigma =
|
|
let is_root_for_e e' =
|
|
match (Prover.is_root Prop.prop_emp e' e) with
|
|
| None -> false
|
|
| Some _ -> true in
|
|
let contains_e = function
|
|
| Sil.Hpointsto (e', _, _) -> is_root_for_e e'
|
|
| Sil.Hlseg (_, _, e', _, _) -> is_root_for_e e'
|
|
| Sil.Hdllseg (_, _, iF, _, _, iB, _) -> is_root_for_e iF || is_root_for_e iB in
|
|
let rec f sigma_acc = function
|
|
| [] -> None, sigma
|
|
| hpred:: sigma ->
|
|
if contains_e hpred then
|
|
Some hpred, (list_rev sigma_acc) @ sigma
|
|
else
|
|
f (hpred:: sigma_acc) sigma in
|
|
f [] sigma
|
|
|
|
let same_pred (hpred1: Sil.hpred) (hpred2: Sil.hpred) : bool =
|
|
match hpred1, hpred2 with
|
|
| Sil.Hpointsto _, Sil.Hpointsto _ -> true
|
|
| Sil.Hlseg _, Sil.Hlseg _ -> true
|
|
| Sil.Hdllseg _, Sil.Hdllseg _ -> true
|
|
| _ -> false
|
|
|
|
(* check that applying renaming to the lhs / rhs of [sigma_new]
|
|
* gives [sigma] and that the renaming is injective *)
|
|
|
|
let sigma_renaming_check (lhs: side) (sigma: sigma) (sigma_new: sigma) =
|
|
(* apply the lhs / rhs of the renaming to sigma,
|
|
* and check that the renaming of primed vars is injective *)
|
|
let fav_sigma = Prop.sigma_fav sigma_new in
|
|
let sub = Rename.to_subst_proj lhs fav_sigma in
|
|
let sigma' = Prop.sigma_sub sub sigma_new in
|
|
sigma_equal sigma sigma'
|
|
|
|
let sigma_renaming_check_lhs = sigma_renaming_check Lhs
|
|
let sigma_renaming_check_rhs = sigma_renaming_check Rhs
|
|
|
|
let rec sigma_partial_join' mode (sigma_acc: sigma)
|
|
(sigma1_in: sigma) (sigma2_in: sigma) : (sigma * sigma * sigma) =
|
|
|
|
let lookup_and_expand side e e' =
|
|
match (Rename.get_others side e, side) with
|
|
| None, _ -> (L.d_strln "failure reason 60"; raise Fail)
|
|
| Some(e_res, e_op), Lhs -> (e_res, exp_partial_join e' e_op)
|
|
| Some(e_res, e_op), Rhs -> (e_res, exp_partial_join e_op e') in
|
|
|
|
let join_list_and_non side root' hlseg e opposite =
|
|
match hlseg with
|
|
| Sil.Hlseg (_, hpara, root, next, shared) ->
|
|
let next' = do_side side exp_partial_join next opposite in
|
|
let shared' = Rename.lookup_list side shared in
|
|
CheckJoin.add side root next;
|
|
Sil.Hlseg (Sil.Lseg_PE, hpara, root', next', shared')
|
|
|
|
| Sil.Hdllseg (k, hpara, iF, oB, oF, iB, shared)
|
|
when Sil.exp_equal iF e ->
|
|
let oF' = do_side side exp_partial_join oF opposite in
|
|
let shared' = Rename.lookup_list side shared in
|
|
let oB', iB' = lookup_and_expand side oB iB in
|
|
(*
|
|
let oB' = Rename.lookup side oB in
|
|
let iB' = Rename.lookup side iB in
|
|
*)
|
|
CheckJoin.add side iF oF;
|
|
CheckJoin.add side oB iB;
|
|
Sil.Hdllseg (Sil.Lseg_PE, hpara, root', oB', oF', iB', shared')
|
|
|
|
| Sil.Hdllseg (k, hpara, iF, oB, oF, iB, shared)
|
|
when Sil.exp_equal iB e ->
|
|
let oB' = do_side side exp_partial_join oB opposite in
|
|
let shared' = Rename.lookup_list side shared in
|
|
let oF', iF' = lookup_and_expand side oF iF in
|
|
(*
|
|
let oF' = Rename.lookup side oF in
|
|
let iF' = Rename.lookup side iF in
|
|
*)
|
|
CheckJoin.add side iF oF;
|
|
CheckJoin.add side oB iB;
|
|
Sil.Hdllseg (Sil.Lseg_PE, hpara, iF', oB', oF', root', shared')
|
|
|
|
| _ -> assert false in
|
|
|
|
let update_list side lseg root' =
|
|
match lseg with
|
|
| Sil.Hlseg (k, hpara, _, next, shared) ->
|
|
let next' = Rename.lookup side next
|
|
and shared' = Rename.lookup_list_todo side shared in
|
|
Sil.Hlseg (k, hpara, root', next', shared')
|
|
| _ -> assert false in
|
|
|
|
let update_dllseg side dllseg iF iB =
|
|
match dllseg with
|
|
| Sil.Hdllseg (k, hpara, _, oB, oF, _, shared) ->
|
|
let oB' = Rename.lookup side oB
|
|
and oF' = Rename.lookup side oF
|
|
and shared' = Rename.lookup_list_todo side shared in
|
|
Sil.Hdllseg (k, hpara, iF, oB', oF', iB, shared')
|
|
| _ -> assert false in
|
|
|
|
(* Drop the part of 'other' sigma corresponding to 'target' sigma if possible.
|
|
'side' describes that target is Lhs or Rhs.
|
|
'todo' describes the start point. *)
|
|
|
|
let cut_sigma side todo (target: sigma) (other: sigma) =
|
|
let list_is_empty l = if l != [] then (L.d_strln "failure reason 61"; raise Fail) in
|
|
let x = Todo.take () in
|
|
Todo.push todo;
|
|
let res =
|
|
match side with
|
|
| Lhs ->
|
|
let res, target', other' = sigma_partial_join' mode [] target other in
|
|
list_is_empty target';
|
|
sigma_renaming_check_lhs target res;
|
|
other'
|
|
| Rhs ->
|
|
let res, other', target' = sigma_partial_join' mode [] other target in
|
|
list_is_empty target';
|
|
sigma_renaming_check_rhs target res;
|
|
other' in
|
|
Todo.set x;
|
|
res in
|
|
|
|
let cut_lseg side todo lseg sigma =
|
|
match lseg with
|
|
| Sil.Hlseg (_, hpara, root, next, shared) ->
|
|
let _, sigma_lseg = Sil.hpara_instantiate hpara root next shared in
|
|
cut_sigma side todo sigma_lseg sigma
|
|
| _ -> assert false in
|
|
|
|
let cut_dllseg side todo root lseg sigma =
|
|
match lseg with
|
|
| Sil.Hdllseg (_, hpara, _, oB, oF, _, shared) ->
|
|
let _, sigma_dllseg = Sil.hpara_dll_instantiate hpara root oB oF shared in
|
|
cut_sigma side todo sigma_dllseg sigma
|
|
| _ -> assert false in
|
|
|
|
try
|
|
let todo_curr = Todo.pop () in
|
|
let e1, e2, e = todo_curr in
|
|
if !Config.trace_join then begin
|
|
L.d_strln ".... sigma_partial_join' ....";
|
|
L.d_str "TODO: "; Sil.d_exp e1; L.d_str ","; Sil.d_exp e2; L.d_str ","; Sil.d_exp e; L.d_ln ();
|
|
L.d_strln "SIGMA1 ="; Prop.d_sigma sigma1_in; L.d_ln ();
|
|
L.d_strln "SIGMA2 ="; Prop.d_sigma sigma2_in; L.d_ln ();
|
|
L.d_ln ()
|
|
end;
|
|
let hpred_opt1, sigma1 = find_hpred_by_address e1 sigma1_in in
|
|
let hpred_opt2, sigma2 = find_hpred_by_address e2 sigma2_in in
|
|
match hpred_opt1, hpred_opt2 with
|
|
| None, None ->
|
|
sigma_partial_join' mode sigma_acc sigma1 sigma2
|
|
|
|
| Some (Sil.Hlseg (k, _, _, _, _) as lseg), None
|
|
| Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg), None ->
|
|
if (not !Config.nelseg) || (Sil.lseg_kind_equal k Sil.Lseg_PE) then
|
|
let sigma_acc' = join_list_and_non Lhs e lseg e1 e2 :: sigma_acc in
|
|
sigma_partial_join' mode sigma_acc' sigma1 sigma2
|
|
else
|
|
(L.d_strln "failure reason 62"; raise Fail)
|
|
|
|
| None, Some (Sil.Hlseg (k, _, _, _, _) as lseg)
|
|
| None, Some (Sil.Hdllseg (k, _, _, _, _, _, _) as lseg) ->
|
|
if (not !Config.nelseg) || (Sil.lseg_kind_equal k Sil.Lseg_PE) then
|
|
let sigma_acc' = join_list_and_non Rhs e lseg e2 e1 :: sigma_acc in
|
|
sigma_partial_join' mode sigma_acc' sigma1 sigma2
|
|
else
|
|
(L.d_strln "failure reason 63"; raise Fail)
|
|
|
|
| None, _ | _, None -> (L.d_strln "failure reason 64"; raise Fail)
|
|
|
|
| Some (hpred1), Some (hpred2) when same_pred hpred1 hpred2 ->
|
|
let hpred_res1 = hpred_partial_join mode todo_curr hpred1 hpred2 in
|
|
sigma_partial_join' mode (hpred_res1:: sigma_acc) sigma1 sigma2
|
|
|
|
| Some (Sil.Hlseg _ as lseg), Some (hpred2) ->
|
|
let sigma2' = cut_lseg Lhs todo_curr lseg (hpred2:: sigma2) in
|
|
let sigma_acc' = update_list Lhs lseg e :: sigma_acc in
|
|
sigma_partial_join' mode sigma_acc' sigma1 sigma2'
|
|
|
|
| Some (hpred1), Some (Sil.Hlseg _ as lseg) ->
|
|
let sigma1' = cut_lseg Rhs todo_curr lseg (hpred1:: sigma1) in
|
|
let sigma_acc' = update_list Rhs lseg e :: sigma_acc in
|
|
sigma_partial_join' mode sigma_acc' sigma1' sigma2
|
|
|
|
| Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some (hpred2)
|
|
when Sil.exp_equal e1 iF1 ->
|
|
let iB_res = exp_partial_join iB1 e2 in
|
|
let sigma2' = cut_dllseg Lhs todo_curr iF1 dllseg (hpred2:: sigma2) in
|
|
let sigma_acc' = update_dllseg Lhs dllseg e iB_res :: sigma_acc in
|
|
CheckJoin.add Lhs iF1 iB1; (* add equality iF1=iB1 *)
|
|
sigma_partial_join' mode sigma_acc' sigma1 sigma2'
|
|
|
|
| Some (Sil.Hdllseg (_, _, iF1, _, _, iB1, _) as dllseg), Some (hpred2)
|
|
(* when Sil.exp_equal e1 iB1 *) ->
|
|
let iF_res = exp_partial_join iF1 e2 in
|
|
let sigma2' = cut_dllseg Lhs todo_curr iB1 dllseg (hpred2:: sigma2) in
|
|
let sigma_acc' = update_dllseg Lhs dllseg iF_res e :: sigma_acc in
|
|
CheckJoin.add Lhs iF1 iB1; (* add equality iF1=iB1 *)
|
|
sigma_partial_join' mode sigma_acc' sigma1 sigma2'
|
|
|
|
| Some (hpred1), Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg)
|
|
when Sil.exp_equal e2 iF2 ->
|
|
let iB_res = exp_partial_join e1 iB2 in
|
|
let sigma1' = cut_dllseg Rhs todo_curr iF2 dllseg (hpred1:: sigma1) in
|
|
let sigma_acc' = update_dllseg Rhs dllseg e iB_res :: sigma_acc in
|
|
CheckJoin.add Rhs iF2 iB2; (* add equality iF2=iB2 *)
|
|
sigma_partial_join' mode sigma_acc' sigma1' sigma2
|
|
|
|
| Some (hpred1), Some (Sil.Hdllseg (_, _, iF2, _, _, iB2, _) as dllseg) ->
|
|
let iF_res = exp_partial_join e1 iF2 in
|
|
let sigma1' = cut_dllseg Rhs todo_curr iB2 dllseg (hpred1:: sigma1) in
|
|
let sigma_acc' = update_dllseg Rhs dllseg iF_res e :: sigma_acc in
|
|
CheckJoin.add Rhs iF2 iB2; (* add equality iF2=iB2 *)
|
|
sigma_partial_join' mode sigma_acc' sigma1' sigma2
|
|
|
|
| Some (Sil.Hpointsto _), Some (Sil.Hpointsto _) ->
|
|
assert false (* Should be handled by a guarded case *)
|
|
|
|
with Todo.Empty ->
|
|
match sigma1_in, sigma2_in with
|
|
| _:: _, _:: _ -> L.d_strln "todo is empty, but the sigmas are not"; raise Fail
|
|
| _ -> sigma_acc, sigma1_in, sigma2_in
|
|
|
|
let sigma_partial_join mode (sigma1: sigma) (sigma2: sigma) : (sigma * sigma * sigma) =
|
|
CheckJoin.init mode sigma1 sigma2;
|
|
let lost_little = CheckJoin.lost_little in
|
|
let s1, s2, s3 = sigma_partial_join' mode [] sigma1 sigma2 in
|
|
try
|
|
if Rename.check lost_little then
|
|
(CheckJoin.final (); (s1, s2, s3))
|
|
else begin
|
|
L.d_strln "failed Rename.check";
|
|
CheckJoin.final ();
|
|
raise Fail
|
|
end
|
|
with
|
|
| exn -> (CheckJoin.final (); raise exn)
|
|
|
|
let rec sigma_partial_meet' (sigma_acc: sigma) (sigma1_in: sigma) (sigma2_in: sigma) : sigma =
|
|
try
|
|
let todo_curr = Todo.pop () in
|
|
let e1, e2, e = todo_curr in
|
|
L.d_strln ".... sigma_partial_meet' ....";
|
|
L.d_str "TODO: "; Sil.d_exp e1; L.d_str ","; Sil.d_exp e2; L.d_str ","; Sil.d_exp e; L.d_ln ();
|
|
L.d_str "PROP1="; Prop.d_sigma sigma1_in; L.d_ln ();
|
|
L.d_str "PROP2="; Prop.d_sigma sigma2_in; L.d_ln ();
|
|
L.d_ln ();
|
|
let hpred_opt1, sigma1 = find_hpred_by_address e1 sigma1_in in
|
|
let hpred_opt2, sigma2 = find_hpred_by_address e2 sigma2_in in
|
|
match hpred_opt1, hpred_opt2 with
|
|
| None, None ->
|
|
sigma_partial_meet' sigma_acc sigma1 sigma2
|
|
|
|
| Some hpred, None ->
|
|
let hpred' = hpred_construct_fresh Lhs hpred in
|
|
let sigma_acc' = hpred' :: sigma_acc in
|
|
sigma_partial_meet' sigma_acc' sigma1 sigma2
|
|
|
|
| None, Some hpred ->
|
|
let hpred' = hpred_construct_fresh Rhs hpred in
|
|
let sigma_acc' = hpred' :: sigma_acc in
|
|
sigma_partial_meet' sigma_acc' sigma1 sigma2
|
|
|
|
| Some (hpred1), Some (hpred2) when same_pred hpred1 hpred2 ->
|
|
let hpred' = hpred_partial_meet todo_curr hpred1 hpred2 in
|
|
sigma_partial_meet' (hpred':: sigma_acc) sigma1 sigma2
|
|
|
|
| Some _, Some _ ->
|
|
(L.d_strln "failure reason 65"; raise Fail)
|
|
|
|
with Todo.Empty ->
|
|
match sigma1_in, sigma2_in with
|
|
| [], [] -> sigma_acc
|
|
| _, _ -> L.d_strln "todo is empty, but the sigmas are not"; raise Fail
|
|
|
|
let sigma_partial_meet (sigma1: sigma) (sigma2: sigma) : sigma =
|
|
sigma_partial_meet' [] sigma1 sigma2
|
|
|
|
let widening_top = Sil.Int.of_int64 Int64.max_int -- Sil.Int.of_int 1000 (* nearly max_int but not so close to overflow *)
|
|
let widening_bottom = Sil.Int.of_int64 Int64.min_int ++ Sil.Int.of_int 1000 (* nearly min_int but not so close to underflow *)
|
|
|
|
(** {2 Join and Meet for Pi} *)
|
|
let pi_partial_join mode
|
|
(ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t)
|
|
(pi1: Sil.atom list) (pi2: Sil.atom list) : Sil.atom list
|
|
=
|
|
let exp_is_const = function
|
|
(* | Sil.Var id -> is_normal id *)
|
|
| Sil.Const _ -> true
|
|
(* | Sil.Lvar _ -> true *)
|
|
| _ -> false in
|
|
let get_array_size prop =
|
|
(* find some array size in the prop, to be used as heuritic for upper bound in widening *)
|
|
let size_list = ref [] in
|
|
let do_hpred = function
|
|
| Sil.Hpointsto (_, Sil.Earray (Sil.Const (Sil.Cint n), _, _), _) ->
|
|
(if Sil.Int.geq n Sil.Int.one then size_list := n::!size_list)
|
|
| _ -> () in
|
|
list_iter do_hpred (Prop.get_sigma prop);
|
|
!size_list in
|
|
let bounds =
|
|
let bounds1 = get_array_size ep1 in
|
|
let bounds2 = get_array_size ep2 in
|
|
let bounds_sorted = list_sort Sil.Int.compare_value (bounds1@bounds2) in
|
|
list_rev (list_remove_duplicates Sil.Int.compare_value bounds_sorted) in
|
|
let widening_atom a =
|
|
(* widening heuristic for upper bound: take the size of some array, -2 and -1 *)
|
|
match Prop.atom_exp_le_const a, bounds with
|
|
| Some (e, n), size:: _ ->
|
|
let first_try = Sil.Int.sub size Sil.Int.one in
|
|
let second_try = Sil.Int.sub size Sil.Int.two in
|
|
let bound =
|
|
if Sil.Int.leq n first_try then
|
|
if Sil.Int.leq n second_try then second_try else first_try
|
|
else widening_top in
|
|
let a' = Prop.mk_inequality (Sil.BinOp(Sil.Le, e, Sil.exp_int bound)) in
|
|
Some a'
|
|
| Some (e, n), [] ->
|
|
let bound = widening_top in
|
|
let a' = Prop.mk_inequality (Sil.BinOp(Sil.Le, e, Sil.exp_int bound)) in
|
|
Some a'
|
|
| _ ->
|
|
begin
|
|
match Prop.atom_const_lt_exp a with
|
|
| None -> None
|
|
| Some (n, e) ->
|
|
let bound = if Sil.Int.leq Sil.Int.minus_one n then Sil.Int.minus_one else widening_bottom in
|
|
let a' = Prop.mk_inequality (Sil.BinOp(Sil.Lt, Sil.exp_int bound, e)) in
|
|
Some a'
|
|
end in
|
|
let is_stronger_le e n a =
|
|
match Prop.atom_exp_le_const a with
|
|
| None -> false
|
|
| Some (e', n') -> Sil.exp_equal e e' && Sil.Int.lt n' n in
|
|
let is_stronger_lt n e a =
|
|
match Prop.atom_const_lt_exp a with
|
|
| None -> false
|
|
| Some (n', e') -> Sil.exp_equal e e' && Sil.Int.lt n n' in
|
|
let join_atom_check_pre p a =
|
|
(* check for atoms in pre mode: fail if the negation is implied by the other side *)
|
|
let not_a = Prop.atom_negate a in
|
|
if (Prover.check_atom p not_a) then
|
|
(L.d_str "join_atom_check failed on "; Sil.d_atom a; L.d_ln (); raise Fail) in
|
|
let join_atom_check_attribute p a =
|
|
(* check for attribute: fail if the attribute is not in the other side *)
|
|
if not (Prover.check_atom p a) then
|
|
(L.d_str "join_atom_check_attribute failed on "; Sil.d_atom a; L.d_ln (); raise Fail) in
|
|
let join_atom side p_op pi_op a =
|
|
(* try to find the atom corresponding to a on the other side, and check if it is implied *)
|
|
match Rename.get_other_atoms side a with
|
|
| None -> None
|
|
| Some (a_res, a_op) ->
|
|
if mode = JoinState.Pre then join_atom_check_pre p_op a_op;
|
|
if Prop.atom_is_attribute a then join_atom_check_attribute p_op a_op;
|
|
if not (Prover.check_atom p_op a_op) then None
|
|
else begin
|
|
match Prop.atom_exp_le_const a_op with
|
|
| None ->
|
|
begin
|
|
match Prop.atom_const_lt_exp a_op with
|
|
| None -> Some a_res
|
|
| Some (n, e) -> if list_exists (is_stronger_lt n e) pi_op then (widening_atom a_res) else Some a_res
|
|
end
|
|
| Some (e, n) ->
|
|
if list_exists (is_stronger_le e n) pi_op then (widening_atom a_res) else Some a_res
|
|
end in
|
|
let handle_atom_with_widening size p_op pi_op atom_list a =
|
|
(* find a join for the atom, if it fails apply widening heuristing and try again *)
|
|
match join_atom size p_op pi_op a with
|
|
| None ->
|
|
(match widening_atom a with
|
|
| None -> atom_list
|
|
| Some a' ->
|
|
(match join_atom size p_op pi_op a' with
|
|
| None -> atom_list
|
|
| Some a' -> a' :: atom_list))
|
|
| Some a' -> a' :: atom_list in
|
|
let filter_atom = function
|
|
| Sil.Aneq(e, e') | Sil.Aeq(e, e')
|
|
when (exp_is_const e && exp_is_const e') ->
|
|
true
|
|
| Sil.Aneq(Sil.Var id, e') | Sil.Aneq(e', Sil.Var id)
|
|
| Sil.Aeq(Sil.Var id, e') | Sil.Aeq(e', Sil.Var id)
|
|
when (exp_is_const e') ->
|
|
true
|
|
| Sil.Aneq _ -> false
|
|
| e -> Prop.atom_is_inequality e in
|
|
begin
|
|
if !Config.trace_join then begin
|
|
L.d_str "pi1: "; Prop.d_pi pi1; L.d_ln ();
|
|
L.d_str "pi2: "; Prop.d_pi pi2; L.d_ln ()
|
|
end;
|
|
let atom_list1 =
|
|
let p2 = Prop.normalize ep2 in
|
|
list_fold_left (handle_atom_with_widening Lhs p2 pi2) [] pi1 in
|
|
if !Config.trace_join then (L.d_str "atom_list1: "; Prop.d_pi atom_list1; L.d_ln ());
|
|
let atom_list_combined =
|
|
let p1 = Prop.normalize ep1 in
|
|
list_fold_left (handle_atom_with_widening Rhs p1 pi1) atom_list1 pi2 in
|
|
if !Config.trace_join then (L.d_str "atom_list_combined: "; Prop.d_pi atom_list_combined; L.d_ln ());
|
|
let atom_list_filtered =
|
|
list_filter filter_atom atom_list_combined in
|
|
if !Config.trace_join then (L.d_str "atom_list_filtered: "; Prop.d_pi atom_list_filtered; L.d_ln ());
|
|
let atom_list_res =
|
|
list_rev atom_list_filtered in
|
|
atom_list_res
|
|
end
|
|
|
|
let pi_partial_meet (p: Prop.normal Prop.t) (ep1: 'a Prop.t) (ep2: 'b Prop.t) : Prop.normal Prop.t =
|
|
let sub1 = Rename.to_subst_emb Lhs in
|
|
let sub2 = Rename.to_subst_emb Rhs in
|
|
|
|
let dom1 = Ident.idlist_to_idset (Sil.sub_domain sub1) in
|
|
let dom2 = Ident.idlist_to_idset (Sil.sub_domain sub2) in
|
|
|
|
let handle_atom sub dom atom =
|
|
let fav_list = Sil.fav_to_list (Sil.atom_fav atom) in
|
|
if list_for_all (fun id -> Ident.IdentSet.mem id dom) fav_list then
|
|
Sil.atom_sub sub atom
|
|
else (L.d_str "handle_atom failed on "; Sil.d_atom atom; L.d_ln (); raise Fail) in
|
|
let f1 p' atom =
|
|
Prop.prop_atom_and p' (handle_atom sub1 dom1 atom) in
|
|
let f2 p' atom =
|
|
Prop.prop_atom_and p' (handle_atom sub2 dom2 atom) in
|
|
|
|
let pi1 = Prop.get_pi ep1 in
|
|
let pi2 = Prop.get_pi ep2 in
|
|
|
|
let p_pi1 = list_fold_left f1 p pi1 in
|
|
let p_pi2 = list_fold_left f2 p_pi1 pi2 in
|
|
if (Prover.check_inconsistency_base p_pi2) then (L.d_strln "check_inconsistency_base failed"; raise Fail)
|
|
else p_pi2
|
|
|
|
(** {2 Join and Meet for Prop} *)
|
|
|
|
let eprop_partial_meet (ep1: 'a Prop.t) (ep2: 'b Prop.t) : 'c Prop.t =
|
|
SymOp.pay(); (* pay one symop *)
|
|
let sigma1 = Prop.get_sigma ep1 in
|
|
let sigma2 = Prop.get_sigma ep2 in
|
|
|
|
let es1 = sigma_get_start_lexps_sort sigma1 in
|
|
let es2 = sigma_get_start_lexps_sort sigma2 in
|
|
let es = list_merge_sorted_nodup Sil.exp_compare [] es1 es2 in
|
|
|
|
let sub_check _ =
|
|
let sub1 = Prop.get_sub ep1 in
|
|
let sub2 = Prop.get_sub ep2 in
|
|
let range1 = Sil.sub_range sub1 in
|
|
let f e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
|
|
Sil.sub_equal sub1 sub2 && list_for_all f range1 in
|
|
|
|
if not (sub_check ()) then
|
|
(L.d_strln "sub_check() failed"; raise Fail)
|
|
else begin
|
|
let todos = list_map (fun x -> (x, x, x)) es in
|
|
list_iter Todo.push todos;
|
|
let sigma_new = sigma_partial_meet sigma1 sigma2 in
|
|
let ep = Prop.replace_sigma sigma_new ep1 in
|
|
let ep' = Prop.replace_pi [] ep in
|
|
let p' = Prop.normalize ep' in
|
|
let p'' = pi_partial_meet p' ep1 ep2 in
|
|
let res = Prop.prop_rename_primed_footprint_vars p'' in
|
|
res
|
|
end
|
|
|
|
let prop_partial_meet p1 p2 =
|
|
Rename.init (); FreshVarExp.init (); Todo.init ();
|
|
try
|
|
let res = eprop_partial_meet p1 p2 in
|
|
Rename.final (); FreshVarExp.final (); Todo.final ();
|
|
Some res
|
|
with exn ->
|
|
begin
|
|
Rename.final (); FreshVarExp.final (); Todo.final ();
|
|
match exn with
|
|
| Fail -> None
|
|
| _ -> raise exn
|
|
end
|
|
|
|
let eprop_partial_join' mode (ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t) : Prop.normal Prop.t =
|
|
SymOp.pay(); (* pay one symop *)
|
|
let sigma1 = Prop.get_sigma ep1 in
|
|
let sigma2 = Prop.get_sigma ep2 in
|
|
let es1 = sigma_get_start_lexps_sort sigma1 in
|
|
let es2 = sigma_get_start_lexps_sort sigma2 in
|
|
|
|
let simple_check = list_length es1 = list_length es2 in
|
|
let rec expensive_check es1' es2' =
|
|
match (es1', es2') with
|
|
| [], [] -> true
|
|
| [], _:: _ | _:: _, [] -> false
|
|
| e1:: es1'', e2:: es2'' ->
|
|
Sil.exp_equal e1 e2 && expensive_check es1'' es2'' in
|
|
let sub_common, eqs_from_sub1, eqs_from_sub2 =
|
|
let sub1 = Prop.get_sub ep1 in
|
|
let sub2 = Prop.get_sub ep2 in
|
|
let sub_common, sub1_only, sub2_only = Sil.sub_symmetric_difference sub1 sub2 in
|
|
let sub_common_normal, sub_common_other =
|
|
let f e = Sil.fav_for_all (Sil.exp_fav e) Ident.is_normal in
|
|
Sil.sub_range_partition f sub_common in
|
|
let eqs1, eqs2 =
|
|
let sub_to_eqs sub = list_map (fun (id, e) -> Sil.Aeq(Sil.Var id, e)) (Sil.sub_to_list sub) in
|
|
let eqs1 = sub_to_eqs sub1_only @ sub_to_eqs sub_common_other in
|
|
let eqs2 = sub_to_eqs sub2_only in
|
|
(eqs1, eqs2) in
|
|
(sub_common_normal, eqs1, eqs2) in
|
|
|
|
if not (simple_check && expensive_check es1 es2) then
|
|
begin
|
|
if not simple_check then L.d_strln "simple_check failed"
|
|
else L.d_strln "expensive_check failed";
|
|
raise Fail
|
|
end;
|
|
let todos = list_map (fun x -> (x, x, x)) es1 in
|
|
list_iter Todo.push todos;
|
|
match sigma_partial_join mode sigma1 sigma2 with
|
|
| sigma_new, [], [] ->
|
|
L.d_strln "sigma_partial_join succeeded";
|
|
let ep_sub =
|
|
let ep = Prop.replace_pi [] ep1 in
|
|
Prop.replace_sub sub_common ep in
|
|
let p_sub_sigma =
|
|
Prop.normalize (Prop.replace_sigma sigma_new ep_sub) in
|
|
let p_sub_sigma_pi =
|
|
let pi1 = (Prop.get_pi ep1) @ eqs_from_sub1 in
|
|
let pi2 = (Prop.get_pi ep2) @ eqs_from_sub2 in
|
|
let pi' = pi_partial_join mode ep1 ep2 pi1 pi2 in
|
|
L.d_strln "pi_partial_join succeeded";
|
|
let pi_from_fresh_vars = FreshVarExp.get_induced_pi () in
|
|
let pi_all = pi' @ pi_from_fresh_vars in
|
|
list_fold_left Prop.prop_atom_and p_sub_sigma pi_all in
|
|
p_sub_sigma_pi
|
|
| _ ->
|
|
L.d_strln "leftovers not empty"; raise Fail
|
|
|
|
let footprint_partial_join' (p1: Prop.normal Prop.t) (p2: Prop.normal Prop.t) : Prop.normal Prop.t * Prop.normal Prop.t =
|
|
if not !Config.footprint then p1, p2
|
|
else begin
|
|
let fp1 = Prop.extract_footprint p1 in
|
|
let fp2 = Prop.extract_footprint p2 in
|
|
let efp = eprop_partial_join' JoinState.Pre fp1 fp2 in
|
|
let fp_pi = (* Prop.get_pure efp in *)
|
|
let fp_pi0 = Prop.get_pure efp in
|
|
let f a = Sil.fav_for_all (Sil.atom_fav a) Ident.is_footprint in
|
|
list_filter f fp_pi0 in
|
|
let fp_sigma = (* Prop.get_sigma efp in *)
|
|
let fp_sigma0 = Prop.get_sigma efp in
|
|
let f a = Sil.fav_exists (Sil.hpred_fav a) (fun a -> not (Ident.is_footprint a)) in
|
|
if list_exists f fp_sigma0 then (L.d_strln "failure reason 66"; raise Fail);
|
|
fp_sigma0 in
|
|
let ep1' = Prop.replace_sigma_footprint fp_sigma (Prop.replace_pi_footprint fp_pi p1) in
|
|
let ep2' = Prop.replace_sigma_footprint fp_sigma (Prop.replace_pi_footprint fp_pi p2) in
|
|
Prop.normalize ep1', Prop.normalize ep2'
|
|
end
|
|
|
|
let prop_partial_join pname tenv mode p1 p2 =
|
|
let res_by_implication_only =
|
|
if !Config.footprint then None
|
|
else if Prover.check_implication pname tenv p1 (Prop.expose p2) then Some p2
|
|
else if Prover.check_implication pname tenv p2 (Prop.expose p1) then Some p1
|
|
else None in
|
|
match res_by_implication_only with
|
|
| None ->
|
|
begin
|
|
(if !Config.footprint then JoinState.set_footprint true);
|
|
Rename.init (); FreshVarExp.init (); Todo.init ();
|
|
try
|
|
let p1', p2' = footprint_partial_join' p1 p2 in
|
|
let rename_footprint = Rename.reset () in
|
|
Todo.reset rename_footprint;
|
|
let res = Some (eprop_partial_join' mode (Prop.expose p1') (Prop.expose p2')) in
|
|
(if !Config.footprint then JoinState.set_footprint false);
|
|
Rename.final (); FreshVarExp.final (); Todo.final ();
|
|
res
|
|
with exn ->
|
|
begin
|
|
Rename.final (); FreshVarExp.final (); Todo.final ();
|
|
(if !Config.footprint then JoinState.set_footprint false);
|
|
(match exn with Fail -> None | _ -> raise exn)
|
|
end
|
|
end
|
|
| Some _ -> res_by_implication_only
|
|
|
|
let eprop_partial_join mode (ep1: Prop.exposed Prop.t) (ep2: Prop.exposed Prop.t) : Prop.normal Prop.t =
|
|
Rename.init (); FreshVarExp.init (); Todo.init ();
|
|
try
|
|
let res = eprop_partial_join' mode ep1 ep2 in
|
|
Rename.final (); FreshVarExp.final (); Todo.final ();
|
|
res
|
|
with exn -> (Rename.final (); FreshVarExp.final (); Todo.final (); raise exn)
|
|
|
|
(** {2 Join and Meet for Propset} *)
|
|
|
|
let list_reduce name dd f list =
|
|
let rec element_list_reduce acc (x, p1) = function
|
|
| [] -> ((x, p1), list_rev acc)
|
|
| (y, p2):: ys -> begin
|
|
L.d_strln ("COMBINE[" ^ name ^ "] ....");
|
|
L.d_str "ENTRY1: "; L.d_ln (); dd x; L.d_ln ();
|
|
L.d_str "ENTRY2: "; L.d_ln (); dd y; L.d_ln ();
|
|
L.d_ln ();
|
|
match f x y with
|
|
| None ->
|
|
L.d_strln_color Red (".... COMBINE[" ^ name ^ "] FAILED ...");
|
|
element_list_reduce ((y, p2):: acc) (x, p1) ys
|
|
| Some x' ->
|
|
L.d_strln_color Green (".... COMBINE[" ^ name ^ "] SUCCEEDED ....");
|
|
L.d_strln "RESULT:"; dd x'; L.d_ln ();
|
|
element_list_reduce acc (x', p1) ys
|
|
end in
|
|
let rec reduce acc = function
|
|
| [] -> list_rev acc
|
|
| x:: xs ->
|
|
let (x', xs') = element_list_reduce [] x xs in
|
|
reduce (x':: acc) xs' in
|
|
reduce [] list
|
|
|
|
let pathset_collapse_impl pname tenv pset =
|
|
let f x y =
|
|
if Prover.check_implication pname tenv x (Prop.expose y) then Some y
|
|
else if Prover.check_implication pname tenv y (Prop.expose x) then Some x
|
|
else None in
|
|
let plist = Paths.PathSet.elements pset in
|
|
let plist' = list_reduce "JOIN_IMPL" Prop.d_prop f plist in
|
|
Paths.PathSet.from_renamed_list plist'
|
|
|
|
let jprop_partial_join mode jp1 jp2 =
|
|
let p1, p2 = Prop.expose (Specs.Jprop.to_prop jp1), Prop.expose (Specs.Jprop.to_prop jp2) in
|
|
try
|
|
let p = eprop_partial_join mode p1 p2 in
|
|
let p_renamed = Prop.prop_rename_primed_footprint_vars p in
|
|
Some (Specs.Jprop.Joined (0, p_renamed, jp1, jp2))
|
|
with Fail -> None
|
|
|
|
let jplist_collapse mode jplist =
|
|
let f = jprop_partial_join mode in
|
|
list_reduce "JOIN" Specs.Jprop.d_shallow f jplist
|
|
|
|
|
|
(** Add identifiers to a list of jprops *)
|
|
let jprop_list_add_ids jplist =
|
|
let seq_number = ref 0 in
|
|
let rec do_jprop = function
|
|
| Specs.Jprop.Prop (n, p) -> incr seq_number; Specs.Jprop.Prop (!seq_number, p)
|
|
| Specs.Jprop.Joined (n, p, jp1, jp2) ->
|
|
let jp1' = do_jprop jp1 in
|
|
let jp2' = do_jprop jp2 in
|
|
incr seq_number;
|
|
Specs.Jprop.Joined (!seq_number, p, jp1', jp2') in
|
|
list_map (fun (p, path) -> (do_jprop p, path)) jplist
|
|
|
|
let proplist_collapse mode plist =
|
|
let jplist = list_map (fun (p, path) -> (Specs.Jprop.Prop (0, p), path)) plist in
|
|
let jplist_joined = jplist_collapse mode (jplist_collapse mode jplist) in
|
|
jprop_list_add_ids jplist_joined
|
|
|
|
let proplist_collapse_pre plist =
|
|
let plist' = list_map (fun p -> (p, ())) plist in
|
|
list_map fst (proplist_collapse JoinState.Pre plist')
|
|
|
|
let pathset_collapse pset =
|
|
let plist = Paths.PathSet.elements pset in
|
|
let plist' = proplist_collapse JoinState.Post plist in
|
|
Paths.PathSet.from_renamed_list (list_map (fun (p, path) -> (Specs.Jprop.to_prop p, path)) plist')
|
|
|
|
let join_time = ref 0.0
|
|
|
|
let pathset_join
|
|
pname tenv (pset1: Paths.PathSet.t) (pset2: Paths.PathSet.t)
|
|
: Paths.PathSet.t * Paths.PathSet.t =
|
|
let mode = JoinState.Post in
|
|
let initial_time = Unix.gettimeofday () in
|
|
let pset_to_plist pset =
|
|
let f_list p pa acc = (p, pa) :: acc in
|
|
Paths.PathSet.fold f_list pset [] in
|
|
let ppalist1 = pset_to_plist pset1 in
|
|
let ppalist2 = pset_to_plist pset2 in
|
|
let rec join_proppath_plist ppalist2_acc ((p2, pa2) as ppa2) = function
|
|
| [] -> (ppa2, list_rev ppalist2_acc)
|
|
| ((p2', pa2') as ppa2') :: ppalist2_rest -> begin
|
|
L.d_strln ".... JOIN ....";
|
|
L.d_strln "JOIN SYM HEAP1: "; Prop.d_prop p2; L.d_ln ();
|
|
L.d_strln "JOIN SYM HEAP2: "; Prop.d_prop p2'; L.d_ln (); L.d_ln ();
|
|
match prop_partial_join pname tenv mode p2 p2' with
|
|
| None ->
|
|
L.d_strln_color Red ".... JOIN FAILED ...."; L.d_ln ();
|
|
join_proppath_plist (ppa2':: ppalist2_acc) ppa2 ppalist2_rest
|
|
| Some p2'' ->
|
|
L.d_strln_color Green ".... JOIN SUCCEEDED ....";
|
|
L.d_strln "RESULT SYM HEAP:"; Prop.d_prop p2''; L.d_ln (); L.d_ln ();
|
|
join_proppath_plist ppalist2_acc (p2'', Paths.Path.join pa2 pa2') ppalist2_rest
|
|
end in
|
|
let rec join ppalist1_cur ppalist2_acc = function
|
|
| [] -> (ppalist1_cur, ppalist2_acc)
|
|
| ppa2:: ppalist2_rest ->
|
|
let (ppa2', ppalist2_acc') = join_proppath_plist [] ppa2 ppalist2_acc in
|
|
let (ppa2'', ppalist2_rest') = join_proppath_plist [] ppa2' ppalist2_rest in
|
|
let (ppa2_new, ppalist1_cur') = join_proppath_plist [] ppa2'' ppalist1_cur in
|
|
join ppalist1_cur' (ppa2_new:: ppalist2_acc') ppalist2_rest' in
|
|
let _ppalist1_res, _ppalist2_res = join ppalist1 [] ppalist2 in
|
|
let ren l = list_map (fun (p, x) -> (Prop.prop_rename_primed_footprint_vars p, x)) l in
|
|
let ppalist1_res, ppalist2_res = ren _ppalist1_res, ren _ppalist2_res in
|
|
let res = (Paths.PathSet.from_renamed_list ppalist1_res, Paths.PathSet.from_renamed_list ppalist2_res) in
|
|
join_time := !join_time +. (Unix.gettimeofday () -. initial_time);
|
|
res
|
|
|
|
(**
|
|
The meet operator does two things:
|
|
1) makes the result logically stronger (just like additive conjunction)
|
|
2) makes the result spatially larger (just like multiplicative conjunction).
|
|
Assuming that the meet operator forms a partial commutative monoid (soft assumption: it means
|
|
that the results are more predictable), try to combine every element of plist with any other element.
|
|
Return a list of the same lenght, with each element maximally combined. The algorithm is quadratic.
|
|
The operation is dependent on the order in which elements are combined; there is a straightforward
|
|
order - independent algorithm but it is exponential.
|
|
*)
|
|
let proplist_meet_generate plist =
|
|
let props_done = ref Propset.empty in
|
|
let combine p (porig, pcombined) =
|
|
SymOp.pay (); (* pay one symop *)
|
|
L.d_strln ".... MEET ....";
|
|
L.d_strln "MEET SYM HEAP1: "; Prop.d_prop p; L.d_ln ();
|
|
L.d_strln "MEET SYM HEAP2: "; Prop.d_prop pcombined; L.d_ln ();
|
|
match prop_partial_meet p pcombined with
|
|
| None ->
|
|
L.d_strln_color Red ".... MEET FAILED ...."; L.d_ln ();
|
|
(porig, pcombined)
|
|
| Some pcombined' ->
|
|
L.d_strln_color Green ".... MEET SUCCEEDED ....";
|
|
L.d_strln "RESULT SYM HEAP:"; Prop.d_prop pcombined'; L.d_ln (); L.d_ln ();
|
|
(porig, pcombined') in
|
|
let rec proplist_meet = function
|
|
| [] -> ()
|
|
| (porig, pcombined) :: pplist ->
|
|
(* use porig instead of pcombined because it might be combinable with more othe props *)
|
|
(* e.g. porig might contain a global var to add to the ture branch of a conditional *)
|
|
(* but pcombined might have been combined with the false branch already *)
|
|
let pplist' = list_map (combine porig) pplist in
|
|
props_done := Propset.add pcombined !props_done;
|
|
proplist_meet pplist' in
|
|
proplist_meet (list_map (fun p -> (p, p)) plist);
|
|
!props_done
|
|
|
|
|
|
let propset_meet_generate_pre pset =
|
|
let plist = Propset.to_proplist pset in
|
|
if !Config.meet_level = 0 then plist
|
|
else
|
|
let pset1 = proplist_meet_generate plist in
|
|
let pset_new = Propset.diff pset1 pset in
|
|
let plist_old = Propset.to_proplist pset in
|
|
let plist_new = Propset.to_proplist pset_new in
|
|
plist_new @ plist_old
|