You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

299 lines
11 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Interval abstract domain *)
open Apron
let equal_apron_typ =
(* Apron.Texpr1.typ is a sum of nullary constructors *)
Poly.equal
(** Apron-managed map from variables to intervals *)
type t = Box.t Abstract1.t
let equal : t -> t -> bool = Poly.equal
let compare : t -> t -> int = Poly.compare
let man = lazy (Box.manager_alloc ())
let join l r = Abstract1.join (Lazy.force man) l r
let joinN = function
| [] -> Abstract1.bottom (Lazy.force man) (Environment.make [||] [||])
| x :: xs -> List.fold ~f:join xs x
let is_false x = Abstract1.is_bottom (Lazy.force man) x
let bindings (itv : t) =
let itv = Abstract1.minimize_environment (Lazy.force man) itv in
let box = Abstract1.to_box (Lazy.force man) itv in
let vars =
Environment.vars box.box1_env |> fun (i, r) -> Array.append i r
in
Array.combine_exn vars box.interval_array
let sexp_of_t (itv : t) =
let sexps =
Array.fold_right (bindings itv) [] ~f:(fun (v, i) acc ->
Sexp.List
[ Sexp.Atom (Var.to_string v)
; Sexp.Atom (Scalar.to_string i.inf)
; Sexp.Atom (Scalar.to_string i.sup) ]
:: acc )
in
Sexp.List sexps
let pp fs =
let pp_pair a_pp b_pp fs (a, b) =
Format.fprintf fs "@[(%a@,%a)@]" a_pp a b_pp b
in
bindings >> Array.pp "@," (pp_pair Var.print Interval.print) fs
let init _gs = Abstract1.top (Lazy.force man) (Environment.make [||] [||])
let apron_var_of_name = (fun nm -> "%" ^ nm) >> Apron.Var.of_string
let apron_var_of_reg = Llair.Reg.name >> apron_var_of_name
let rec apron_typ_of_llair_typ : Llair.Typ.t -> Texpr1.typ option = function
| Pointer {elt= _} -> apron_typ_of_llair_typ Llair.Typ.siz
| Integer {bits= _} -> Some Texpr1.Int
| Float {bits= 32; enc= `IEEE} -> Some Texpr1.Single
| Float {bits= 64; enc= `IEEE} -> Some Texpr1.Double
| Float {bits= 80; enc= `Extended} -> Some Texpr1.Extended
| Float {bits= 128; enc= `IEEE} -> Some Texpr1.Quad
| t ->
warn "No corresponding apron type for llair type %a " Llair.Typ.pp t
() ;
None
let rec apron_texpr_of_llair_exp exp q =
match (exp : Llair.Exp.t) with
| Reg {name} | Global {name} | Function {name} ->
Some (Texpr1.Var (apron_var_of_name name))
| Integer {data} -> Some (Texpr1.Cst (Coeff.s_of_int (Z.to_int data)))
| Float {data} -> (
match Float.of_string_exn data with
| f -> Some (Texpr1.Cst (Coeff.s_of_float f))
| exception Invalid_argument _ -> None )
| Ap1 (Signed {bits}, _, _) ->
let n = Int.shift_left 1 (bits - 1) in
Some (Texpr1.Cst (Coeff.i_of_int (-n) (n - 1)))
| Ap1 (Unsigned {bits}, _, _) ->
let n = Int.shift_left 1 (bits - 1) in
Some (Texpr1.Cst (Coeff.i_of_int 0 n))
| Ap1 (Convert {src}, dst, x) ->
let* src' = apron_typ_of_llair_typ src in
let* dst' = apron_typ_of_llair_typ dst in
let subtm = apron_texpr_of_llair_exp x q in
if equal_apron_typ src' dst' then subtm
else
let+ t = subtm in
Texpr1.Unop (Texpr1.Cast, t, dst', Texpr0.Rnd)
| Ap2 (op, typ, x, y) -> (
let* typ' = apron_typ_of_llair_typ typ in
let* x' = apron_texpr_of_llair_exp x q in
let* y' = apron_texpr_of_llair_exp y q in
(* abstract evaluation of boolean binary operation [te1 op te2] at [q]
by translation to [te1 - te2 op 0] and intersection with [q] *)
let bool_binop q op x' y' =
let env = Abstract1.env q in
let lhs = Texpr1.Binop (Texpr1.Sub, x', y', typ', Texpr0.Rnd) in
let tcons = Tcons1.make (Texpr1.of_expr env lhs) op in
let ea =
Tcons1.array_make env 1 $> fun ea -> Tcons1.array_set ea 0 tcons
in
(* if meet of q with tree constraint encoding of binop is: (bottom
-> binop definitely false); (unchanged from q -> binop definitely
true); (else -> binop may be true or false) *)
let meet = Abstract1.meet_tcons_array (Lazy.force man) q ea in
if is_false meet then Some (Texpr1.Cst (Coeff.s_of_int 0))
else if equal meet q then Some (Texpr1.Cst (Coeff.s_of_int (-1)))
else Some (Texpr1.Cst (Coeff.i_of_int (-1) 0))
in
let arith_bop op x' y' =
Some (Texpr1.Binop (op, x', y', typ', Texpr0.Rnd))
in
match op with
| Eq -> bool_binop q Tcons0.EQ x' y'
| Dq -> bool_binop q Tcons0.DISEQ x' y'
| Gt -> bool_binop q Tcons0.SUP x' y'
| Ge -> bool_binop q Tcons0.SUPEQ x' y'
| Lt -> bool_binop q Tcons0.SUP y' x'
| Le -> bool_binop q Tcons0.SUPEQ y' x'
| Ugt | Uge | Ult | Ule | Ord | Uno -> None
| Add -> arith_bop Texpr1.Add x' y'
| Sub -> arith_bop Texpr1.Sub x' y'
| Mul -> arith_bop Texpr1.Mul x' y'
| Div -> arith_bop Texpr1.Div x' y'
| Rem -> arith_bop Texpr1.Mod x' y'
| Udiv | Urem -> None
| And | Or | Xor | Shl | Lshr | Ashr | Update _ -> None )
| Label _
|Ap1 ((Splat | Select _), _, _)
|Ap3 (Conditional, _, _, _, _)
|ApN (Record, _, _) ->
None
let assign reg exp q =
[%Trace.call fun {pf} ->
pf "@ {%a}@\n%a := %a" pp q Llair.Reg.pp reg Llair.Exp.pp exp]
;
let lval = apron_var_of_reg reg in
( match apron_texpr_of_llair_exp exp q with
| Some e ->
let env = Abstract1.env q in
let new_env =
match
( Environment.mem_var env lval
, apron_typ_of_llair_typ (Llair.Reg.typ reg) )
with
| true, _ -> env
| false, Some Texpr1.Int -> Environment.add env [|lval|] [||]
| false, _ -> Environment.add env [||] [|lval|]
in
let man = Lazy.force man in
let q = Abstract1.change_environment man q new_env true in
Abstract1.assign_texpr man q lval (Texpr1.of_expr new_env e) None
| _ -> q )
|>
[%Trace.retn fun {pf} r -> pf "{%a}" pp r]
let resolve_int _ _ _ = []
(** block if [e] is known to be false; skip otherwise *)
let exec_assume _ q e =
match apron_texpr_of_llair_exp e q with
| Some e ->
let cond =
Abstract1.bound_texpr (Lazy.force man) q (Texpr1.of_expr q.env e)
in
if Interval.is_zero cond then None else Some q
| _ -> Some q
(** existentially quantify killed register [r] out of state [q] *)
let exec_kill _ r q =
let apron_v = apron_var_of_reg r in
if Environment.mem_var (Abstract1.env q) apron_v then
Abstract1.forget_array (Lazy.force man) q [|apron_v|] false
else q
(** perform a series [move_vec] of reg:=exp moves at state [q] *)
let exec_move _ move_vec q =
let defs, uses =
IArray.fold move_vec (Llair.Reg.Set.empty, Llair.Reg.Set.empty)
~f:(fun (r, e) (defs, uses) ->
( Llair.Reg.Set.add r defs
, Llair.Exp.fold_regs ~f:Llair.Reg.Set.add e uses ) )
in
if not (Llair.Reg.Set.disjoint defs uses) then
todo "overwritten variables in Domain_itv" () ;
IArray.fold ~f:(fun (r, e) q -> assign r e q) move_vec q
let exec_inst tid i q =
match (i : Llair.inst) with
| Move {reg_exps; loc= _} -> Ok (exec_move tid reg_exps q)
| Store {ptr; exp; len= _; loc= _} -> (
match Llair.Reg.of_exp ptr with
| Some reg -> Ok (assign reg exp q)
| None -> Ok q )
| Load {reg; ptr; len= _; loc= _} -> Ok (assign reg ptr q)
| Nondet {reg= Some reg; msg= _; loc= _} -> Ok (exec_kill tid reg q)
| Nondet {reg= None; msg= _; loc= _} | Alloc _ | Free _ -> Ok q
| Intrinsic {reg= Some reg; _} -> Ok (exec_kill tid reg q)
| Intrinsic {reg= None; _} -> Ok q
| Abort {loc} ->
Error
{ Alarm.kind= Abort
; loc
; pp_action= Fun.flip Llair.Inst.pp i
; pp_state= Fun.flip pp q }
let enter_scope _ _ q = q
type from_call = {areturn: Llair.Reg.t option; caller_q: t}
[@@deriving sexp_of]
let recursion_beyond_bound = `prune
(** existentially quantify locals *)
let post _ locals _ (q : t) =
let locals =
Llair.Reg.Set.fold locals [] ~f:(fun r a ->
let v = apron_var_of_reg r in
if Environment.mem_var q.env v then v :: a else a )
|> Array.of_list
in
Abstract1.forget_array (Lazy.force man) q locals false
(** drop caller-local variables, add returned value to caller state *)
let retn tid _ freturn {areturn; caller_q} callee_q =
match (areturn, freturn) with
| Some aret, Some fret ->
let env_fret_only =
match apron_typ_of_llair_typ (Llair.Reg.typ fret) with
| None -> Environment.make [||] [||]
| Some Texpr1.Int -> Environment.make [|apron_var_of_reg fret|] [||]
| _ -> Environment.make [||] [|apron_var_of_reg fret|]
in
let env = Environment.lce env_fret_only (Abstract1.env caller_q) in
let man = Lazy.force man in
let callee_fret =
(* drop all callee vars, scope to (caller + freturn) env *)
Abstract1.change_environment man callee_q env_fret_only false
|> fun q -> Abstract1.change_environment man q env false
in
let caller_q = Abstract1.change_environment man caller_q env false in
let result = Abstract1.meet man callee_fret caller_q in
Abstract1.rename_array man result
[|apron_var_of_reg fret|]
[|apron_var_of_reg aret|]
| Some aret, None -> exec_kill tid aret caller_q
| None, _ -> caller_q
(** map actuals to formals (via temporary registers), stash constraints on
caller-local variables. Note that this exploits the non-relational-ness
of Box to ignore all variables other than the formal/actual params/
returns; this will not be possible if extended to a relational domain *)
let call ~summaries _ ~globals:_ ~actuals ~areturn ~formals ~freturn:_
~locals:_ q =
if summaries then
todo "Summaries not yet implemented for interval analysis" ()
else
let mangle r =
Llair.Reg.mk (Llair.Reg.typ r) 0 ("__tmp__" ^ Llair.Reg.name r)
in
let args = IArray.combine_exn formals actuals in
let q' =
IArray.fold ~f:(fun (f, a) q -> assign (mangle f) a q) args q
in
let callee_env =
IArray.fold formals ([], []) ~f:(fun f (is, fs) ->
match apron_typ_of_llair_typ (Llair.Reg.typ f) with
| None -> (is, fs)
| Some Texpr1.Int -> (apron_var_of_reg (mangle f) :: is, fs)
| _ -> (is, apron_var_of_reg (mangle f) :: fs) )
|> fun (is, fs) ->
Environment.make (Array.of_list is) (Array.of_list fs)
in
let man = Lazy.force man in
let q'' = Abstract1.change_environment man q' callee_env false in
let q''' =
Abstract1.rename_array man q''
(Array.map
~f:(mangle >> apron_var_of_reg)
(IArray.to_array formals))
(Array.map ~f:apron_var_of_reg (IArray.to_array formals))
in
(q''', {areturn; caller_q= q})
let dnf q = [q]
let resolve_callee _ _ _ _ = []
type summary = t
let pp_summary = pp
let apply_summary _ _ = None
let create_summary _ ~locals:_ ~formals:_ q = (q, q)