You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

789 lines
25 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Symbolic Heap Formulas *)
[@@@warning "+9"]
type seg = {loc: Term.t; bas: Term.t; len: Term.t; siz: Term.t; arr: Term.t}
[@@deriving compare, equal, sexp]
type starjunction =
{ us: Var.Set.t
; xs: Var.Set.t
; cong: Equality.t
; pure: Term.t list
; heap: seg list
; djns: disjunction list }
[@@deriving compare, equal, sexp]
and disjunction = starjunction list
type t = starjunction [@@deriving compare, equal, sexp]
(** Basic values *)
let emp =
{ us= Var.Set.empty
; xs= Var.Set.empty
; cong= Equality.true_
; pure= []
; heap= []
; djns= [] }
let false_ us = {emp with us; djns= [[]]}
(** Traversals *)
let map_seg ~f h =
let loc = f h.loc in
let bas = f h.bas in
let len = f h.len in
let siz = f h.siz in
let arr = f h.arr in
if
loc == h.loc && bas == h.bas && len == h.len && siz == h.siz
&& arr == h.arr
then h
else {loc; bas; len; siz; arr}
let map ~f_sjn ~f_cong ~f_trm ({us; xs= _; cong; pure; heap; djns} as q) =
let exception Unsat in
try
let cong = f_cong cong in
let pure =
List.filter_map_preserving_phys_equal pure ~f:(fun e ->
let e' = f_trm e in
if Term.is_false e' then raise Unsat
else if Term.is_true e' then None
else Some e' )
in
let heap = List.map_preserving_phys_equal heap ~f:(map_seg ~f:f_trm) in
let djns =
List.map_preserving_phys_equal djns
~f:(List.map_preserving_phys_equal ~f:f_sjn)
in
if cong == q.cong && pure == q.pure && heap == q.heap && djns == q.djns
then q
else {q with cong; pure; heap; djns}
with Unsat -> false_ us
let fold_terms_seg {loc; bas; len; siz; arr} ~init ~f =
let f b s = f s b in
f loc (f bas (f len (f siz (f arr init))))
let fold_vars_seg seg ~init ~f =
fold_terms_seg seg ~init ~f:(fun init -> Term.fold_vars ~f ~init)
let fold_vars_stem ?ignore_cong {us= _; xs= _; cong; pure; heap; djns= _}
~init ~f =
List.fold ~init heap ~f:(fun init -> fold_vars_seg ~f ~init)
|> fun init ->
List.fold ~init pure ~f:(fun init -> Term.fold_vars ~f ~init)
|> fun init ->
if Option.is_some ignore_cong then init
else
Equality.fold_terms ~init cong ~f:(fun init -> Term.fold_vars ~f ~init)
let fold_vars ?ignore_cong fold_vars q ~init ~f =
fold_vars_stem ?ignore_cong ~init ~f q
|> fun init ->
List.fold ~init q.djns ~f:(fun init -> List.fold ~init ~f:fold_vars)
(** Pretty-printing *)
let rec var_strength_ xs m q =
let add m v =
match Var.Map.find m v with
| None -> Var.Map.set m ~key:v ~data:`Anonymous
| Some `Anonymous -> Var.Map.set m ~key:v ~data:`Existential
| Some _ -> m
in
let xs = Var.Set.union xs q.xs in
let m_stem =
fold_vars_stem ~ignore_cong:() q ~init:m ~f:(fun m var ->
if not (Var.Set.mem xs var) then
Var.Map.set m ~key:var ~data:`Universal
else add m var )
in
let m =
List.fold ~init:m_stem q.djns ~f:(fun m djn ->
let ms = List.map ~f:(fun dj -> snd (var_strength_ xs m dj)) djn in
List.reduce_balanced ms ~f:(fun m1 m2 ->
Var.Map.merge_skewed m1 m2 ~combine:(fun ~key:_ s1 s2 ->
match (s1, s2) with
| `Anonymous, `Anonymous -> `Anonymous
| `Universal, _ | _, `Universal -> `Universal
| `Existential, _ | _, `Existential -> `Existential ) )
|> Option.value ~default:m )
in
(m_stem, m)
let var_strength_full ?(xs = Var.Set.empty) q =
let m =
Var.Set.fold xs ~init:Var.Map.empty ~f:(fun m x ->
Var.Map.set m ~key:x ~data:`Existential )
in
var_strength_ xs m q
let var_strength q = snd (var_strength_full q)
let pp_memory x fs (siz, arr) = Term.ppx x fs (Term.memory ~siz ~arr)
let pp_seg x fs {loc; bas; len; siz; arr} =
let term_pp = Term.ppx x in
Format.fprintf fs "@[<2>%a@ @[@[-[%a)->@]@ %a@]@]" term_pp loc
(fun fs (bas, len) ->
if (not (Term.equal loc bas)) || not (Term.equal len siz) then
Format.fprintf fs " %a, %a " term_pp bas term_pp len )
(bas, len) (pp_memory x) (siz, arr)
let pp_seg_norm cong fs seg =
let x _ = None in
pp_seg x fs (map_seg seg ~f:(Equality.normalize cong))
let pp_block x fs segs =
let is_full_alloc segs =
match segs with
| {loc; bas; len; _} :: _ -> (
Term.equal loc bas
&&
match len with
| Integer {data} -> (
match
List.fold segs ~init:(Some Z.zero) ~f:(fun len seg ->
match (len, seg.siz) with
| Some len, Integer {data} -> Some (Z.add len data)
| _ -> None )
with
| Some blk_len -> Z.equal data blk_len
| _ -> false )
| _ -> false )
| [] -> false
in
let term_pp = Term.ppx x in
let pp_mems =
List.pp "@,^" (fun fs seg -> pp_memory x fs (seg.siz, seg.arr))
in
match segs with
| {loc; bas; len; _} :: _ ->
Format.fprintf fs "@[<2>%a@ @[@[-[%t)->@]@ @[%a@]@]@]" term_pp loc
(fun fs ->
if not (is_full_alloc segs) then
Format.fprintf fs " %a, %a " term_pp bas term_pp len )
pp_mems segs
| [] -> ()
let pp_heap x ?pre cong fs heap =
let bas_off = function
| Term.Add poly as sum ->
let const = Term.Qset.count poly Term.one in
(Term.sub sum (Term.rational const), const)
| e -> (e, Q.zero)
in
let compare s1 s2 =
[%compare: Term.t * (Term.t * Q.t)]
( Equality.normalize cong s1.bas
, bas_off (Equality.normalize cong s1.loc) )
( Equality.normalize cong s2.bas
, bas_off (Equality.normalize cong s2.loc) )
in
let break s1 s2 =
(not (Term.equal s1.bas s2.bas))
|| (not (Term.equal s1.len s2.len))
|| not (Equality.entails_eq cong (Term.add s1.loc s1.siz) s2.loc)
in
let heap = List.map heap ~f:(map_seg ~f:(Equality.normalize cong)) in
let blocks = List.group ~break (List.sort ~compare heap) in
List.pp ?pre "@ * " (pp_block x) fs blocks
let pp_us ?(pre = ("" : _ fmt)) ?vs () fs us =
match vs with
| None ->
if not (Var.Set.is_empty us) then
[%Trace.fprintf fs "%( %)@[%a@] .@ " pre Var.Set.pp us]
| Some vs ->
if not (Var.Set.equal vs us) then
[%Trace.fprintf
fs "%( %)@[%a@] .@ " pre (Var.Set.pp_diff Var.pp) (vs, us)]
let rec pp_ ?var_strength vs parent_xs parent_cong fs
{us; xs; cong; pure; heap; djns} =
Format.pp_open_hvbox fs 0 ;
let x v = Option.bind ~f:(fun (_, m) -> Var.Map.find m v) var_strength in
pp_us ~vs () fs us ;
let xs_d_vs, xs_i_vs =
Var.Set.diff_inter
(Var.Set.filter xs ~f:(fun v -> Poly.(x v <> Some `Anonymous)))
vs
in
if not (Var.Set.is_empty xs_i_vs) then (
Format.fprintf fs "@<2>∃ @[%a@] ." (Var.Set.ppx x) xs_i_vs ;
if not (Var.Set.is_empty xs_d_vs) then Format.fprintf fs "@ " ) ;
if not (Var.Set.is_empty xs_d_vs) then
Format.fprintf fs "@<2>∃ @[%a@] .@ " (Var.Set.ppx x) xs_d_vs ;
let first = Equality.entails parent_cong cong in
if not first then Format.fprintf fs " " ;
Equality.ppx_classes_diff x fs (parent_cong, cong) ;
let pure =
if Option.is_none var_strength then pure
else
List.filter_map pure ~f:(fun e ->
let e' = Equality.normalize cong e in
if Term.is_true e' then None else Some e' )
in
List.pp
~pre:(if first then "@[ " else "@ @[@<2>∧ ")
"@ @<2>∧ " (Term.ppx x) fs
(List.dedup_and_sort ~compare:Term.compare pure)
~suf:"@]" ;
let first = first && List.is_empty pure in
if List.is_empty heap then
Format.fprintf fs
( if first then if List.is_empty djns then " emp" else ""
else "@ @<5>∧ emp" )
else pp_heap x ~pre:(if first then " " else "@ @<2>∧ ") cong fs heap ;
let first = first && List.is_empty heap in
List.pp
~pre:(if first then " " else "@ * ")
"@ * "
(pp_djn ?var_strength
(Var.Set.union vs (Var.Set.union us xs))
(Var.Set.union parent_xs xs)
cong)
fs djns ;
Format.pp_close_box fs ()
and pp_djn ?var_strength vs xs cong fs = function
| [] -> Format.fprintf fs "false"
| djn ->
Format.fprintf fs "@[<hv>( %a@ )@]"
(List.pp "@ @<2> " (fun fs sjn ->
let var_strength =
let+ var_strength_stem, _ = var_strength in
var_strength_ xs var_strength_stem sjn
in
Format.fprintf fs "@[<hv 1>(%a)@]"
(pp_ ?var_strength vs (Var.Set.union xs sjn.xs) cong)
sjn ))
djn
let pp_diff_eq ?(us = Var.Set.empty) ?(xs = Var.Set.empty) cong fs q =
pp_ ~var_strength:(var_strength_full ~xs q) us xs cong fs q
let pp fs q = pp_diff_eq Equality.true_ fs q
let pp_djn fs d = pp_djn Var.Set.empty Var.Set.empty Equality.true_ fs d
let pp_raw fs q = pp_ Var.Set.empty Var.Set.empty Equality.true_ fs q
let fv_seg seg = fold_vars_seg seg ~f:Var.Set.add ~init:Var.Set.empty
let fv ?ignore_cong q =
let rec fv_union init q =
Var.Set.diff
(fold_vars ?ignore_cong fv_union q ~init ~f:Var.Set.add)
q.xs
in
fv_union Var.Set.empty q
let invariant_pure = function
| Term.Integer {data} -> assert (not (Z.is_false data))
| _ -> assert true
let invariant_seg _ = ()
let rec invariant q =
Invariant.invariant [%here] q [%sexp_of: t]
@@ fun () ->
let {us; xs; cong; pure; heap; djns} = q in
try
assert (
Var.Set.disjoint us xs
|| fail "inter: @[%a@]@\nq: @[%a@]" Var.Set.pp (Var.Set.inter us xs)
pp q () ) ;
assert (
Var.Set.is_subset (fv q) ~of_:us
|| fail "unbound but free: %a" Var.Set.pp (Var.Set.diff (fv q) us) ()
) ;
Equality.invariant cong ;
( match djns with
| [[]] ->
assert (Equality.is_true cong) ;
assert (List.is_empty pure) ;
assert (List.is_empty heap)
| _ -> assert (not (Equality.is_false cong)) ) ;
List.iter pure ~f:invariant_pure ;
List.iter heap ~f:invariant_seg ;
List.iter djns ~f:(fun djn ->
List.iter djn ~f:(fun sjn ->
assert (Var.Set.is_subset sjn.us ~of_:(Var.Set.union us xs)) ;
invariant sjn ) )
with exc -> [%Trace.info "%a" pp q] ; raise exc
(** Quantification and Vocabulary *)
(** primitive application of a substitution, ignores us and xs, may violate
invariant *)
let rec apply_subst sub q =
map q ~f_sjn:(rename sub)
~f_cong:(fun r -> Equality.rename r sub)
~f_trm:(Term.rename sub)
|> check (fun q' ->
assert (Var.Set.disjoint (fv q') (Var.Subst.domain sub)) )
and rename sub q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Var.Subst.pp sub pp q]
;
let sub = Var.Subst.restrict sub q.us in
( if Var.Subst.is_empty sub then q
else
let us = Var.Subst.apply_set sub q.us in
assert (not (Var.Set.equal us q.us)) ;
let q' = apply_subst sub (freshen_xs q ~wrt:(Var.Set.union q.us us)) in
{q' with us} )
|>
[%Trace.retn fun {pf} q' ->
pf "%a" pp q' ;
invariant q' ;
assert (Var.Set.disjoint q'.us (Var.Subst.domain sub))]
(** freshen existentials, preserving vocabulary *)
and freshen_xs q ~wrt =
[%Trace.call fun {pf} ->
pf "{@[%a@]}@ %a" Var.Set.pp wrt pp q ;
assert (Var.Set.is_subset q.us ~of_:wrt)]
;
let sub = Var.Subst.freshen q.xs ~wrt in
( if Var.Subst.is_empty sub then q
else
let xs = Var.Subst.apply_set sub q.xs in
let q' = apply_subst sub q in
if xs == q.xs && q' == q then q else {q' with xs} )
|>
[%Trace.retn fun {pf} q' ->
pf "%a@ %a" Var.Subst.pp sub pp q' ;
assert (Var.Set.equal q'.us q.us) ;
assert (Var.Set.disjoint q'.xs (Var.Subst.domain sub)) ;
assert (Var.Set.disjoint q'.xs (Var.Set.inter q.xs wrt)) ;
invariant q']
let extend_us us q =
let us = Var.Set.union us q.us in
let q' = freshen_xs q ~wrt:us in
(if us == q.us && q' == q then q else {q' with us}) |> check invariant
let freshen ~wrt q =
let sub = Var.Subst.freshen q.us ~wrt:(Var.Set.union wrt q.xs) in
let q' = extend_us wrt (rename sub q) in
(if q' == q then (q, sub) else (q', sub))
|> check (fun (q', _) ->
invariant q' ;
assert (Var.Set.is_subset wrt ~of_:q'.us) ;
assert (Var.Set.disjoint wrt (fv q')) )
let bind_exists q ~wrt =
[%Trace.call fun {pf} -> pf "{@[%a@]}@ %a" Var.Set.pp wrt pp q]
;
let q' =
if Var.Set.is_empty wrt then q
else freshen_xs q ~wrt:(Var.Set.union q.us wrt)
in
(q'.xs, {q' with us= Var.Set.union q'.us q'.xs; xs= Var.Set.empty})
|>
[%Trace.retn fun {pf} (_, q') -> pf "%a" pp q']
let exists_fresh xs q =
[%Trace.call fun {pf} ->
pf "{@[%a@]}@ %a" Var.Set.pp xs pp q ;
assert (
Var.Set.disjoint xs q.us
|| fail "Sh.exists_fresh xs ∩ q.us: %a" Var.Set.pp
(Var.Set.inter xs q.us) () )]
;
( if Var.Set.is_empty xs then q
else {q with xs= Var.Set.union q.xs xs} |> check invariant )
|>
[%Trace.retn fun {pf} -> pf "%a" pp]
let exists xs q =
[%Trace.call fun {pf} -> pf "{@[%a@]}@ %a" Var.Set.pp xs pp q]
;
assert (
Var.Set.is_subset xs ~of_:q.us
|| fail "Sh.exists xs - q.us: %a" Var.Set.pp (Var.Set.diff xs q.us) ()
) ;
( if Var.Set.is_empty xs then q
else
{q with us= Var.Set.diff q.us xs; xs= Var.Set.union q.xs xs}
|> check invariant )
|>
[%Trace.retn fun {pf} -> pf "%a" pp]
(** remove quantification on variables disjoint from vocabulary *)
let elim_exists xs q =
assert (Var.Set.disjoint xs q.us) ;
{q with us= Var.Set.union q.us xs; xs= Var.Set.diff q.xs xs}
(** Construct *)
(** conjoin an equality relation assuming vocabulary is compatible *)
let and_cong_ cong q =
assert (Var.Set.is_subset (Equality.fv cong) ~of_:q.us) ;
let xs, cong = Equality.and_ (Var.Set.union q.us q.xs) q.cong cong in
if Equality.is_false cong then false_ q.us
else exists_fresh xs {q with cong}
let and_cong cong q =
[%Trace.call fun {pf} -> pf "%a@ %a" Equality.pp cong pp q]
;
( match q.djns with
| [[]] -> q
| _ -> and_cong_ cong (extend_us (Equality.fv cong) q) )
|>
[%Trace.retn fun {pf} q -> pf "%a" pp q ; invariant q]
let star q1 q2 =
[%Trace.call fun {pf} -> pf "(%a)@ (%a)" pp q1 pp q2]
;
( match (q1, q2) with
| {djns= [[]]; _}, _ | _, {djns= [[]]; _} ->
false_ (Var.Set.union q1.us q2.us)
| {us= _; xs= _; cong; pure= []; heap= []; djns= []}, _
when Equality.is_true cong ->
let us = Var.Set.union q1.us q2.us in
if us == q2.us then q2 else {q2 with us}
| _, {us= _; xs= _; cong; pure= []; heap= []; djns= []}
when Equality.is_true cong ->
let us = Var.Set.union q1.us q2.us in
if us == q1.us then q1 else {q1 with us}
| _ ->
let us = Var.Set.union q1.us q2.us in
let q1 = freshen_xs q1 ~wrt:(Var.Set.union us q2.xs) in
let q2 = freshen_xs q2 ~wrt:(Var.Set.union us q1.xs) in
let {us= us1; xs= xs1; cong= c1; pure= p1; heap= h1; djns= d1} = q1 in
let {us= us2; xs= xs2; cong= c2; pure= p2; heap= h2; djns= d2} = q2 in
assert (Var.Set.equal us (Var.Set.union us1 us2)) ;
let xs, cong =
Equality.and_ (Var.Set.union us (Var.Set.union xs1 xs2)) c1 c2
in
if Equality.is_false cong then false_ us
else
exists_fresh xs
{ us
; xs= Var.Set.union xs1 xs2
; cong
; pure= List.append p1 p2
; heap= List.append h1 h2
; djns= List.append d1 d2 } )
|>
[%Trace.retn fun {pf} q ->
pf "%a" pp q ;
invariant q ;
assert (Var.Set.equal q.us (Var.Set.union q1.us q2.us))]
let starN = function
| [] -> emp
| [q] -> q
| q :: qs -> List.fold ~f:star ~init:q qs
let or_ q1 q2 =
[%Trace.call fun {pf} -> pf "(%a)@ (%a)" pp_raw q1 pp_raw q2]
;
( match (q1, q2) with
| {djns= [[]]; _}, _ -> extend_us q1.us q2
| _, {djns= [[]]; _} -> extend_us q2.us q1
| ( ({djns= []; _} as q)
, ({us= _; xs; cong= _; pure= []; heap= []; djns= [djn]} as d) )
when Var.Set.is_empty xs ->
{d with us= Var.Set.union q.us d.us; djns= [q :: djn]}
| ( ({us= _; xs; cong= _; pure= []; heap= []; djns= [djn]} as d)
, ({djns= []; _} as q) )
when Var.Set.is_empty xs ->
{d with us= Var.Set.union q.us d.us; djns= [q :: djn]}
| _ ->
{ us= Var.Set.union q1.us q2.us
; xs= Var.Set.empty
; cong= Equality.true_
; pure= []
; heap= []
; djns= [[q1; q2]] } )
|>
[%Trace.retn fun {pf} q ->
pf "%a" pp_raw q ;
invariant q ;
assert (Var.Set.equal q.us (Var.Set.union q1.us q2.us))]
let orN = function
| [] -> false_ Var.Set.empty
| [q] -> q
| q :: qs -> List.fold ~f:or_ ~init:q qs
let rec pure (e : Term.t) =
[%Trace.call fun {pf} -> pf "%a" Term.pp e]
;
( match e with
| Ap2 (Or, e1, e2) -> or_ (pure e1) (pure e2)
| Ap3 (Conditional, cnd, thn, els) ->
or_
(star (pure cnd) (pure thn))
(star (pure (Term.not_ cnd)) (pure els))
| _ ->
let us = Term.fv e in
let xs, cong = Equality.(and_term us e true_) in
if Equality.is_false cong then false_ us
else exists_fresh xs {emp with us; cong; pure= [e]} )
|>
[%Trace.retn fun {pf} q -> pf "%a" pp q ; invariant q]
let and_ e q = star (pure e) q
let and_subst subst q =
[%Trace.call fun {pf} -> pf "%a@ %a" Equality.Subst.pp subst pp q]
;
Equality.Subst.fold
~f:(fun ~key ~data -> and_ (Term.eq key data))
subst ~init:q
|>
[%Trace.retn fun {pf} q -> pf "%a" pp q ; invariant q]
let subst sub q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Var.Subst.pp sub pp q]
;
let dom, eqs =
Var.Subst.fold sub ~init:(Var.Set.empty, Term.true_)
~f:(fun var trm (dom, eqs) ->
( Var.Set.add dom var
, Term.and_ (Term.eq (Term.var var) (Term.var trm)) eqs ) )
in
exists dom (and_ eqs q)
|>
[%Trace.retn fun {pf} q' ->
pf "%a" pp q' ;
invariant q' ;
assert (Var.Set.disjoint q'.us (Var.Subst.domain sub))]
let seg pt =
let us = fv_seg pt in
if Term.equal Term.null pt.loc then false_ us
else {emp with us; heap= [pt]} |> check invariant
(** Update *)
let with_pure pure q = {q with pure} |> check invariant
let rem_seg seg q =
{q with heap= List.remove_exn q.heap seg} |> check invariant
let filter_heap ~f q =
{q with heap= List.filter q.heap ~f} |> check invariant
(** Query *)
let is_emp = function
| {us= _; xs= _; cong= _; pure= []; heap= []; djns= []} -> true
| _ -> false
let is_false = function
| {djns= [[]]; _} -> true
| {cong; pure; heap; _} ->
List.exists pure ~f:(fun b ->
Term.is_false (Equality.normalize cong b) )
|| List.exists heap ~f:(fun seg ->
Equality.entails_eq cong seg.loc Term.null )
let rec pure_approx ({us; xs; cong; pure; heap= _; djns} as q) =
let heap = emp.heap in
let djns =
List.map_preserving_phys_equal djns ~f:(fun djn ->
List.map_preserving_phys_equal djn ~f:pure_approx )
in
if heap == q.heap && djns == q.djns then q
else {us; xs; cong; pure; heap; djns} |> check invariant
let pure_approx q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
pure_approx q
|>
[%Trace.retn fun {pf} -> pf "%a" pp]
let fold_dnf ~conj ~disj sjn (xs, conjuncts) disjuncts =
let rec add_disjunct pending_splits sjn (xs, conjuncts) disjuncts =
let ys, sjn = bind_exists sjn ~wrt:xs in
let xs = Var.Set.union ys xs in
let djns = sjn.djns in
let sjn = {sjn with djns= []} in
split_case
(List.rev_append djns pending_splits)
(xs, conj sjn conjuncts)
disjuncts
and split_case pending_splits (xs, conjuncts) disjuncts =
match pending_splits with
| split :: pending_splits ->
List.fold split ~init:disjuncts ~f:(fun disjuncts sjn ->
add_disjunct pending_splits sjn (xs, conjuncts) disjuncts )
| [] -> disj (xs, conjuncts) disjuncts
in
add_disjunct [] sjn (xs, conjuncts) disjuncts
let dnf q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
let conj sjn conjuncts = sjn :: conjuncts in
let disj (xs, conjuncts) disjuncts =
exists xs (starN conjuncts) :: disjuncts
in
fold_dnf ~conj ~disj q (Var.Set.empty, []) []
|>
[%Trace.retn fun {pf} -> pf "%a" pp_djn]
(** Simplify *)
let rec norm_ s q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Equality.Subst.pp s pp_raw q]
;
let q =
map q ~f_sjn:(norm_ s) ~f_cong:Fn.id ~f_trm:(Equality.Subst.subst s)
in
let xs, cong = Equality.apply_subst (Var.Set.union q.us q.xs) s q.cong in
exists_fresh xs {q with cong}
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp_raw q' ; invariant q']
let norm s q =
[%Trace.call fun {pf} -> pf "@[%a@]@ %a" Equality.Subst.pp s pp_raw q]
;
(if Equality.Subst.is_empty s then q else norm_ s q)
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp_raw q' ; invariant q']
(** rename existentially quantified variables to avoid shadowing, and reduce
quantifier scopes by sinking them as low as possible into disjunctions *)
let rec freshen_nested_xs q =
[%Trace.call fun {pf} -> pf "%a" pp q]
;
(* trim xs to those that appear in the stem and sink the rest *)
let fv_stem = fv {q with xs= Var.Set.empty; djns= []} in
let xs_sink, xs = Var.Set.diff_inter q.xs fv_stem in
let xs_below, djns =
List.fold_map ~init:Var.Set.empty q.djns ~f:(fun xs_below djn ->
List.fold_map ~init:xs_below djn ~f:(fun xs_below dj ->
(* quantify xs not in stem and freshen disjunct *)
let dj' =
freshen_nested_xs (exists (Var.Set.inter xs_sink dj.us) dj)
in
let xs_below' = Var.Set.union xs_below dj'.xs in
(xs_below', dj') ) )
in
(* rename xs to miss all xs in subformulas *)
freshen_xs {q with xs; djns} ~wrt:(Var.Set.union q.us xs_below)
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp q' ; invariant q']
let rec propagate_equality_ ancestor_vs ancestor_cong q =
[%Trace.call fun {pf} ->
pf "(%a)@ %a" Equality.pp_classes ancestor_cong pp q]
;
(* extend vocabulary with variables in scope above *)
let ancestor_vs = Var.Set.union ancestor_vs (Var.Set.union q.us q.xs) in
(* decompose formula *)
let xs, stem, djns =
(q.xs, {q with us= ancestor_vs; xs= emp.xs; djns= emp.djns}, q.djns)
in
(* strengthen equality relation with that from above *)
let ancestor_stem = and_cong_ ancestor_cong stem in
let ancestor_cong = ancestor_stem.cong in
exists xs
(List.fold djns ~init:ancestor_stem ~f:(fun q' djn ->
let dj_congs, djn =
List.rev_map_unzip djn ~f:(fun dj ->
let dj = propagate_equality_ ancestor_vs ancestor_cong dj in
(dj.cong, dj) )
in
let new_xs, djn_cong = Equality.orN ancestor_vs dj_congs in
(* hoist xs appearing in disjunction's equality relation *)
let djn_xs = Var.Set.diff (Equality.fv djn_cong) q'.us in
let djn = List.map ~f:(elim_exists djn_xs) djn in
let cong_djn = and_cong_ djn_cong (orN djn) in
assert (is_false cong_djn || Var.Set.is_subset new_xs ~of_:djn_xs) ;
star (exists djn_xs cong_djn) q' ))
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp q' ; invariant q']
let propagate_equality ancestor_vs ancestor_cong q =
[%Trace.call fun {pf} ->
pf "(%a)@ %a" Equality.pp_classes ancestor_cong pp q]
;
propagate_equality_ ancestor_vs ancestor_cong q
|>
[%Trace.retn fun {pf} q' -> pf "%a" pp q' ; invariant q']
let pp_vss fs vss =
Format.fprintf fs "[@[%a@]]"
(List.pp ";@ " (fun fs vs -> Format.fprintf fs "{@[%a@]}" Var.Set.pp vs))
vss
let remove_absent_xs ks q =
let ks = Var.Set.inter ks q.xs in
if Var.Set.is_empty ks then q
else
let xs = Var.Set.diff q.xs ks in
let djns =
let rec trim_ks ks djns =
List.map djns ~f:(fun djn ->
List.map djn ~f:(fun sjn ->
{ sjn with
us= Var.Set.diff sjn.us ks
; djns= trim_ks ks sjn.djns } ) )
in
trim_ks ks q.djns
in
{q with xs; djns}
let rec simplify_ us rev_xss q =
[%Trace.call fun {pf} -> pf "%a@ %a" pp_vss (List.rev rev_xss) pp_raw q]
;
let rev_xss = q.xs :: rev_xss in
(* recursively simplify subformulas *)
let q =
exists q.xs
(starN
( {q with us= Var.Set.union q.us q.xs; xs= emp.xs; djns= []}
:: List.map q.djns ~f:(fun djn ->
orN (List.map djn ~f:(fun sjn -> simplify_ us rev_xss sjn))
) ))
in
(* try to solve equations in cong for variables in xss *)
let subst = Equality.solve_for_vars (us :: List.rev rev_xss) q.cong in
(* simplification can reveal inconsistency *)
( if is_false q then false_ q.us
else if Equality.Subst.is_empty subst then q
else
(* normalize wrt solutions *)
let q = norm subst q in
(* reconjoin only non-redundant equations *)
let removed =
Var.Set.diff
(Var.Set.union_list rev_xss)
(fv ~ignore_cong:() (elim_exists q.xs q))
in
let keep, removed, _ = Equality.Subst.partition_valid removed subst in
let q = and_subst keep q in
(* remove the eliminated variables from xs and subformulas' us *)
remove_absent_xs removed q )
|>
[%Trace.retn fun {pf} q' ->
pf "%a@ %a" Equality.Subst.pp subst pp_raw q' ;
invariant q']
let simplify q =
[%Trace.call fun {pf} -> pf "%a" pp_raw q]
;
let q = freshen_nested_xs q in
let q = propagate_equality Var.Set.empty Equality.true_ q in
let q = simplify_ q.us [] q in
q
|>
[%Trace.retn fun {pf} q' -> pf "@\n" ; invariant q']