You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

594 lines
18 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Properties of the llair model *)
open HolKernel boolLib bossLib Parse;
open arithmeticTheory integerTheory integer_wordTheory wordsTheory listTheory;
open pred_setTheory finite_mapTheory;
open settingsTheory miscTheory llairTheory;
new_theory "llair_prop";
numLib.prefer_num ();
Theorem signed2unsigned_fits:
0 < n ifits i n ifits (&signed2unsigned i n) (n + 1)
Proof
rw [signed2unsigned_def, ifits_def]
>- (
`?j. i = -&j` by intLib.COOPER_TAC >>
rw [] >> fs [] >>
rfs [EXP_SUB] >>
`j 2 ** n` by intLib.COOPER_TAC >>
rw [INT_SUB, GSYM int_sub])
>- (
`?j. i = &j` by intLib.COOPER_TAC >>
rw [] >> fs [] >>
rw [INT_SUB, GSYM int_sub] >>
rfs [EXP_SUB] >>
intLib.COOPER_TAC)
QED
Theorem i2n_n2i:
∀n size. 0 < size (nfits n size (i2n (n2i n size) = n))
Proof
rw [nfits_def, n2i_def, i2n_def, signed2unsigned_def] >> rw []
>- intLib.COOPER_TAC
>- (
`2 ** size n` by intLib.COOPER_TAC >> simp [INT_SUB] >>
Cases_on `n = 0` >> fs [] >>
`n - 2 ** size < n` suffices_by intLib.COOPER_TAC >>
irule SUB_LESS >> simp [])
>- (
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
fs [])
QED
Theorem n2i_i2n:
∀i size. 0 < size (ifits i size (n2i (i2n (IntV i size)) size) = IntV i size)
Proof
rw [ifits_def, n2i_def, i2n_def, signed2unsigned_def] >> rw [] >> fs []
>- (
eq_tac >> rw []
>- (
simp [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z x = y + z``] >>
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
fs [INT_OF_NUM])
>- (
fs [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z x = y + z``] >>
fs [INT_OF_NUM] >>
`∃j. i = -j` by intLib.COOPER_TAC >> rw [] >> fs [] >>
qpat_x_assum `_ Num _` mp_tac >>
fs [GSYM INT_OF_NUM] >>
ASM_REWRITE_TAC [GSYM INT_LE] >> rw [] >>
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
intLib.COOPER_TAC)
>- intLib.COOPER_TAC)
>- (
eq_tac >> rw []
>- intLib.COOPER_TAC
>- intLib.COOPER_TAC >>
`0 i` by intLib.COOPER_TAC >>
fs [GSYM INT_OF_NUM] >>
`&(2 ** size) = 0` by intLib.COOPER_TAC >>
fs [])
>- (
eq_tac >> rw []
>- (
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
intLib.COOPER_TAC)
>- intLib.COOPER_TAC
>- intLib.COOPER_TAC)
>- intLib.COOPER_TAC
QED
Theorem w2n_signed2unsigned:
∀w. w2n (w : 'a word) = signed2unsigned (w2i w) (dimindex (:'a))
Proof
rw [signed2unsigned_def] >> Cases_on `w` >> fs []
>- (
`INT_MIN (:α) n`
by (
fs [w2i_def] >> rw [] >>
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
rfs []) >>
rw [w2i_n2w_neg, dimword_def, int_arithTheory.INT_NUM_SUB])
>- (
`n < INT_MIN (:'a)`
by (
fs [w2i_def] >> rw [] >>
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
rfs []) >>
rw [w2i_n2w_pos])
QED
Theorem w2n_i2n:
∀w. w2n (w : 'a word) = i2n (IntV (w2i w) (dimindex (:'a)))
Proof
rw [i2n_def] >> metis_tac [w2n_signed2unsigned]
QED
Theorem w2i_n2w:
∀n. n < dimword (:'a) IntV (w2i (n2w n : 'a word)) (dimindex (:'a)) = n2i n (dimindex (:'a))
Proof
rw [n2i_def]
>- (
qspec_then `n` mp_tac w2i_n2w_neg >>
fs [dimword_def, INT_MIN_def] >> rw [GSYM INT_SUB])
>- (irule w2i_n2w_pos >> rw [INT_MIN_def])
QED
Theorem eval_exp_ignores_lem:
∀s1 e v. eval_exp s1 e v ∀s2. s1.locals = s2.locals eval_exp s2 e v
Proof
ho_match_mp_tac eval_exp_ind >>
rw [] >> simp [Once eval_exp_cases] >>
TRY (qexists_tac `vals` >> rw [] >> fs [LIST_REL_EL_EQN] >> NO_TAC) >>
TRY (fs [LIST_REL_EL_EQN] >> NO_TAC) >>
metis_tac []
QED
Theorem eval_exp_ignores:
∀s1 e v s2. s1.locals = s2.locals (eval_exp s1 e v eval_exp s2 e v)
Proof
metis_tac [eval_exp_ignores_lem]
QED
Definition exp_uses_def:
(exp_uses (Var x) = {x})
(exp_uses Nondet = {})
(exp_uses (Label _) = {})
(exp_uses (Splat e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Memory e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Concat es) = bigunion (set (map exp_uses es)))
(exp_uses (Integer _ _) = {})
(exp_uses (Eq e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Lt e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Ult e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Sub _ e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Record es) = bigunion (set (map exp_uses es)))
(exp_uses (Select e1 e2) = exp_uses e1 exp_uses e2)
(exp_uses (Update e1 e2 e3) = exp_uses e1 exp_uses e2 exp_uses e3)
(exp_uses (Unsigned _ e _) = exp_uses e)
(exp_uses (Signed _ e _) = exp_uses e)
Termination
WF_REL_TAC `measure exp_size` >> rw [] >>
Induct_on `es` >> rw [exp_size_def] >> res_tac >> rw []
End
Theorem eval_exp_ignores_unused_lem:
∀s1 e v.
eval_exp s1 e v
∀s2. DRESTRICT s1.locals (exp_uses e) = DRESTRICT s2.locals (exp_uses e)
eval_exp s2 e v
Proof
ho_match_mp_tac eval_exp_ind >>
rw [exp_uses_def] >> simp [Once eval_exp_cases]
>- (
fs [DRESTRICT_EQ_DRESTRICT, EXTENSION, FDOM_DRESTRICT] >>
imp_res_tac FLOOKUP_SUBMAP >>
fs [FLOOKUP_DRESTRICT]) >>
fs [drestrict_union_eq]
>- metis_tac []
>- metis_tac []
>- (
rpt (pop_assum mp_tac) >>
qid_spec_tac `vals` >>
Induct_on `es` >> rw [] >> Cases_on `vals` >> rw [PULL_EXISTS] >> fs [] >>
rw [] >> fs [drestrict_union_eq] >>
rename [`v1++flat vs`] >>
first_x_assum (qspec_then `vs` mp_tac) >> rw [] >>
qexists_tac `v1 :: vals'` >> rw [])
>- metis_tac []
>- metis_tac []
>- metis_tac []
>- metis_tac []
>- (
rpt (pop_assum mp_tac) >>
qid_spec_tac `vals` >>
Induct_on `es` >> rw [] >> fs [drestrict_union_eq])
>- metis_tac []
>- metis_tac []
>- metis_tac []
>- metis_tac []
QED
Theorem eval_exp_ignores_unused:
∀s1 e v s2. DRESTRICT s1.locals (exp_uses e) = DRESTRICT s2.locals (exp_uses e) (eval_exp s1 e v eval_exp s2 e v)
Proof
metis_tac [eval_exp_ignores_unused_lem]
QED
Triviality num_mod_to_int_mod:
y 0 x MOD y = Num (&x % &y)
Proof
fs [INT_MOD]
QED
Triviality int_of_num2:
0 x &Num x = x
Proof
metis_tac [INT_OF_NUM]
QED
Theorem int_sub_mod:
∀i j. j 0 (i - j) % j = i % j
Proof
rw [int_mod] >>
`-j % j = 0 -j / j = -1`
by (
ONCE_REWRITE_TAC [INT_NEG_MINUS1] >> rw [] >>
rw [INT_MUL_DIV]) >>
rw [INT_ADD_DIV, int_sub, INT_RDISTRIB] >>
rw [] >>
intLib.COOPER_TAC
QED
Theorem mod_halfway:
∀i b. 0 < b ((i + b) % (2 * b) - b < 0 0 i % (2 * b) - b)
Proof
rw [] >> `b 0` by intLib.COOPER_TAC >>
rw [Once (GSYM INT_MOD_PLUS)] >>
`b < 2 * b` by intLib.COOPER_TAC >>
rw [INT_LESS_MOD] >>
`0 i % (2 * b) i % (2 * b) < 2 * b`
by (
`~(2 * b < 0) 2 * b 0` by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw []) >>
`0 i % (2 * b) + b` by intLib.COOPER_TAC >>
Cases_on `i % (2 * b) + b < 2 * b` >> rw [INT_LESS_MOD]
>- intLib.COOPER_TAC >>
simp [Once (GSYM int_sub_mod)] >>
rw [intLib.COOPER_PROVE ``∀x (b:int). x + b - (2 * b) = x - b``] >>
`i % (2 * b) b < 2 * b` by intLib.COOPER_TAC >>
`0 i % (2 * b) b` by intLib.COOPER_TAC >>
rw [INT_LESS_MOD] >>
intLib.COOPER_TAC
QED
Theorem unsigned_truncate:
∀m n i.
0 < m m n -i 2 ** n
signed2unsigned (truncate_2comp i m) m = signed2unsigned i n MOD (2 ** m)
Proof
rw [signed2unsigned_def, truncate_2comp_def] >>
qabbrev_tac `b = &(2 ** (m - 1))` >>
`&((2:num) ** m) = 2 * b`
by (rw [Abbr `b`] >> Cases_on `m` >> fs [ADD1, EXP_ADD]) >>
`0 < b` by rw [Abbr `b`] >>
`0 < 2 * b 0 2 * b b < 2 * b` by (rw [Abbr `b`] >> intLib.COOPER_TAC) >>
asm_simp_tac std_ss [num_mod_to_int_mod] >>
fs [mod_halfway] >>
`∃x. &(2 ** n) = 2 * b * 2 ** x`
by (
rw [Abbr `b`, GSYM EXP_ADD] >>
`2 = 2 ** 1` by rw [] >>
`∀x. 2 * 2 ** (m + x - 1) = 2 ** (1 + (m + x - 1))` by metis_tac [EXP_ADD] >>
rw [] >>
qexists_tac `n - m` >> rw []) >>
irule (METIS_PROVE [] ``x = y f x = f y``) >>
fs [GSYM int_le] >>
rw [int_of_num2] >>
rw [intLib.COOPER_PROVE ``∀(x:int) b. 2 * b + (x - b) = b + x``] >>
`0 i % (2 * b) i % (2 * b) < 2 * b`
by (
`~(2 * b < 0) 2 * b 0` by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw [])
>- (
`0 2 * b * &(2 ** x) + i` by intLib.COOPER_TAC >>
rw [int_of_num2] >>
`2 * b 0` by intLib.COOPER_TAC >>
drule INT_MOD_ADD_MULTIPLES >>
rw [Once INT_MUL_COMM] >>
rw [Once (GSYM INT_MOD_PLUS)] >>
rw [INT_LESS_MOD] >>
simp [Once (GSYM int_sub_mod)] >>
rw [intLib.COOPER_PROVE ``∀x (b:int). x + b - (2 * b) = x - b``] >>
`i % (2 * b) b < 2 * b` by intLib.COOPER_TAC >>
rw [INT_LESS_MOD])
>- (
rw [Once (GSYM INT_MOD_PLUS)] >>
rw [INT_LESS_MOD] >>
simp [Once (GSYM int_sub_mod)] >>
rw [intLib.COOPER_PROVE ``∀x (b:int). x + b - (2 * b) = x - b``] >>
`i % (2 * b) b < 2 * b` by intLib.COOPER_TAC >>
rw [INT_LESS_MOD])
>- (
`0 2 * b * &(2 ** x) + i` by intLib.COOPER_TAC >>
rw [int_of_num2] >>
`2 * b 0` by intLib.COOPER_TAC >>
drule INT_MOD_ADD_MULTIPLES >>
rw [Once INT_MUL_COMM] >>
rw [Once (GSYM INT_MOD_PLUS)] >>
rw [INT_LESS_MOD] >>
`i % (2 * b) + b < 2 * b` by intLib.COOPER_TAC >>
rw [INT_LESS_MOD] >>
intLib.COOPER_TAC)
>- (
rw [Once (GSYM INT_MOD_PLUS)] >>
rw [INT_LESS_MOD] >>
`i % (2 * b) + b < 2 * b` by intLib.COOPER_TAC >>
rw [INT_LESS_MOD] >>
intLib.COOPER_TAC)
QED
(* Relate the semantics of Convert to something more closely following the
* implementation *)
Definition Zextract_def:
Zextract (:'a) z off len = &w2n ((len+off-1 -- off) (i2w z : 'a word))
End
Definition Zsigned_extract_def:
Zsigned_extract (:'a) z off len = w2i ((len+off-1 --- off) (i2w z : 'a word))
End
(*
* Some tests of extract and signed_extract in both HOL and OCaml to check that
* we are defining the same thing *)
(*
EVAL ``
let bp1 = 0b11001100w : word8 in
let bp2 = 0b01011011w : word8 in
let i1 = &(w2n bp1) in
let i2 = w2i bp1 in
let i3 = &(w2n bp2) in
Zextract (:128) i1 0 8 = i1
Zextract (:128) i2 0 8 = i1
Zextract (:128) i3 0 8 = i3
Zsigned_extract (:128) i1 0 8 = i2
Zsigned_extract (:128) i2 0 8 = i2
Zsigned_extract (:128) i3 0 8 = i3
Zextract (:128) i1 2 4 = 3
Zextract (:128) i2 2 4 = 3
Zextract (:128) i1 2 5 = 19
Zextract (:128) i2 2 5 = 19
Zextract (:128) i3 1 2 = 1
Zextract (:128) i3 1 3 = 5
Zsigned_extract (:128) i1 2 4 = 3
Zsigned_extract (:128) i2 2 4 = 3
Zsigned_extract (:128) i1 2 5 = -13
Zsigned_extract (:128) i2 2 5 = -13
Zsigned_extract (:128) i3 1 2 = 1
Zsigned_extract (:128) i3 1 3 = -3``
let i1 = Z.of_int 0b11001100 in
let i2 = Z.of_int (-52) in
let i3 = Z.of_int 0b01011011 in
Z.extract i1 0 8 = i1 &&
Z.extract i2 0 8 = i1 &&
Z.extract i3 0 8 = i3 &&
Z.signed_extract i1 0 8 = i2 &&
Z.signed_extract i2 0 8 = i2 &&
Z.signed_extract i3 0 8 = i3 &&
Z.extract i1 2 4 = Z.of_int 3 &&
Z.extract i2 2 4 = Z.of_int 3 &&
Z.extract i1 2 5 = Z.of_int 19 &&
Z.extract i2 2 5 = Z.of_int 19 &&
Z.extract i3 1 2 = Z.of_int 1 &&
Z.extract i3 1 3 = Z.of_int 5 &&
Z.signed_extract i1 2 4 = Z.of_int 3 &&
Z.signed_extract i2 2 4 = Z.of_int 3 &&
Z.signed_extract i1 2 5 = Z.of_int (-13) &&
Z.signed_extract i2 2 5 = Z.of_int (-13) &&
Z.signed_extract i3 1 2 = Z.of_int 1 &&
Z.signed_extract i3 1 3 = Z.of_int (-3);;
*)
Theorem Zextract0:
dimindex (:'b) dimindex (:'a)
Zextract (:'a) i 0 (dimindex (:'b)) = &w2n (i2w i : 'b word)
Proof
rw [Zextract_def] >>
`w2n ((dimindex (:β) 1 -- 0) (i2w i : 'a word)) =
w2n (w2w (i2w i : 'a word) : 'b word)`
by (
rw [w2n_w2w] >>
`dimindex (:'b) = dimindex (:'a)` by decide_tac >>
fs [WORD_ALL_BITS]) >>
rw [w2w_i2w]
QED
Theorem Zsigned_extract0:
dimindex (:'b) dimindex (:'a)
Zsigned_extract (:'a) i 0 (dimindex (:'b)) = w2i (i2w i : 'b word)
Proof
rw [Zsigned_extract_def] >>
rw [word_sign_extend_bits, word_sign_extend_def, ADD1] >>
`0 < dimindex (:'b) dimindex (:'b) - 1 + 1 = dimindex (:'b)` by decide_tac >>
`min (dimindex (:β)) (dimindex (:α)) = dimindex (:β)` by fs [MIN_DEF] >>
rw [] >>
`w2n ((dimindex (:β) 1 -- 0) (i2w i : 'a word)) =
w2n (w2w (i2w i : 'a word) : 'b word)`
by (
rw [w2n_w2w] >>
`dimindex (:'b) = dimindex (:'a)` by decide_tac >>
fs [WORD_ALL_BITS]) >>
rw [GSYM sw2sw_def, w2w_i2w] >>
rw [w21_sw2sw_extend]
QED
Theorem signed_extract_truncate_2comp:
dimindex (:'b) dimindex (:'a)
Zsigned_extract (:'a) i 0 (dimindex (:'b)) = truncate_2comp i (dimindex (:'b))
Proof
rw [] >>
drule Zsigned_extract0 >> rw [] >>
metis_tac [truncate_2comp_i2w_w2i]
QED
Theorem unsigned_extract_truncate_2comp:
dimindex (:'b) dimindex (:'a)
Zextract (:'a) i 0 (dimindex (:'b)) = &signed2unsigned (truncate_2comp i (dimindex (:'b))) (dimindex (:'b))
Proof
rw [] >> drule Zextract0 >> rw [w2n_i2w] >>
`∃n. -i 2 ** n dimindex (:'b) n`
by (
Cases_on `i < 0` >> rw []
>- (
`∃j. i = -&j` by intLib.COOPER_TAC >>
rw [] >>
`1 < 2` by decide_tac >>
drule EXP_ALWAYS_BIG_ENOUGH >>
disch_then (qspec_then `j` mp_tac) >>
rw [] >>
qexists_tac `MAX m (dimindex (:'b))` >>
rw [MAX_DEF] >>
drule bitTheory.TWOEXP_MONO >>
intLib.COOPER_TAC)
>- (
`∃j. i = &j` by intLib.COOPER_TAC >>
rw [] >>
metis_tac [])) >>
`0 < dimword (:'b) 0 < dimindex (:'b)` by rw [DIMINDEX_GT_0, ZERO_LT_dimword] >>
`0 dimindex (:'b) 0 dimword (:'b)` by decide_tac >>
drule unsigned_truncate >>
ntac 2 (disch_then drule) >>
rw [GSYM dimword_def] >>
rw [signed2unsigned_def]
>- (
asm_simp_tac std_ss [GSYM INT_MOD] >>
`0 &(2 ** n) + i`
by (fs [INT_EXP] >> intLib.COOPER_TAC) >>
asm_simp_tac std_ss [int_of_num2] >>
`∃j. i = -&j` by intLib.COOPER_TAC >>
rw [] >>
`∃x. &(2 ** n) = dimword (:'b) * 2 ** x`
by (
rw [GSYM EXP_ADD, dimword_def] >>
qexists_tac `n - dimindex (:'b)` >> rw []) >>
rw [] >>
`&dimword (:β) 0` by intLib.COOPER_TAC >>
drule INT_MOD_ADD_MULTIPLES >>
simp_tac std_ss [Once INT_MUL_COMM, GSYM INT_MUL])
>- (
`∃j. i = &j` by intLib.COOPER_TAC >>
rw [])
QED
Definition simp_signed_def:
simp_signed (:'a) bits arg to_t =
case arg of
| Integer data _ => Integer (Zsigned_extract (:'a) data 0 bits) to_t
| _ => Signed bits arg to_t
End
Definition simp_unsigned_def:
simp_unsigned (:'a) bits arg to_t =
case arg of
| Integer data _ => Integer (Zextract (:'a) data 0 bits) to_t
| _ => Signed bits arg to_t
End
Theorem signed_implementation_fits:
∀const i to_t from_t.
dimindex (:'b) sizeof_bits to_t
dimindex (:'b) dimindex (:'a)
∃i2.
simp_signed (:'a) (dimindex (:'b)) (Integer i from_t) to_t =
Integer i2 to_t ifits i2 (sizeof_bits to_t)
Proof
rw [simp_signed_def] >>
drule Zsigned_extract0 >> rw [] >>
`ifits (w2i (i2w i : 'b word)) (dimindex (:'b))` by metis_tac [ifits_w2i] >>
metis_tac [ifits_mono]
QED
Theorem unsigned_implementation_fits:
∀const i to_t from_t.
dimindex (:'b) < sizeof_bits to_t
dimindex (:'b) dimindex (:'a)
∃i2.
simp_unsigned (:'a) (dimindex (:'b)) (Integer i from_t) to_t =
Integer i2 to_t ifits i2 (sizeof_bits to_t)
Proof
rw [simp_unsigned_def] >>
drule Zextract0 >> rw [] >> rw [w2n_i2w] >>
fs [ifits_def, dimword_def] >> rw [] >>
qspecl_then [`i`, `&(2 ** dimindex (:β))`] mp_tac INT_MOD_BOUNDS >>
rw []
>- (
`0 <= (2:num) ** (sizeof_bits to_t 1)` by intLib.COOPER_TAC >>
intLib.COOPER_TAC)
>- (
`2 ** dimindex (:'b) 2 ** (sizeof_bits to_t - 1)` suffices_by intLib.COOPER_TAC >>
rw [])
QED
Theorem signed_implementation:
∀to_t i from_t h m n.
dimindex (:'b) sizeof_bits to_t
dimindex (:'b) dimindex (:'a)
from_t = IntegerT m
to_t = IntegerT n
0 < m
ifits i m
eval_exp h (Signed (dimindex (:'b)) (Integer i from_t) to_t) =
eval_exp h (simp_signed (:'a) (dimindex (:'b)) (Integer i from_t) to_t)
Proof
rw [EXTENSION, IN_DEF] >> simp [simp_signed_def] >>
ONCE_REWRITE_TAC [eval_exp_cases] >>
fs [] >>
ONCE_REWRITE_TAC [eval_exp_cases] >> rw [] >>
`0 < m` by decide_tac >>
`truncate_2comp i m = i` by metis_tac [fits_ident] >>
rw [] >> fs [sizeof_bits_def] >>
irule (METIS_PROVE [] ``y = z (x = y x = z)``) >> rw [] >>
rw [signed_extract_truncate_2comp] >>
`0 < dimindex (:'b)` by metis_tac [DIMINDEX_GT_0] >>
`0 < n` by decide_tac >>
`ifits (truncate_2comp i (dimindex (:β))) n` suffices_by metis_tac [fits_ident] >>
metis_tac [truncate_2comp_fits, ifits_mono]
QED
Theorem unsigned_implementation:
∀to_t i from_t h m n.
dimindex (:'b) < sizeof_bits to_t
dimindex (:'b) dimindex (:'a)
from_t = IntegerT m
to_t = IntegerT n
0 < m
ifits i m
eval_exp h (Unsigned (dimindex (:'b)) (Integer i from_t) to_t) =
eval_exp h (simp_unsigned (:'a) (dimindex (:'b)) (Integer i from_t) to_t)
Proof
rw [EXTENSION, IN_DEF] >> simp [simp_unsigned_def] >>
ONCE_REWRITE_TAC [eval_exp_cases] >>
fs [] >>
ONCE_REWRITE_TAC [eval_exp_cases] >> rw [] >>
`0 < m` by decide_tac >>
`truncate_2comp i m = i` by metis_tac [fits_ident] >>
rw [] >> fs [sizeof_bits_def] >>
irule (METIS_PROVE [] ``y = z (x = y x = z)``) >> rw [] >>
rw [unsigned_extract_truncate_2comp] >>
`0 < dimindex (:'b)` by metis_tac [DIMINDEX_GT_0] >>
`0 < n` by decide_tac >>
`ifits (&signed2unsigned (truncate_2comp i (dimindex (:β))) (dimindex (:'b))) n` suffices_by metis_tac [fits_ident] >>
irule ifits_mono >>
qexists_tac `dimindex (:'b) + 1` >> rw [] >>
metis_tac [truncate_2comp_fits, signed2unsigned_fits]
QED
export_theory ();