You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

812 lines
18 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
module F = Format
module Types = struct
type 'astate bottom_lifted = Bottom | NonBottom of 'astate
type 'astate top_lifted = Top | NonTop of 'astate
type ('below, 'above) below_above = Below of 'below | Above of 'above
end
open! Types
exception Stop_analysis
module type NoJoin = sig
include PrettyPrintable.PrintableType
val leq : lhs:t -> rhs:t -> bool
end
module type S = sig
include NoJoin
val join : t -> t -> t
val widen : prev:t -> next:t -> num_iters:int -> t
end
module Empty : S with type t = unit = struct
type t = unit
let leq ~lhs:() ~rhs:() = true
let join () () = ()
let widen ~prev:() ~next:() ~num_iters:_ = ()
let pp f () = F.pp_print_string f "()"
end
module type WithBottom = sig
include S
val bottom : t
val is_bottom : t -> bool
end
module type WithTop = sig
include S
val top : t
val is_top : t -> bool
end
module BottomLiftedUtils = struct
let leq ~leq ~lhs ~rhs =
if phys_equal lhs rhs then true
else
match (lhs, rhs) with
| Bottom, _ ->
true
| _, Bottom ->
false
| NonBottom lhs, NonBottom rhs ->
leq ~lhs ~rhs
let map ~f astate =
match astate with
| Bottom ->
astate
| NonBottom a ->
let a' = f a in
if phys_equal a' a then astate else NonBottom a'
let pp_bottom f = F.pp_print_string f SpecialChars.up_tack
let pp ~pp f = function Bottom -> pp_bottom f | NonBottom astate -> pp f astate
end
module BottomLifted (Domain : S) = struct
type t = Domain.t bottom_lifted
let bottom = Bottom
let is_bottom = function Bottom -> true | NonBottom _ -> false
let leq = BottomLiftedUtils.leq ~leq:Domain.leq
let join astate1 astate2 =
if phys_equal astate1 astate2 then astate1
else
match (astate1, astate2) with
| Bottom, _ ->
astate2
| _, Bottom ->
astate1
| NonBottom a1, NonBottom a2 ->
PhysEqual.optim2 ~res:(NonBottom (Domain.join a1 a2)) astate1 astate2
let widen ~prev:prev0 ~next:next0 ~num_iters =
if phys_equal prev0 next0 then prev0
else
match (prev0, next0) with
| Bottom, _ ->
next0
| _, Bottom ->
prev0
| NonBottom prev, NonBottom next ->
PhysEqual.optim2 ~res:(NonBottom (Domain.widen ~prev ~next ~num_iters)) prev0 next0
let map = BottomLiftedUtils.map
let pp = BottomLiftedUtils.pp ~pp:Domain.pp
end
module TopLiftedUtils = struct
let leq ~leq ~lhs ~rhs =
if phys_equal lhs rhs then true
else
match (lhs, rhs) with
| _, Top ->
true
| Top, _ ->
false
| NonTop lhs, NonTop rhs ->
leq ~lhs ~rhs
let pp_top f = F.pp_print_string f SpecialChars.down_tack
let pp ~pp f = function Top -> pp_top f | NonTop astate -> pp f astate
end
module TopLifted (Domain : S) = struct
type t = Domain.t top_lifted
let top = Top
let is_top = function Top -> true | _ -> false
let leq = TopLiftedUtils.leq ~leq:Domain.leq
let join astate1 astate2 =
if phys_equal astate1 astate2 then astate1
else
match (astate1, astate2) with
| Top, _ | _, Top ->
Top
| NonTop a1, NonTop a2 ->
PhysEqual.optim2 ~res:(NonTop (Domain.join a1 a2)) astate1 astate2
let widen ~prev:prev0 ~next:next0 ~num_iters =
if phys_equal prev0 next0 then prev0
else
match (prev0, next0) with
| Top, _ | _, Top ->
Top
| NonTop prev, NonTop next ->
PhysEqual.optim2 ~res:(NonTop (Domain.widen ~prev ~next ~num_iters)) prev0 next0
let pp = TopLiftedUtils.pp ~pp:Domain.pp
end
module Pair (Domain1 : S) (Domain2 : S) = struct
type t = Domain1.t * Domain2.t
let leq ~lhs ~rhs =
if phys_equal lhs rhs then true
else Domain1.leq ~lhs:(fst lhs) ~rhs:(fst rhs) && Domain2.leq ~lhs:(snd lhs) ~rhs:(snd rhs)
let join astate1 astate2 =
if phys_equal astate1 astate2 then astate1
else
PhysEqual.optim2
~res:(Domain1.join (fst astate1) (fst astate2), Domain2.join (snd astate1) (snd astate2))
astate1 astate2
let widen ~prev ~next ~num_iters =
if phys_equal prev next then prev
else
PhysEqual.optim2
~res:
( Domain1.widen ~prev:(fst prev) ~next:(fst next) ~num_iters
, Domain2.widen ~prev:(snd prev) ~next:(snd next) ~num_iters )
prev next
let pp fmt astate = Pp.pair ~fst:Domain1.pp ~snd:Domain2.pp fmt astate
end
module Flat (V : PrettyPrintable.PrintableEquatableType) = struct
type t = Bot | V of V.t | Top
let bottom = Bot
let is_bottom = function Bot -> true | _ -> false
let top = Top
let is_top = function Top -> true | _ -> false
let leq ~lhs ~rhs =
phys_equal lhs rhs
||
match (lhs, rhs) with
| Bot, _ | _, Top ->
true
| Top, _ | _, Bot ->
false
| V v1, V v2 ->
V.equal v1 v2
let join a1 a2 =
match (a1, a2) with
| Top, _ | _, Top ->
Top
| Bot, a | a, Bot ->
a
| V v1, V v2 ->
if V.equal v1 v2 then a1 else Top
let widen ~prev ~next ~num_iters:_ = join prev next
let pp f = function
| Bot ->
BottomLiftedUtils.pp_bottom f
| V v ->
V.pp f v
| Top ->
TopLiftedUtils.pp_top f
let v x = V x
let get = function V v -> Some v | Bot | Top -> None
end
module StackedUtils = struct
let compare x1 x2 ~cmp_below ~cmp_above =
if phys_equal x1 x2 then 0
else
match (x1, x2) with
| Below b1, Below b2 ->
cmp_below b1 b2
| Below _, Above _ ->
-1
| Above _, Below _ ->
1
| Above a1, Above a2 ->
cmp_above a1 a2
let leq ~leq_below ~leq_above ~lhs ~rhs =
phys_equal lhs rhs
||
match (lhs, rhs) with
| Below lhs, Below rhs ->
leq_below ~lhs ~rhs
| Below _, Above _ ->
true
| Above _, Below _ ->
false
| Above lhs, Above rhs ->
leq_above ~lhs ~rhs
let combine ~dir x1 x2 ~f_below ~f_above =
match (x1, x2) with
| Below b1, Below b2 ->
Below (f_below b1 b2)
| (Below _ as below), (Above _ as above) | (Above _ as above), (Below _ as below) -> (
match dir with `Increasing -> above | `Decreasing -> below )
| Above a1, Above a2 ->
Above (f_above a1 a2)
let map x ~f_below ~f_above =
match x with Below b -> Below (f_below b) | Above a -> Above (f_above a)
let pp ~pp_below ~pp_above f = function Below b -> pp_below f b | Above a -> pp_above f a
end
module Stacked (Below : S) (Above : S) = struct
type t = (Below.t, Above.t) below_above
let leq = StackedUtils.leq ~leq_below:Below.leq ~leq_above:Above.leq
let join = StackedUtils.combine ~dir:`Increasing ~f_below:Below.join ~f_above:Above.join
let widen ~prev ~next ~num_iters =
StackedUtils.combine ~dir:`Increasing prev next
~f_below:(fun prev next -> Below.widen ~prev ~next ~num_iters)
~f_above:(fun prev next -> Above.widen ~prev ~next ~num_iters)
let pp = StackedUtils.pp ~pp_below:Below.pp ~pp_above:Above.pp
end
module MinReprSet (Element : PrettyPrintable.PrintableOrderedType) = struct
type elt = Element.t [@@deriving compare]
type t = elt option [@@deriving compare]
let bottom = None
let is_bottom = Option.is_none
let leq ~lhs ~rhs =
match (lhs, rhs) with
| None, _ ->
true
| Some _, None ->
false
| Some lhs, Some rhs ->
Int.(Element.compare rhs lhs <= 0)
let join x1 x2 =
match (x1, x2) with
| None, x | x, None ->
x
| Some e1, Some e2 ->
if Int.(Element.compare e1 e2 <= 0) then x1 else x2
let widen ~prev ~next ~num_iters:_ = join prev next
let pp f = function None -> () | Some x -> Element.pp f x
let singleton x = Some x
let min_elt x = x
let add e = function
| None ->
singleton e
| Some e' when Int.(Element.compare e e' < 0) ->
Some e
| x ->
x
let map f x = Option.map x ~f
let fold f x init = Option.fold x ~init ~f:(fun acc e -> f e acc)
let exists f x = Option.exists x ~f
end
module type FiniteSetS = sig
include PrettyPrintable.PPSet
include WithBottom with type t := t
end
module FiniteSetOfPPSet (S : PrettyPrintable.PPSet) = struct
include S
let bottom = empty
let is_bottom = is_empty
let leq ~lhs ~rhs = if phys_equal lhs rhs then true else subset lhs rhs
let join astate1 astate2 = if phys_equal astate1 astate2 then astate1 else union astate1 astate2
let widen ~prev ~next ~num_iters:_ = join prev next
end
module FiniteSet (Element : PrettyPrintable.PrintableOrderedType) =
FiniteSetOfPPSet (PrettyPrintable.MakePPSet (Element))
module type InvertedSetS = sig
include PrettyPrintable.PPSet
include WithTop with type t := t
end
module InvertedSet (Element : PrettyPrintable.PrintableOrderedType) = struct
include PrettyPrintable.MakePPSet (Element)
let top = empty
let is_top = is_empty
let leq ~lhs ~rhs = if phys_equal lhs rhs then true else subset rhs lhs
let join astate1 astate2 = if phys_equal astate1 astate2 then astate1 else inter astate1 astate2
let widen ~prev ~next ~num_iters:_ = join prev next
end
module type MapS = sig
include PrettyPrintable.PPMonoMap
include WithBottom with type t := t
end
module MapOfPPMap (M : PrettyPrintable.PPMap) (ValueDomain : S) = struct
include (M : PrettyPrintable.PPMap with type 'a t := 'a M.t and type key = M.key)
type t = ValueDomain.t M.t
type value = ValueDomain.t
let bottom = empty
let is_bottom = is_empty
(** true if all keys in [lhs] are in [rhs], and each lhs value <= corresponding rhs value *)
let leq ~lhs ~rhs =
if phys_equal lhs rhs then true
else
M.for_all
(fun k lhs_v ->
try ValueDomain.leq ~lhs:lhs_v ~rhs:(M.find k rhs) with Caml.Not_found -> false )
lhs
let increasing_union ~f astate1 astate2 =
if phys_equal astate1 astate2 then astate1
else
let equals1 = ref true in
let equals2 = ref true in
let res =
M.merge
(fun _ v1_opt v2_opt ->
match (v1_opt, v2_opt) with
| Some v1, Some v2 ->
let v = f v1 v2 in
if not (phys_equal v v1) then equals1 := false ;
if not (phys_equal v v2) then equals2 := false ;
Some v
| Some _, None ->
equals2 := false ;
v1_opt
| None, Some _ ->
equals1 := false ;
v2_opt
| None, None ->
None )
astate1 astate2
in
if !equals1 then astate1 else if !equals2 then astate2 else res
let join astate1 astate2 = increasing_union ~f:ValueDomain.join astate1 astate2
let widen ~prev ~next ~num_iters =
increasing_union prev next ~f:(fun prev next -> ValueDomain.widen ~prev ~next ~num_iters)
let pp fmt astate = M.pp ~pp_value:ValueDomain.pp fmt astate
end
module Map (Key : PrettyPrintable.PrintableOrderedType) (ValueDomain : S) = struct
module M = PrettyPrintable.MakePPMap (Key)
include MapOfPPMap (M) (ValueDomain)
end
module type InvertedMapS = sig
include PrettyPrintable.PPMonoMap
include WithTop with type t := t
end
module InvertedMap (Key : PrettyPrintable.PrintableOrderedType) (ValueDomain : S) = struct
include PrettyPrintable.MakePPMonoMap (Key) (ValueDomain)
let top = empty
let is_top = is_empty
let leq ~lhs ~rhs =
if phys_equal lhs rhs then true
else
try for_all (fun k rhs_v -> ValueDomain.leq ~lhs:(find k lhs) ~rhs:rhs_v) rhs
with Caml.Not_found -> false
let inter ~f astate1 astate2 =
if phys_equal astate1 astate2 then astate1
else
let equals1 = ref true in
let equals2 = ref true in
let res =
merge
(fun _ v1_opt v2_opt ->
match (v1_opt, v2_opt) with
| Some v1, Some v2 ->
let v = f v1 v2 in
if not (phys_equal v v1) then equals1 := false ;
if not (phys_equal v v2) then equals2 := false ;
Some v
| Some _, None ->
equals1 := false ;
None
| None, Some _ ->
equals2 := false ;
None
| None, None ->
None )
astate1 astate2
in
if !equals1 then astate1 else if !equals2 then astate2 else res
let join = inter ~f:ValueDomain.join
let widen ~prev ~next ~num_iters =
inter prev next ~f:(fun prev next -> ValueDomain.widen ~prev ~next ~num_iters)
end
module SafeInvertedMap (Key : PrettyPrintable.PrintableOrderedType) (ValueDomain : WithTop) = struct
module M = InvertedMap (Key) (ValueDomain)
type key = M.key
type value = M.value
type t = M.t
let empty = M.empty
let is_empty = M.is_empty
let mem = M.mem
let add k v m = if ValueDomain.is_top v then M.remove k m else M.add k v m
let none_if_top_opt = function Some v when ValueDomain.is_top v -> None | r -> r
let update k f m =
let f opt_v = f opt_v |> none_if_top_opt in
M.update k f m
let singleton k v = add k v empty
let remove = M.remove
let merge f x y =
let f k opt_v1 opt_v2 = f k opt_v1 opt_v2 |> none_if_top_opt in
M.merge f x y
let union f x y =
let f k v1 v2 = f k v1 v2 |> none_if_top_opt in
M.union f x y
let compare = M.compare
let equal = M.equal
let iter = M.iter
let fold = M.fold
let for_all = M.for_all
let exists = M.exists
let filter = M.filter
let partition = M.partition
let cardinal = M.cardinal
let bindings = M.bindings
let min_binding = M.min_binding
let min_binding_opt = M.min_binding_opt
let max_binding = M.max_binding
let max_binding_opt = M.max_binding_opt
let choose = M.choose
let choose_opt = M.choose_opt
let split = M.split
let find = M.find
let find_opt = M.find_opt
let find_first = M.find_first
let find_first_opt = M.find_first_opt
let find_last = M.find_last
let find_last_opt = M.find_last_opt
let fold_map = M.fold_map
let of_seq = M.of_seq
let mapi f m =
let tops = ref [] in
let f k v =
let v = f k v in
if ValueDomain.is_top v then tops := k :: !tops ;
v
in
let m = M.mapi f m in
List.fold_left !tops ~init:m ~f:(fun m k -> remove k m)
let map f m = mapi (fun _ v -> f v) m
let is_singleton_or_more = M.is_singleton_or_more
let pp_key = M.pp_key
let pp = M.pp
let leq = M.leq
let inter ~f astate1 astate2 =
if phys_equal astate1 astate2 then astate1
else
let equals1 = ref true in
let equals2 = ref true in
let res =
merge
(fun _ v1_opt v2_opt ->
match (v1_opt, v2_opt) with
| Some v1, Some v2 ->
let v = f v1 v2 in
if ValueDomain.is_top v then (
equals1 := false ;
equals2 := false ;
None )
else (
if not (phys_equal v v1) then equals1 := false ;
if not (phys_equal v v2) then equals2 := false ;
Some v )
| Some _, None ->
equals1 := false ;
None
| None, Some _ ->
equals2 := false ;
None
| None, None ->
None )
astate1 astate2
in
if !equals1 then astate1 else if !equals2 then astate2 else res
let join = inter ~f:ValueDomain.join
let widen ~prev ~next ~num_iters =
inter prev next ~f:(fun prev next -> ValueDomain.widen ~prev ~next ~num_iters)
let top = M.top
let is_top = M.is_top
end
module FiniteMultiMap
(Key : PrettyPrintable.PrintableOrderedType)
(Value : PrettyPrintable.PrintableOrderedType) =
struct
module S = FiniteSet (Value)
module M = Map (Key) (S)
type t = M.t
let bottom = M.empty
let is_bottom = M.is_empty
let leq = M.leq
let join = M.join
let widen = M.widen
let pp = M.pp
let add k v m =
M.update k (function None -> Some (S.singleton v) | Some s -> Some (S.add v s)) m
let mem k m = M.mem k m
let remove k v m =
M.update k
(function
| None ->
None
| Some s ->
let s' = S.remove v s in
if S.is_empty s' then None else Some s' )
m
end
module BooleanAnd = struct
type t = bool
let leq ~lhs ~rhs = lhs || not rhs
let join = ( && )
let widen ~prev ~next ~num_iters:_ = join prev next
let pp fmt astate = F.pp_print_bool fmt astate
end
module BooleanOr = struct
type t = bool
let bottom = false
let is_bottom astate = not astate
let leq ~lhs ~rhs = (not lhs) || rhs
let join = ( || )
let widen ~prev ~next ~num_iters:_ = join prev next
let pp fmt astate = F.pp_print_bool fmt astate
end
module type MaxCount = sig
val max : int
end
module CountDomain (MaxCount : MaxCount) = struct
type t = int
let top =
assert (MaxCount.max > 0) ;
MaxCount.max
let bottom = 0
let is_top = Int.equal top
let is_bottom = Int.equal bottom
let leq ~lhs ~rhs = lhs <= rhs
let join astate1 astate2 = Int.min top (Int.max astate1 astate2)
let widen ~prev ~next ~num_iters:_ = join prev next
let add astate1 astate2 = Int.min top (astate1 + astate2)
let increment astate = if is_top astate then top else astate + 1
let decrement astate = if is_bottom astate then bottom else astate - 1
let pp = Int.pp
end
module DownwardIntDomain (MaxCount : MaxCount) = struct
type t = int
let bottom =
assert (MaxCount.max > 0) ;
MaxCount.max
let top = 0
let is_top = Int.equal top
let is_bottom = Int.equal bottom
let leq ~lhs ~rhs = lhs >= rhs
let join astate1 astate2 = Int.min astate1 astate2
let widen ~prev ~next ~num_iters:_ = join prev next
let increment astate = if is_bottom astate then astate else astate + 1
let decrement astate = if is_top astate then astate else astate - 1
let pp = Int.pp
end