|
|
(*
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
*
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
*)
|
|
|
|
|
|
(** Propositional formulas *)
|
|
|
|
|
|
include Propositional_intf
|
|
|
open Ses
|
|
|
|
|
|
module Make (Trm : TERM) = struct
|
|
|
open Trm
|
|
|
|
|
|
(** Sets of formulas *)
|
|
|
module rec Fmls : (FORMULA_SET with type elt := Fml.fml) = struct
|
|
|
module T = struct
|
|
|
type t = Fml.fml [@@deriving compare, equal, sexp]
|
|
|
end
|
|
|
|
|
|
include Set.Make (T)
|
|
|
include Provide_of_sexp (T)
|
|
|
end
|
|
|
|
|
|
(** Formulas, built from literals with predicate symbols from various
|
|
|
theories, and propositional constants and connectives. Denote sets of
|
|
|
structures. *)
|
|
|
and Fml : (FORMULA with type trm := Trm.trm with type fmls := Fmls.t) =
|
|
|
struct
|
|
|
type fml =
|
|
|
| Tt
|
|
|
| Eq of trm * trm
|
|
|
| Eq0 of trm
|
|
|
| Pos of trm
|
|
|
| Not of fml
|
|
|
| And of {pos: Fmls.t; neg: Fmls.t}
|
|
|
| Or of {pos: Fmls.t; neg: Fmls.t}
|
|
|
| Iff of fml * fml
|
|
|
| Cond of {cnd: fml; pos: fml; neg: fml}
|
|
|
| Lit of Predsym.t * trm array
|
|
|
[@@deriving compare, equal, sexp]
|
|
|
|
|
|
let invariant f =
|
|
|
let@ () = Invariant.invariant [%here] f [%sexp_of: fml] in
|
|
|
match f with
|
|
|
(* formulas are in negation-normal form *)
|
|
|
| Not (Not _ | And _ | Or _ | Cond _) -> assert false
|
|
|
(* conjunction and disjunction formulas are: *)
|
|
|
| And {pos; neg} | Or {pos; neg} ->
|
|
|
(* not "zero" (the negation of their unit) *)
|
|
|
assert (Fmls.disjoint pos neg) ;
|
|
|
(* not singleton *)
|
|
|
assert (Fmls.cardinal pos + Fmls.cardinal neg > 1)
|
|
|
(* conditional formulas are in "positive condition" form *)
|
|
|
| Cond {cnd= Not _ | Or _} -> assert false
|
|
|
| _ -> ()
|
|
|
|
|
|
let sort_fml x y = if compare_fml x y <= 0 then (x, y) else (y, x)
|
|
|
|
|
|
(** Some normalization is necessary for [embed_into_fml] (defined below)
|
|
|
to be left inverse to [embed_into_cnd]. Essentially
|
|
|
[0 ≠ (p ? 1 : 0)] needs to normalize to [p], by way of
|
|
|
[0 ≠ (p ? 1 : 0)] ==> [(p ? 0 ≠ 1 : 0 ≠ 0)] ==>
|
|
|
[(p ? tt : ff)] ==> [p]. *)
|
|
|
|
|
|
let tt = Tt |> check invariant
|
|
|
let ff = Not Tt |> check invariant
|
|
|
let mk_Tt () = tt
|
|
|
let bool b = if b then tt else ff
|
|
|
|
|
|
let rec _Not p =
|
|
|
( match p with
|
|
|
| Not x -> x
|
|
|
| And {pos; neg} -> Or {pos= neg; neg= pos}
|
|
|
| Or {pos; neg} -> And {pos= neg; neg= pos}
|
|
|
| Cond {cnd; pos; neg} -> Cond {cnd; pos= _Not pos; neg= _Not neg}
|
|
|
| Tt | Eq _ | Eq0 _ | Pos _ | Lit _ | Iff _ -> Not p )
|
|
|
|> check invariant
|
|
|
|
|
|
let _Join cons zero ~pos ~neg =
|
|
|
if not (Fmls.disjoint pos neg) then zero
|
|
|
else if Fmls.is_empty neg then
|
|
|
match Fmls.only_elt pos with Some p -> p | _ -> cons ~pos ~neg
|
|
|
else if Fmls.is_empty pos then
|
|
|
match Fmls.only_elt neg with
|
|
|
| Some n -> _Not n
|
|
|
| _ -> cons ~pos ~neg
|
|
|
else cons ~pos ~neg
|
|
|
|
|
|
let _And ~pos ~neg =
|
|
|
_Join (fun ~pos ~neg -> And {pos; neg}) ff ~pos ~neg
|
|
|
|
|
|
let _Or ~pos ~neg = _Join (fun ~pos ~neg -> Or {pos; neg}) tt ~pos ~neg
|
|
|
|
|
|
let join _Cons zero split_pos_neg p q =
|
|
|
( if equal_fml p zero || equal_fml q zero then zero
|
|
|
else
|
|
|
let pp, pn = split_pos_neg p in
|
|
|
if Fmls.is_empty pp && Fmls.is_empty pn then q
|
|
|
else
|
|
|
let qp, qn = split_pos_neg q in
|
|
|
if Fmls.is_empty qp && Fmls.is_empty qn then p
|
|
|
else
|
|
|
let pos = Fmls.union pp qp in
|
|
|
let neg = Fmls.union pn qn in
|
|
|
_Cons ~pos ~neg )
|
|
|
|> check invariant
|
|
|
|
|
|
let and_ p q =
|
|
|
join _And ff
|
|
|
(function
|
|
|
| And {pos; neg} -> (pos, neg)
|
|
|
| Not p -> (Fmls.empty, Fmls.of_ p)
|
|
|
| p -> (Fmls.of_ p, Fmls.empty) )
|
|
|
p q
|
|
|
|
|
|
let or_ p q =
|
|
|
join _Or tt
|
|
|
(function
|
|
|
| Or {pos; neg} -> (pos, neg)
|
|
|
| Not p -> (Fmls.empty, Fmls.of_ p)
|
|
|
| p -> (Fmls.of_ p, Fmls.empty) )
|
|
|
p q
|
|
|
|
|
|
let rec eval_iff p q =
|
|
|
match (p, q) with
|
|
|
| p, Not p' | Not p', p -> if equal_fml p p' then Some false else None
|
|
|
| And {pos= ap; neg= an}, Or {pos= op; neg= on}
|
|
|
|Or {pos= op; neg= on}, And {pos= ap; neg= an}
|
|
|
when Fmls.equal ap on && Fmls.equal an op ->
|
|
|
Some false
|
|
|
| Cond {cnd= c; pos= p; neg= n}, Cond {cnd= c'; pos= p'; neg= n'} ->
|
|
|
if equal_fml c c' then
|
|
|
match eval_iff p p' with
|
|
|
| Some false -> (
|
|
|
match eval_iff n n' with
|
|
|
| Some false -> Some false
|
|
|
| _ -> None )
|
|
|
| Some true -> if equal_fml n n' then Some true else None
|
|
|
| None -> None
|
|
|
else None
|
|
|
| _ -> if equal_fml p q then Some true else None
|
|
|
|
|
|
let _Iff p q =
|
|
|
( match (p, q) with
|
|
|
| Tt, p | p, Tt -> p
|
|
|
| Not Tt, p | p, Not Tt -> _Not p
|
|
|
| _ -> (
|
|
|
match eval_iff p q with
|
|
|
| Some b -> bool b
|
|
|
| None ->
|
|
|
let p, q = sort_fml p q in
|
|
|
Iff (p, q) ) )
|
|
|
|> check invariant
|
|
|
|
|
|
let is_negative = function Not _ | Or _ -> true | _ -> false
|
|
|
|
|
|
let _Cond cnd pos neg =
|
|
|
( match (cnd, pos, neg) with
|
|
|
(* (tt ? p : n) ==> p *)
|
|
|
| Tt, _, _ -> pos
|
|
|
(* (ff ? p : n) ==> n *)
|
|
|
| Not Tt, _, _ -> neg
|
|
|
(* (c ? tt : ff) ==> c *)
|
|
|
| _, Tt, Not Tt -> cnd
|
|
|
(* (c ? ff : tt) ==> ¬c *)
|
|
|
| _, Not Tt, Tt -> _Not cnd
|
|
|
(* (c ? p : ff) ==> c ∧ p *)
|
|
|
| _, _, Not Tt -> and_ cnd pos
|
|
|
(* (c ? ff : n) ==> ¬c ∧ n *)
|
|
|
| _, Not Tt, _ -> and_ (_Not cnd) neg
|
|
|
(* (c ? tt : n) ==> c ∨ n *)
|
|
|
| _, Tt, _ -> or_ cnd neg
|
|
|
(* (c ? p : tt) ==> ¬c ∨ p *)
|
|
|
| _, _, Tt -> or_ (_Not cnd) pos
|
|
|
| _ -> (
|
|
|
match eval_iff pos neg with
|
|
|
(* (c ? p : p) ==> c *)
|
|
|
| Some true -> cnd
|
|
|
(* (c ? p : ¬p) ==> c <=> p *)
|
|
|
| Some false -> _Iff cnd pos
|
|
|
(* (¬c ? n : p) ==> (c ? p : n) *)
|
|
|
| None when is_negative cnd ->
|
|
|
Cond {cnd= _Not cnd; pos= neg; neg= pos}
|
|
|
(* (c ? p : n) *)
|
|
|
| _ -> Cond {cnd; pos; neg} ) )
|
|
|
|> check invariant
|
|
|
|
|
|
let _Eq x y = Eq (x, y) |> check invariant
|
|
|
let _Eq0 x = Eq0 x |> check invariant
|
|
|
let _Pos x = Pos x |> check invariant
|
|
|
let _Lit p xs = Lit (p, xs) |> check invariant
|
|
|
end
|
|
|
end
|