You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

385 lines
12 KiB

(*
* Copyright (c) 2009-2013, Monoidics ltd.
* Copyright (c) 2013-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
(** Attribute manipulation in Propositions (i.e., Symbolic Heaps) *)
(** Check whether an atom is used to mark an attribute *)
let is_pred atom = match atom with Sil.Apred _ | Anpred _ -> true | _ -> false
(** Add an attribute associated to the argument expressions *)
let add tenv ?(footprint = false) ?(polarity = true) prop attr args =
Prop.prop_atom_and tenv ~footprint prop
(if polarity then Sil.Apred (attr, args) else Sil.Anpred (attr, args))
let attributes_in_same_category attr1 attr2 =
let cat1 = PredSymb.to_category attr1 in
let cat2 = PredSymb.to_category attr2 in
PredSymb.equal_category cat1 cat2
(** Replace an attribute associated to the expression *)
let add_or_replace_check_changed tenv check_attribute_change prop atom =
match atom with
| Sil.Apred (att0, (_ :: _ as exps0)) | Anpred (att0, (_ :: _ as exps0)) ->
let pairs = List.map ~f:(fun e -> (e, Prop.exp_normalize_prop tenv prop e)) exps0 in
let _, nexp = List.hd_exn pairs in
(* len exps0 > 0 by match *)
let atom_map = function
| (Sil.Apred (att, exp :: _) | Anpred (att, exp :: _))
when Exp.equal nexp exp && attributes_in_same_category att att0 ->
check_attribute_change att att0 ; atom
| atom' ->
atom'
in
let pi = prop.Prop.pi in
let pi' = IList.map_changed ~equal:Sil.equal_atom ~f:atom_map pi in
if phys_equal pi pi' then Prop.prop_atom_and tenv prop atom
else Prop.normalize tenv (Prop.set prop ~pi:pi')
| _ ->
prop
let add_or_replace tenv prop atom =
(* wrapper for the most common case: do nothing *)
let check_attr_changed _ _ = () in
add_or_replace_check_changed tenv check_attr_changed prop atom
(** Get all the attributes of the prop *)
let get_all (prop : 'a Prop.t) =
let res = ref [] in
let do_atom a = if is_pred a then res := a :: !res in
List.iter ~f:do_atom prop.pi ; List.rev !res
(** Get the attribute associated to the expression, if any *)
let get_for_exp tenv (prop : 'a Prop.t) exp =
let nexp = Prop.exp_normalize_prop tenv prop exp in
let atom_get_attr attributes atom =
match atom with
| (Sil.Apred (_, es) | Anpred (_, es)) when List.mem ~equal:Exp.equal es nexp ->
atom :: attributes
| _ ->
attributes
in
List.fold ~f:atom_get_attr ~init:[] prop.pi
let get tenv prop exp category =
let atts = get_for_exp tenv prop exp in
List.find
~f:(function
| Sil.Apred (att, _) | Anpred (att, _) ->
PredSymb.equal_category (PredSymb.to_category att) category
| _ ->
false )
atts
let get_undef tenv prop exp = get tenv prop exp ACundef
let get_resource tenv prop exp = get tenv prop exp ACresource
let get_objc_null tenv prop exp = get tenv prop exp ACobjc_null
let get_observer tenv prop exp = get tenv prop exp ACobserver
let get_wontleak tenv prop exp = get tenv prop exp ACwontleak
let has_dangling_uninit tenv prop exp =
let la = get_for_exp tenv prop exp in
List.exists
~f:(function Sil.Apred (a, _) -> PredSymb.equal a (Adangling DAuninit) | _ -> false)
la
let filter_atoms tenv ~f prop =
let pi0 = prop.Prop.pi in
let pi1 = IList.filter_changed ~f pi0 in
if phys_equal pi1 pi0 then prop else Prop.normalize tenv (Prop.set prop ~pi:pi1)
let remove tenv prop atom =
if is_pred atom then
let natom = Prop.atom_normalize_prop tenv prop atom in
let f a = not (Sil.equal_atom natom a) in
filter_atoms tenv ~f prop
else prop
(** Remove an attribute from all the atoms in the heap *)
let remove_for_attr tenv prop att0 =
let f = function
| Sil.Apred (att, _) | Anpred (att, _) ->
not (PredSymb.equal att0 att)
| _ ->
true
in
filter_atoms tenv ~f prop
let remove_resource tenv ra_kind ra_res =
let f = function
| Sil.Apred (Aresource res_action, _) ->
PredSymb.compare_res_act_kind res_action.ra_kind ra_kind <> 0
|| PredSymb.compare_resource res_action.ra_res ra_res <> 0
| _ ->
true
in
filter_atoms tenv ~f
(** Apply f to every resource attribute in the prop *)
let map_resource tenv prop f =
let attribute_map e = function
| PredSymb.Aresource ra ->
PredSymb.Aresource (f e ra)
| att ->
att
in
let atom_map = function
| Sil.Apred (att, ([e] as es)) ->
Sil.Apred (attribute_map e att, es)
| Sil.Anpred (att, ([e] as es)) ->
Sil.Anpred (attribute_map e att, es)
| atom ->
atom
in
let pi0 = prop.Prop.pi in
let pi1 = IList.map_changed ~equal:Sil.equal_atom ~f:atom_map pi0 in
if phys_equal pi1 pi0 then prop else Prop.normalize tenv (Prop.set prop ~pi:pi1)
(* Replace an attribute OBJC_NULL($n1) with OBJC_NULL(var) when var = $n1, and also sets $n1 =
0 *)
let replace_objc_null tenv prop lhs_exp rhs_exp =
match (get_objc_null tenv prop rhs_exp, rhs_exp) with
| Some atom, Exp.Var _ ->
let prop = remove tenv prop atom in
let prop = Prop.conjoin_eq tenv rhs_exp Exp.zero prop in
let natom = Sil.atom_replace_exp [(rhs_exp, lhs_exp)] atom in
add_or_replace tenv prop natom
| _ ->
prop
let rec nullify_exp_with_objc_null tenv prop exp =
match exp with
| Exp.BinOp (_, exp1, exp2) ->
let prop' = nullify_exp_with_objc_null tenv prop exp1 in
nullify_exp_with_objc_null tenv prop' exp2
| Exp.UnOp (_, exp, _) ->
nullify_exp_with_objc_null tenv prop exp
| Exp.Var _ -> (
match get_objc_null tenv prop exp with
| Some atom ->
let prop' = remove tenv prop atom in
Prop.conjoin_eq tenv exp Exp.zero prop'
| _ ->
prop )
| _ ->
prop
(** mark Exp.Var's or Exp.Lvar's as undefined
The annotations of the return type of the method get propagated to the return id,
with the exception of when the return type is a struct, and we translate it as passing a reference
to the method. *)
let mark_vars_as_undefined tenv prop ~ret_exp ~undefined_actuals_by_ref callee_pname ret_annots loc
path_pos =
let mark_var_as_undefined ~annot exp prop =
match exp with
| Exp.Var _ | Lvar _ ->
let att_undef = PredSymb.Aundef (callee_pname, annot, loc, path_pos) in
add_or_replace tenv prop (Apred (att_undef, [exp]))
| _ ->
prop
in
let prop_with_ret_attr = mark_var_as_undefined ~annot:ret_annots ret_exp prop in
List.fold
~f:(fun prop id -> mark_var_as_undefined ~annot:[] id prop)
~init:prop_with_ret_attr undefined_actuals_by_ref
(** type for arithmetic problems *)
type arith_problem =
(* division by zero *)
| Div0 of Exp.t
(* unary minus of unsigned type applied to the given expression *)
| UminusUnsigned of Exp.t * Typ.t
(** Look for an arithmetic problem in [exp] *)
let find_arithmetic_problem tenv proc_node_session prop exp =
let exps_divided = ref [] in
let uminus_unsigned = ref [] in
let res = ref prop in
let check_zero e =
match Prop.exp_normalize_prop tenv prop e with
| Exp.Const c when Const.iszero_int_float c ->
true
| _ ->
res := add_or_replace tenv !res (Apred (Adiv0 proc_node_session, [e])) ;
false
in
let rec walk = function
| Exp.Var _ ->
()
| Exp.UnOp
( Unop.Neg
, e
, Some
( {Typ.desc= Tint (Typ.IUChar | Typ.IUInt | Typ.IUShort | Typ.IULong | Typ.IULongLong)}
as typ ) ) ->
uminus_unsigned := (e, typ) :: !uminus_unsigned
| Exp.UnOp (_, e, _) ->
walk e
| Exp.BinOp (op, e1, e2) ->
if Binop.equal op Binop.Div || Binop.equal op Binop.Mod then
exps_divided := e2 :: !exps_divided ;
walk e1 ;
walk e2
| Exp.Exn _ ->
()
| Exp.Closure _ ->
()
| Exp.Const _ ->
()
| Exp.Cast (_, e) ->
walk e
| Exp.Lvar _ ->
()
| Exp.Lfield (e, _, _) ->
walk e
| Exp.Lindex (e1, e2) ->
walk e1 ; walk e2
| Exp.Sizeof {dynamic_length= None} ->
()
| Exp.Sizeof {dynamic_length= Some len} ->
walk len
in
walk exp ;
let problem_opt =
match (List.find ~f:check_zero !exps_divided, !uminus_unsigned) with
| Some e, _ ->
Some (Div0 e)
| None, (e, t) :: _ ->
Some (UminusUnsigned (e, t))
| None, [] ->
None
in
(problem_opt, !res)
(** Deallocate the stack variables in [pvars], and replace them by normal variables.
Return the list of stack variables whose address was still present after deallocation. *)
let deallocate_stack_vars tenv (p : 'a Prop.t) pvars =
let filter = function
| Sil.Hpointsto (Exp.Lvar v, _, _) ->
List.exists ~f:(Pvar.equal v) pvars
| _ ->
false
in
let sigma_stack, sigma_other = List.partition_tf ~f:filter p.sigma in
let fresh_address_vars = ref [] in
(* fresh vars substituted for the address of stack vars *)
let stack_vars_address_in_post = ref [] in
(* stack vars whose address is still present *)
let exp_replace =
List.map
~f:(function
| Sil.Hpointsto (Exp.Lvar v, _, _) ->
let freshv = Ident.create_fresh Ident.kprimed in
fresh_address_vars := (v, freshv) :: !fresh_address_vars ;
(Exp.Lvar v, Exp.Var freshv)
| _ ->
assert false )
sigma_stack
in
let pi1 = List.map ~f:(fun (id, e) -> Sil.Aeq (Exp.Var id, e)) (Sil.sub_to_list p.sub) in
let pi = List.map ~f:(Sil.atom_replace_exp exp_replace) (p.pi @ pi1) in
let p' =
Prop.normalize tenv
(Prop.set p ~sub:Sil.sub_empty ~sigma:(Prop.sigma_replace_exp tenv exp_replace sigma_other))
in
let p'' =
let res = ref p' in
let p'_fav = Prop.free_vars p' |> Ident.set_of_sequence in
let do_var (v, freshv) =
(* static locals are not stack-allocated *)
if not (Pvar.is_static_local v) then
(* the address of a de-allocated stack var in in the post *)
if Ident.Set.mem freshv p'_fav then (
stack_vars_address_in_post := v :: !stack_vars_address_in_post ;
let pred = Sil.Apred (Adangling DAaddr_stack_var, [Exp.Var freshv]) in
res := add_or_replace tenv !res pred )
in
List.iter ~f:do_var !fresh_address_vars ;
!res
in
(* Filter out local addresses in p'' *)
let filtered_pi, changed =
List.fold_right p''.pi ~init:([], false) ~f:(fun a (filtered, changed) ->
if Sil.atom_has_local_addr a then (filtered, true) else (a :: filtered, changed) )
in
(* Avoid normalization when p'' does not change *)
let p''' = if changed then Prop.normalize tenv (Prop.set p'' ~pi:filtered_pi) else p'' in
(!stack_vars_address_in_post, List.fold ~f:(Prop.prop_atom_and tenv) ~init:p''' pi)
(** Input of this method is an exp in a prop. Output is a formal variable or path from a
formal variable that is equal to the expression,
or the OBJC_NULL attribute of the expression. *)
let find_equal_formal_path tenv e prop =
let rec find_in_sigma e seen_hpreds =
List.fold_right
~f:(fun hpred res ->
if List.mem ~equal:Sil.equal_hpred seen_hpreds hpred then None
else
let seen_hpreds = hpred :: seen_hpreds in
match res with
| Some _ ->
res
| None -> (
match hpred with
| Sil.Hpointsto (Exp.Lvar pvar1, Sil.Eexp (exp2, Sil.Iformal (_, _)), _)
when Exp.equal exp2 e && (Pvar.is_local pvar1 || Pvar.is_seed pvar1) ->
Some (Exp.Lvar pvar1)
| Sil.Hpointsto (exp1, Sil.Estruct (fields, _), _) ->
List.fold_right
~f:(fun (field, strexp) res ->
match res with
| Some _ ->
res
| None -> (
match strexp with
| Sil.Eexp (exp2, _) when Exp.equal exp2 e -> (
match find_in_sigma exp1 seen_hpreds with
| Some vfs ->
Some (Exp.Lfield (vfs, field, Typ.mk Tvoid))
| None ->
None )
| _ ->
None ) )
fields ~init:None
| _ ->
None ) )
prop.Prop.sigma ~init:None
in
match find_in_sigma e [] with
| Some vfs ->
Some vfs
| None -> (
match get_objc_null tenv prop e with
| Some (Apred (Aobjc_null, [_; vfs])) ->
Some vfs
| _ ->
None )