You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

338 lines
12 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Interval abstract domain *)
open Apron
let equal_apron_typ =
(* Apron.Texpr1.typ is a sum of nullary constructors *)
Poly.equal
(** Apron-managed map from variables to intervals *)
type t = Box.t Abstract1.t
let man = lazy (Box.manager_alloc ())
let join l r = Some (Abstract1.join (Lazy.force man) l r)
let equal l r = Abstract1.is_eq (Lazy.force man) l r
let is_false x = Abstract1.is_bottom (Lazy.force man) x
let bindings (itv : t) =
let itv = Abstract1.minimize_environment (Lazy.force man) itv in
let box = Abstract1.to_box (Lazy.force man) itv in
let vars =
Environment.vars box.box1_env |> fun (i, r) -> Array.append i r
in
Array.zip_exn vars box.interval_array
let sexp_of_t (itv : t) =
let sexps =
Array.fold (bindings itv) ~init:[] ~f:(fun acc (v, {inf; sup}) ->
Sexp.List
[ Sexp.Atom (Var.to_string v); Sexp.Atom (Scalar.to_string inf)
; Sexp.Atom (Scalar.to_string sup) ]
:: acc )
in
Sexp.List sexps
let pp fs =
let pp_pair a_pp b_pp fs (a, b) =
Format.fprintf fs "@[(%a@,%a)@]" a_pp a b_pp b
in
bindings >> Array.pp "@," (pp_pair Var.print Interval.print) fs
let report_fmt_thunk = Fn.flip pp
let init _gs = Abstract1.top (Lazy.force man) (Environment.make [||] [||])
let apron_var_of_name = (fun nm -> "%" ^ nm) >> Apron.Var.of_string
let apron_var_of_reg = Reg.name >> apron_var_of_name
let rec apron_typ_of_llair_typ : Typ.t -> Texpr1.typ option = function
| Pointer {elt= _} -> apron_typ_of_llair_typ Typ.siz
| Integer {bits= _} -> Some Texpr1.Int
| Float {bits= 32; enc= `IEEE} -> Some Texpr1.Single
| Float {bits= 64; enc= `IEEE} -> Some Texpr1.Double
| Float {bits= 80; enc= `Extended} -> Some Texpr1.Extended
| Float {bits= 128; enc= `IEEE} -> Some Texpr1.Quad
| t ->
warn "No corresponding apron type for llair type %a " Typ.pp t () ;
None
let apron_of_q = Q.to_float >> fun fp -> Texpr1.Cst (Coeff.s_of_float fp)
let rec pow base typ = function
| 1 -> base
| z ->
Texpr1.Binop (Texpr1.Mul, base, pow base typ (z - 1), typ, Texpr0.Rnd)
(* An n-ary term with [subtms] {(q0, e0), ..., (qn, en)} is interpreted as:
* ∑ᵢ eᵢ*qᵢ (when [op] is [Texpr1.Add])
* ∏ᵢ eᵢ^qᵢ (when [op] is [Texpr1.Mul])
* (See sledge/src/llair/term.ml functions assert_(mono|poly)mial for details)
*)
let rec texpr_of_nary_term subtms typ q op =
assert (Term.Qset.length subtms >= 2) ;
let term_to_texpr (tm, coeff) =
let* base = apron_texpr_of_llair_term tm q typ in
match op with
| Texpr1.Add ->
Some
(Texpr1.Binop (Texpr1.Mul, base, apron_of_q coeff, typ, Texpr0.Rnd))
| Texpr1.Mul
(* only handle positive integer exponents *)
when Z.equal Z.one (Q.den coeff) && Q.sign coeff = 1 ->
Some (pow base typ (Q.to_int coeff))
| _ -> None
in
match Term.Qset.to_list subtms with
| hd :: tl ->
List.fold tl ~init:(term_to_texpr hd) ~f:(fun acc curr ->
let* c = term_to_texpr curr in
let+ a = acc in
Texpr1.Binop (op, c, a, typ, Texpr0.Rnd) )
| _ -> assert false
and apron_texpr_of_llair_term tm q typ =
match (tm : Term.t) with
| Add terms -> texpr_of_nary_term terms typ q Texpr1.Add
| Mul terms -> texpr_of_nary_term terms typ q Texpr1.Mul
| Var {name} -> Some (Texpr1.Var (apron_var_of_name name))
| Integer {data} -> Some (Texpr1.Cst (Coeff.s_of_int (Z.to_int data)))
| Float {data} ->
let f =
try Float.of_string data
with Invalid_argument _ -> failwith "malformed float: %s"
in
Some (Texpr1.Cst (Coeff.s_of_float f))
| Ap1 (Convert {dst; src}, t) -> (
match (apron_typ_of_llair_typ dst, apron_typ_of_llair_typ src) with
| None, _ | _, None -> None
| Some dst, Some src ->
let subtm = apron_texpr_of_llair_term t q src in
if equal_apron_typ src dst then subtm
else
let+ t = subtm in
Texpr1.Unop (Texpr1.Cast, t, dst, Texpr0.Rnd) )
(* extraction to unsigned 1-bit int is llvm encoding of C boolean;
restrict to [0,1] *)
| Ap1 (Unsigned {bits= 1}, _t) -> Some (Texpr1.Cst (Coeff.i_of_int 0 1))
(* "t xor true" and "true xor t" are negation *)
| Ap2 (Xor, t, Integer {data}) when Z.is_true data ->
let+ t = apron_texpr_of_llair_term t q typ in
Texpr1.Unop (Texpr1.Neg, t, typ, Texpr0.Rnd)
| Ap2 (Xor, Integer {data}, t) when Z.is_true data ->
let+ t = apron_texpr_of_llair_term t q typ in
Texpr1.Unop (Texpr1.Neg, t, typ, Texpr0.Rnd)
(* query apron for abstract evaluation of binary operations*)
| Ap2 (op, t1, t2) ->
let* f =
match op with
| Rem -> Some (mk_arith_binop typ Texpr0.Mod)
| Div -> Some (mk_arith_binop typ Texpr0.Div)
| Eq -> Some (mk_bool_binop typ q Tcons0.EQ)
| Dq -> Some (mk_bool_binop typ q Tcons0.DISEQ)
| Lt -> Some (Fn.flip (mk_bool_binop typ q Tcons0.SUP))
| Le -> Some (Fn.flip (mk_bool_binop typ q Tcons0.SUPEQ))
| _ -> None
in
let* te1 = apron_texpr_of_llair_term t1 q typ in
let+ te2 = apron_texpr_of_llair_term t2 q typ in
f te1 te2
| x ->
[%Trace.info
"No corresponding apron term for llair term: %a" Term.pp x] ;
None
and mk_arith_binop typ op te1 te2 =
Texpr1.Binop (op, te1, te2, typ, Texpr0.Rnd)
(** abstract evaluation of boolean binary operation [te1 op te2] at [q] by
translation to [te1 - te2 op 0] and intersection with [q]*)
and mk_bool_binop typ q op te1 te2 =
let env = Abstract1.env q in
let lhs = Texpr1.Binop (Texpr1.Sub, te1, te2, typ, Texpr0.Rnd) in
let tcons = Tcons1.make (Texpr1.of_expr env lhs) op in
let ea =
Tcons1.array_make env 1 $> fun ea -> Tcons1.array_set ea 0 tcons
in
(* if meet of q with tree constraint encoding of binop is: (bottom ->
binop definitely false); (unchanged from q -> binop definitely true);
(else -> binop may be true or false) *)
let meet = Abstract1.meet_tcons_array (Lazy.force man) q ea in
if is_false meet then Texpr1.Cst (Coeff.s_of_int 0)
else if equal meet q then Texpr1.Cst (Coeff.s_of_int (-1))
else Texpr1.Cst (Coeff.i_of_int (-1) 0)
let assign reg exp q =
[%Trace.call fun {pf} -> pf "{%a}@\n%a := %a" pp q Reg.pp reg Exp.pp exp]
;
let lval = apron_var_of_reg reg in
( match
Option.bind
~f:(apron_texpr_of_llair_term (Exp.term exp) q)
(apron_typ_of_llair_typ (Reg.typ reg))
with
| Some e ->
let env = Abstract1.env q in
let new_env =
match
( Environment.mem_var env lval
, apron_typ_of_llair_typ (Reg.typ reg) )
with
| true, _ -> env
| false, Some Texpr1.Int -> Environment.add env [|lval|] [||]
| false, _ -> Environment.add env [||] [|lval|]
in
let man = Lazy.force man in
let q = Abstract1.change_environment man q new_env true in
Abstract1.assign_texpr man q lval (Texpr1.of_expr new_env e) None
| _ -> q )
|>
[%Trace.retn fun {pf} r -> pf "{%a}" pp r]
(** block if [e] is known to be false; skip otherwise *)
let exec_assume q e =
match
Option.bind
~f:(apron_texpr_of_llair_term (Exp.term e) q)
(apron_typ_of_llair_typ (Exp.typ e))
with
| Some e ->
let cond =
Abstract1.bound_texpr (Lazy.force man) q (Texpr1.of_expr q.env e)
in
if Interval.is_zero cond then None else Some q
| _ -> Some q
(** existentially quantify killed register [r] out of state [q] *)
let exec_kill q r =
let apron_v = apron_var_of_reg r in
if Environment.mem_var (Abstract1.env q) apron_v then
Abstract1.forget_array (Lazy.force man) q [|apron_v|] false
else q
(** perform a series [move_vec] of reg:=exp moves at state [q] *)
let exec_move q move_vec =
let defs, uses =
IArray.fold move_vec ~init:(Reg.Set.empty, Reg.Set.empty)
~f:(fun (defs, uses) (r, e) ->
(Reg.Set.add defs r, Exp.fold_regs e ~init:uses ~f:Reg.Set.add) )
in
assert (Reg.Set.disjoint defs uses) ;
IArray.fold move_vec ~init:q ~f:(fun a (r, e) -> assign r e a)
let exec_inst q i =
match (i : Llair.inst) with
| Move {reg_exps; loc= _} -> Some (exec_move q reg_exps)
| Store {ptr; exp; len= _; loc= _} -> (
match Reg.of_exp ptr with
| Some reg -> Some (assign reg exp q)
| None -> Some q )
| Load {reg; ptr; len= _; loc= _} -> Some (assign reg ptr q)
| Nondet {reg= Some reg; msg= _; loc= _} -> Some (exec_kill q reg)
| Nondet {reg= None; msg= _; loc= _}
|Alloc _ | Memset _ | Memcpy _ | Memmov _ | Free _ ->
Some q
| Abort _ -> None
(** Treat any intrinsic function as havoc on the return register [aret] *)
let exec_intrinsic ~skip_throw:_ pre aret i _ =
let name = Reg.name i in
if
List.exists
[ "malloc"; "aligned_alloc"; "calloc"; "posix_memalign"; "realloc"
; "mallocx"; "rallocx"; "xallocx"; "sallocx"; "dallocx"; "sdallocx"
; "nallocx"; "malloc_usable_size"; "mallctl"; "mallctlnametomib"
; "mallctlbymib"; "malloc_stats_print"; "strlen"
; "__cxa_allocate_exception"; "_ZN5folly13usingJEMallocEv" ]
~f:(String.equal name)
then Option.map ~f:(Option.some << exec_kill pre) aret
else None
type from_call = {areturn: Reg.t option; caller_q: t} [@@deriving sexp_of]
let recursion_beyond_bound = `prune
(** existentially quantify locals *)
let post locals _ (q : t) =
let locals =
Reg.Set.fold locals ~init:[] ~f:(fun a r ->
let v = apron_var_of_reg r in
if Environment.mem_var q.env v then v :: a else a )
|> Array.of_list
in
Abstract1.forget_array (Lazy.force man) q locals false
(** drop caller-local variables, add returned value to caller state *)
let retn _ freturn {areturn; caller_q} callee_q =
match (areturn, freturn) with
| Some aret, Some fret ->
let env_fret_only =
match apron_typ_of_llair_typ (Reg.typ fret) with
| None -> Environment.make [||] [||]
| Some Texpr1.Int -> Environment.make [|apron_var_of_reg fret|] [||]
| _ -> Environment.make [||] [|apron_var_of_reg fret|]
in
let env = Environment.lce env_fret_only (Abstract1.env caller_q) in
let man = Lazy.force man in
let callee_fret =
(* drop all callee vars, scope to (caller + freturn) env *)
Abstract1.change_environment man callee_q env_fret_only false
|> fun q -> Abstract1.change_environment man q env false
in
let caller_q = Abstract1.change_environment man caller_q env false in
let result = Abstract1.meet man callee_fret caller_q in
Abstract1.rename_array man result
[|apron_var_of_reg fret|]
[|apron_var_of_reg aret|]
| Some aret, None -> exec_kill caller_q aret
| None, _ -> caller_q
(** map actuals to formals (via temporary registers), stash constraints on
caller-local variables. Note that this exploits the non-relational-ness
of Box to ignore all variables other than the formal/actual params/
returns; this will not be possible if extended to a relational domain *)
let call ~summaries ~globals:_ ~actuals ~areturn ~formals ~freturn:_
~locals:_ q =
if summaries then
todo "Summaries not yet implemented for interval analysis" ()
else
let mangle r = Reg.program (Reg.typ r) ("__tmp__" ^ Reg.name r) in
let args = List.zip_exn formals actuals in
let q' =
List.fold args ~init:q ~f:(fun q (f, a) -> assign (mangle f) a q)
in
let callee_env =
List.fold formals ~init:([], []) ~f:(fun (is, fs) f ->
match apron_typ_of_llair_typ (Reg.typ f) with
| None -> (is, fs)
| Some Texpr1.Int -> (apron_var_of_reg (mangle f) :: is, fs)
| _ -> (is, apron_var_of_reg (mangle f) :: fs) )
|> fun (is, fs) ->
Environment.make (Array.of_list is) (Array.of_list fs)
in
let man = Lazy.force man in
let q'' = Abstract1.change_environment man q' callee_env false in
let q''' =
Abstract1.rename_array man q''
(Array.of_list_map ~f:(mangle >> apron_var_of_reg) formals)
(Array.of_list_map ~f:apron_var_of_reg formals)
in
(q''', {areturn; caller_q= q})
let dnf q = [q]
let resolve_callee lookup ptr q =
match Reg.of_exp ptr with
| Some callee -> (lookup (Reg.name callee), q)
| None -> ([], q)
type summary = t
let pp_summary = pp
let apply_summary _ _ = None
let create_summary ~locals:_ ~formals:_ q = (q, q)