|
|
(*
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
*
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
*)
|
|
|
|
|
|
(* Properties of the llair model *)
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
open arithmeticTheory integerTheory integer_wordTheory wordsTheory listTheory;
|
|
|
open pred_setTheory finite_mapTheory;
|
|
|
open settingsTheory miscTheory llairTheory;
|
|
|
|
|
|
new_theory "llair_prop";
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
Theorem ifits_w2i:
|
|
|
∀(w : 'a word). ifits (w2i w) (dimindex (:'a))
|
|
|
Proof
|
|
|
rw [ifits_def, GSYM INT_MIN_def] >>
|
|
|
metis_tac [INT_MIN, w2i_ge, integer_wordTheory.INT_MAX_def, w2i_le,
|
|
|
intLib.COOPER_PROVE ``!(x:int) y. x ≤ y - 1 ⇔ x < y``]
|
|
|
QED
|
|
|
|
|
|
Theorem truncate_2comp_fits:
|
|
|
∀i size. 0 < size ⇒ ifits (truncate_2comp i size) size
|
|
|
Proof
|
|
|
rw [truncate_2comp_def, ifits_def] >>
|
|
|
qmatch_goalsub_abbrev_tac `(i + s1) % s2` >>
|
|
|
`s2 ≠ 0 ∧ ¬(s2 < 0)` by rw [Abbr `s2`]
|
|
|
>- (
|
|
|
`0 ≤ (i + s1) % s2` suffices_by intLib.COOPER_TAC >>
|
|
|
drule INT_MOD_BOUNDS >>
|
|
|
rw [])
|
|
|
>- (
|
|
|
`(i + s1) % s2 < 2 * s1` suffices_by intLib.COOPER_TAC >>
|
|
|
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
|
|
|
drule INT_MOD_BOUNDS >>
|
|
|
rw [Abbr `s1`, Abbr `s2`])
|
|
|
QED
|
|
|
|
|
|
Theorem fits_ident:
|
|
|
∀i size. 0 < size ⇒ (ifits i size ⇔ truncate_2comp i size = i)
|
|
|
Proof
|
|
|
rw [ifits_def, truncate_2comp_def] >>
|
|
|
rw [intLib.COOPER_PROVE ``!(x:int) y z. x - y = z <=> x = y + z``] >>
|
|
|
qmatch_goalsub_abbrev_tac `(_ + s1) % s2` >>
|
|
|
`s2 ≠ 0 ∧ ¬(s2 < 0)` by rw [Abbr `s2`] >>
|
|
|
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
|
|
|
eq_tac >>
|
|
|
rw []
|
|
|
>- (
|
|
|
simp [Once INT_ADD_COMM] >>
|
|
|
irule INT_LESS_MOD >>
|
|
|
rw [] >>
|
|
|
intLib.COOPER_TAC)
|
|
|
>- (
|
|
|
`0 ≤ (i + s1) % (2 * s1)` suffices_by intLib.COOPER_TAC >>
|
|
|
drule INT_MOD_BOUNDS >>
|
|
|
simp [])
|
|
|
>- (
|
|
|
`(i + s1) % (2 * s1) < 2 * s1` suffices_by intLib.COOPER_TAC >>
|
|
|
drule INT_MOD_BOUNDS >>
|
|
|
simp [])
|
|
|
QED
|
|
|
|
|
|
Theorem i2n_n2i:
|
|
|
!n size. 0 < size ⇒ (nfits n size ⇔ (i2n (n2i n size) = n))
|
|
|
Proof
|
|
|
rw [nfits_def, n2i_def, i2n_def] >> rw []
|
|
|
>- intLib.COOPER_TAC
|
|
|
>- (
|
|
|
`2 ** size ≤ n` by intLib.COOPER_TAC >> simp [INT_SUB] >>
|
|
|
Cases_on `n = 0` >> fs [] >>
|
|
|
`n - 2 ** size < n` suffices_by intLib.COOPER_TAC >>
|
|
|
irule SUB_LESS >> simp [])
|
|
|
>- (
|
|
|
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
|
|
|
fs [])
|
|
|
QED
|
|
|
|
|
|
Theorem n2i_i2n:
|
|
|
!i size. 0 < size ⇒ (ifits i size ⇔ (n2i (i2n (IntV i size)) size) = IntV i size)
|
|
|
Proof
|
|
|
rw [ifits_def, n2i_def, i2n_def] >> rw [] >> fs []
|
|
|
>- (
|
|
|
eq_tac >> rw []
|
|
|
>- (
|
|
|
simp [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z ⇔ x = y + z``] >>
|
|
|
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
|
|
|
fs [INT_OF_NUM])
|
|
|
>- (
|
|
|
fs [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z ⇔ x = y + z``] >>
|
|
|
fs [INT_OF_NUM] >>
|
|
|
`?j. i = -j` by intLib.COOPER_TAC >> rw [] >> fs [] >>
|
|
|
qpat_x_assum `_ ≤ Num _` mp_tac >>
|
|
|
fs [GSYM INT_OF_NUM] >>
|
|
|
ASM_REWRITE_TAC [GSYM INT_LE] >> rw [] >>
|
|
|
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
|
|
|
intLib.COOPER_TAC)
|
|
|
>- intLib.COOPER_TAC)
|
|
|
>- (
|
|
|
eq_tac >> rw []
|
|
|
>- intLib.COOPER_TAC
|
|
|
>- intLib.COOPER_TAC >>
|
|
|
`0 ≤ i` by intLib.COOPER_TAC >>
|
|
|
fs [GSYM INT_OF_NUM] >>
|
|
|
`&(2 ** size) = 0` by intLib.COOPER_TAC >>
|
|
|
fs [])
|
|
|
>- (
|
|
|
eq_tac >> rw []
|
|
|
>- (
|
|
|
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
|
|
|
intLib.COOPER_TAC)
|
|
|
>- intLib.COOPER_TAC
|
|
|
>- intLib.COOPER_TAC)
|
|
|
>- intLib.COOPER_TAC
|
|
|
QED
|
|
|
|
|
|
Theorem w2n_i2n:
|
|
|
∀w. w2n (w : 'a word) = i2n (IntV (w2i w) (dimindex (:'a)))
|
|
|
Proof
|
|
|
rw [i2n_def] >> Cases_on `w` >> fs []
|
|
|
>- (
|
|
|
`INT_MIN (:α) ≤ n`
|
|
|
by (
|
|
|
fs [w2i_def] >> rw [] >>
|
|
|
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
|
|
|
rfs []) >>
|
|
|
rw [w2i_n2w_neg, dimword_def, int_arithTheory.INT_NUM_SUB])
|
|
|
>- (
|
|
|
`n < INT_MIN (:'a)`
|
|
|
by (
|
|
|
fs [w2i_def] >> rw [] >>
|
|
|
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
|
|
|
rfs []) >>
|
|
|
rw [w2i_n2w_pos])
|
|
|
QED
|
|
|
|
|
|
Theorem w2i_n2w:
|
|
|
∀n. n < dimword (:'a) ⇒ IntV (w2i (n2w n : 'a word)) (dimindex (:'a)) = n2i n (dimindex (:'a))
|
|
|
Proof
|
|
|
rw [n2i_def]
|
|
|
>- (
|
|
|
qspec_then `n` mp_tac w2i_n2w_neg >>
|
|
|
fs [dimword_def, INT_MIN_def] >> rw [GSYM INT_SUB])
|
|
|
>- (irule w2i_n2w_pos >> rw [INT_MIN_def])
|
|
|
QED
|
|
|
|
|
|
Theorem eval_exp_ignores_lem:
|
|
|
∀s1 e v. eval_exp s1 e v ⇒ ∀s2. s1.locals = s2.locals ⇒ eval_exp s2 e v
|
|
|
Proof
|
|
|
ho_match_mp_tac eval_exp_ind >>
|
|
|
rw [] >> simp [Once eval_exp_cases] >>
|
|
|
TRY (qexists_tac `vals` >> rw [] >> fs [LIST_REL_EL_EQN] >> NO_TAC) >>
|
|
|
TRY (fs [LIST_REL_EL_EQN] >> NO_TAC) >>
|
|
|
metis_tac []
|
|
|
QED
|
|
|
|
|
|
Theorem eval_exp_ignores:
|
|
|
∀s1 e v s2. s1.locals = s2.locals ⇒ (eval_exp s1 e v ⇔ eval_exp s2 e v)
|
|
|
Proof
|
|
|
metis_tac [eval_exp_ignores_lem]
|
|
|
QED
|
|
|
|
|
|
Definition exp_uses_def:
|
|
|
(exp_uses (Var x) = {x}) ∧
|
|
|
(exp_uses Nondet = {}) ∧
|
|
|
(exp_uses (Label _) = {}) ∧
|
|
|
(exp_uses (Splat e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
(exp_uses (Memory e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
(exp_uses (Concat es) = bigunion (set (map exp_uses es))) ∧
|
|
|
(exp_uses (Integer _ _) = {}) ∧
|
|
|
(exp_uses (Eq e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
(exp_uses (Lt e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
(exp_uses (Ult e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
(exp_uses (Sub _ e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
(exp_uses (Record es) = bigunion (set (map exp_uses es))) ∧
|
|
|
(exp_uses (Select e1 e2) = exp_uses e1 ∪ exp_uses e2) ∧
|
|
|
(exp_uses (Update e1 e2 e3) = exp_uses e1 ∪ exp_uses e2 ∪ exp_uses e3)
|
|
|
Termination
|
|
|
WF_REL_TAC `measure exp_size` >> rw [] >>
|
|
|
Induct_on `es` >> rw [exp_size_def] >> res_tac >> rw []
|
|
|
End
|
|
|
|
|
|
Theorem eval_exp_ignores_unused_lem:
|
|
|
∀s1 e v.
|
|
|
eval_exp s1 e v ⇒
|
|
|
∀s2. DRESTRICT s1.locals (exp_uses e) = DRESTRICT s2.locals (exp_uses e) ⇒
|
|
|
eval_exp s2 e v
|
|
|
Proof
|
|
|
ho_match_mp_tac eval_exp_ind >>
|
|
|
rw [exp_uses_def] >> simp [Once eval_exp_cases]
|
|
|
>- (
|
|
|
fs [DRESTRICT_EQ_DRESTRICT, EXTENSION, FDOM_DRESTRICT] >>
|
|
|
imp_res_tac FLOOKUP_SUBMAP >>
|
|
|
fs [FLOOKUP_DRESTRICT]) >>
|
|
|
fs [drestrict_union_eq]
|
|
|
>- metis_tac []
|
|
|
>- metis_tac []
|
|
|
>- (
|
|
|
rpt (pop_assum mp_tac) >>
|
|
|
qid_spec_tac `vals` >>
|
|
|
Induct_on `es` >> rw [] >> Cases_on `vals` >> rw [PULL_EXISTS] >> fs [] >>
|
|
|
rw [] >> fs [drestrict_union_eq] >>
|
|
|
rename [`v1++flat vs`] >>
|
|
|
first_x_assum (qspec_then `vs` mp_tac) >> rw [] >>
|
|
|
qexists_tac `v1 :: vals'` >> rw [])
|
|
|
>- metis_tac []
|
|
|
>- metis_tac []
|
|
|
>- metis_tac []
|
|
|
>- metis_tac []
|
|
|
>- (
|
|
|
rpt (pop_assum mp_tac) >>
|
|
|
qid_spec_tac `vals` >>
|
|
|
Induct_on `es` >> rw [] >> fs [drestrict_union_eq])
|
|
|
>- metis_tac []
|
|
|
>- metis_tac []
|
|
|
QED
|
|
|
|
|
|
Theorem eval_exp_ignores_unused:
|
|
|
∀s1 e v s2. DRESTRICT s1.locals (exp_uses e) = DRESTRICT s2.locals (exp_uses e) ⇒ (eval_exp s1 e v ⇔ eval_exp s2 e v)
|
|
|
Proof
|
|
|
metis_tac [eval_exp_ignores_unused_lem]
|
|
|
QED
|
|
|
|
|
|
export_theory ();
|