You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

784 lines
26 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Symbolic Execution *)
[@@@warning "+9"]
(** generic command: [∀xs. {foot ∧ sub} ms := - {post}] *)
type spec =
{xs: Var.Set.t; foot: Sh.t; sub: Var.Subst.t; ms: Var.Set.t; post: Sh.t}
type xseg = {us: Var.Set.t; xs: Var.Set.t; seg: Sh.seg}
let fresh_var nam us xs =
let var, us = Var.fresh nam ~wrt:us in
(Term.var var, us, Set.add xs var)
let fresh_seg ~loc ?bas ?len ?siz ?arr ?(xs = Var.Set.empty) us =
let freshen term nam us xs =
match term with
| Some term -> (term, us, xs)
| None -> fresh_var nam us xs
in
let bas, us, xs = freshen bas "b" us xs in
let len, us, xs = freshen len "m" us xs in
let siz, us, xs = freshen siz "n" us xs in
let arr, us, xs = freshen arr "a" us xs in
{us; xs; seg= {loc; bas; len; siz; arr}}
let null_eq ptr = Sh.pure (Term.eq Term.null ptr)
(* Overwritten variables renaming and remaining modified variables. [ws] are
the written variables; [rs] are the variables read or in the
precondition; [us] are the variables to which ghosts must be chosen
fresh. *)
let assign ~ws ~rs ~us =
let ovs = Set.inter ws rs in
let sub = Var.Subst.freshen ovs ~wrt:us in
let us = Set.union us (Var.Subst.range sub) in
let ms = Set.diff ws (Var.Subst.domain sub) in
(sub, ms, us)
(*
* Instruction small axioms
*)
(* { emp }
* rs := es
* { *ᵢ rᵢ=eᵢΘ }
*)
let move_spec us reg_exps =
let xs = Var.Set.empty in
let foot = Sh.emp in
let ws, rs =
Vector.fold reg_exps ~init:(Var.Set.empty, Var.Set.empty)
~f:(fun (ws, rs) (reg, exp) ->
(Set.add ws reg, Set.union rs (Term.fv exp)) )
in
let sub, ms, _ = assign ~ws ~rs ~us in
let post =
Vector.fold reg_exps ~init:Sh.emp ~f:(fun post (reg, exp) ->
Sh.and_ (Term.eq (Term.var reg) (Term.rename sub exp)) post )
in
{xs; foot; sub; ms; post}
(* { p-[b;m)->⟨l,α⟩ }
* load l r p
* { r=αΘ * (p-[b;m)->⟨l,α⟩)Θ }
*)
let load_spec us reg ptr len =
let {us; xs; seg} = fresh_seg ~loc:ptr ~siz:len us in
let foot = Sh.seg seg in
let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in
let post =
Sh.and_
(Term.eq (Term.var reg) (Term.rename sub seg.arr))
(Sh.rename sub foot)
in
{xs; foot; sub; ms; post}
(* { p-[b;m)->⟨l,α⟩ }
* store l p e
* { p-[b;m)->⟨l,e⟩ }
*)
let store_spec us ptr exp len =
let {us= _; xs; seg} = fresh_seg ~loc:ptr ~siz:len us in
let foot = Sh.seg seg in
let post = Sh.seg {seg with arr= exp} in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ }
* memset l d b
* { d-[b;m)->⟨l,b^⟩ }
*)
let memset_spec us dst byt len =
let {us= _; xs; seg} = fresh_seg ~loc:dst ~siz:len us in
let foot = Sh.seg seg in
let post = Sh.seg {seg with arr= Term.splat byt} in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d=s * l=0 * d-[b;m)->⟨l,α⟩ }
* memcpy l d s
* { d-[b;m)->⟨l,α⟩ }
*)
let memcpy_eq_spec us dst src len =
let {us= _; xs; seg} = fresh_seg ~loc:dst ~len us in
let dst_heap = Sh.seg seg in
let foot =
Sh.and_ (Term.eq dst src) (Sh.and_ (Term.eq len Term.zero) dst_heap)
in
let post = dst_heap in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ }
* memcpy l d s
* { d-[b;m)->⟨l,α'⟩ * s-[b';m')->⟨l,α'⟩ }
*)
let memcpy_dj_spec us dst src len =
let {us; xs; seg= dst_seg} = fresh_seg ~loc:dst ~siz:len us in
let dst_heap = Sh.seg dst_seg in
let {us= _; xs; seg= src_seg} = fresh_seg ~loc:src ~siz:len ~xs us in
let src_heap = Sh.seg src_seg in
let dst_seg' = {dst_seg with arr= src_seg.arr} in
let dst_heap' = Sh.seg dst_seg' in
let foot = Sh.star dst_heap src_heap in
let post = Sh.star dst_heap' src_heap in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let memcpy_specs us dst src len =
[memcpy_eq_spec us dst src len; memcpy_dj_spec us dst src len]
(* { d=s * d-[b;m)->⟨l,α⟩ }
* memmov l d s
* { d-[b;m)->⟨l,α⟩ }
*)
let memmov_eq_spec us dst src len =
let {us= _; xs; seg= dst_seg} = fresh_seg ~loc:dst ~len us in
let dst_heap = Sh.seg dst_seg in
let foot = Sh.and_ (Term.eq dst src) dst_heap in
let post = dst_heap in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { d-[b;m)->⟨l,α⟩ * s-[b';m')->⟨l,α'⟩ }
* memmov l d s
* { d-[b;m)->⟨l,α'⟩ * s-[b';m')->⟨l,α'⟩ }
*)
let memmov_dj_spec = memcpy_dj_spec
(* memmov footprint for dst < src case *)
let memmov_foot us dst src len =
let xs = Var.Set.empty in
let bas, us, xs = fresh_var "b" us xs in
let siz, us, xs = fresh_var "m" us xs in
let arr_dst, us, xs = fresh_var "a" us xs in
let arr_mid, us, xs = fresh_var "a" us xs in
let arr_src, us, xs = fresh_var "a" us xs in
let src_dst = Term.sub src dst in
let mem_dst = (src_dst, arr_dst) in
let siz_mid = Term.sub len src_dst in
let mem_mid = (siz_mid, arr_mid) in
let mem_src = (src_dst, arr_src) in
let mem_dst_mid_src = [|mem_dst; mem_mid; mem_src|] in
let siz_dst_mid_src, us, xs = fresh_var "m" us xs in
let arr_dst_mid_src, us, xs = fresh_var "a" us xs in
let eq_mem_dst_mid_src =
Term.eq_concat (siz_dst_mid_src, arr_dst_mid_src) mem_dst_mid_src
in
let seg =
Sh.seg
{loc= dst; bas; len= siz; siz= siz_dst_mid_src; arr= arr_dst_mid_src}
in
let foot =
Sh.and_ eq_mem_dst_mid_src
(Sh.and_ (Term.lt dst src)
(Sh.and_ (Term.lt src (Term.add dst len)) seg))
in
(us, xs, bas, siz, mem_dst, mem_mid, mem_src, foot)
(* { d<s * s<d+l * d-[b;m)->⟨s-d,α⟩^⟨l-(s-d),β⟩^⟨s-d,γ⟩ }
* memmov l d s
* { d-[b;m)->⟨l-(s-d),β⟩^⟨s-d,γ⟩^⟨s-d,γ⟩ }
*)
let memmov_dn_spec us dst src len =
let us, xs, bas, siz, _, mem_mid, mem_src, foot =
memmov_foot us dst src len
in
let mem_mid_src_src = [|mem_mid; mem_src; mem_src|] in
let siz_mid_src_src, us, xs = fresh_var "m" us xs in
let arr_mid_src_src, _, xs = fresh_var "a" us xs in
let eq_mem_mid_src_src =
Term.eq_concat (siz_mid_src_src, arr_mid_src_src) mem_mid_src_src
in
let post =
Sh.and_ eq_mem_mid_src_src
(Sh.seg
{ loc= dst
; bas
; len= siz
; siz= siz_mid_src_src
; arr= arr_mid_src_src })
in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { s<d * d<s+l * s-[b;m)->⟨d-s,α⟩^⟨l-(d-s),β⟩^⟨d-s,γ⟩ }
* memmov l d s
* { s-[b;m)->⟨d-s,α⟩^⟨d-s,α⟩^⟨l-(d-s),β⟩ }
*)
let memmov_up_spec us dst src len =
let us, xs, bas, siz, mem_src, mem_mid, _, foot =
memmov_foot us src dst len
in
let mem_src_src_mid = [|mem_src; mem_src; mem_mid|] in
let siz_src_src_mid, us, xs = fresh_var "m" us xs in
let arr_src_src_mid, _, xs = fresh_var "a" us xs in
let eq_mem_src_src_mid =
Term.eq_concat (siz_src_src_mid, arr_src_src_mid) mem_src_src_mid
in
let post =
Sh.and_ eq_mem_src_src_mid
(Sh.seg
{ loc= src
; bas
; len= siz
; siz= siz_src_src_mid
; arr= arr_src_src_mid })
in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let memmov_specs us dst src len =
[ memmov_eq_spec us dst src len; memmov_dj_spec us dst src len
; memmov_dn_spec us dst src len; memmov_up_spec us dst src len ]
(* { emp }
* alloc r [n × l]
* { ∃α'. r-[r;(n×l)Θ)->⟨(n×l)Θ,α'⟩ }
*)
let alloc_spec us reg num len =
let foot = Sh.emp in
let siz = Term.mul num len in
let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let post = Sh.seg seg in
{xs; foot; sub; ms; post}
(*
* Memory management - see e.g. http://jemalloc.net/jemalloc.3.html
*)
(* { p=0 p-[p;m)->⟨m,α⟩ }
* free p
* { emp }
*)
let free_spec us ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us= _; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.or_ (null_eq ptr) (Sh.seg seg) in
let post = Sh.emp in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[p;m)->⟨m,α⟩ }
* dallocx p
* { emp }
*)
let dallocx_spec us ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us= _; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.seg seg in
let post = Sh.emp in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { emp }
* malloc r s
* { r=0 ∃α'. r-[r;sΘ)->⟨sΘ,α'⟩ }
*)
let malloc_spec us reg siz =
let foot = Sh.emp in
let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in
{xs; foot; sub; ms; post}
(* { s≠0 }
* mallocx r s
* { r=0 ∃α'. r-[r;sΘ)->⟨sΘ,α'⟩ }
*)
let mallocx_spec us reg siz =
let foot = Sh.pure Term.(dq siz zero) in
let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz us in
let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in
{xs; foot; sub; ms; post}
(* { emp }
* calloc r [n × l]
* { r=0 r-[r;(n×l)Θ)->⟨(n×l)Θ,0^⟩ }
*)
let calloc_spec us reg num len =
let foot = Sh.emp in
let siz = Term.mul num len in
let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:(Term.fv siz) ~us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let arr = Term.splat Term.zero in
let {us= _; xs; seg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~arr us in
let post = Sh.or_ (null_eq (Term.var reg)) (Sh.seg seg) in
{xs; foot; sub; ms; post}
let size_of_ptr = Term.size_of Typ.ptr
(* { p-[_;_)->⟨W,_⟩ }
* posix_memalign r p s
* { r=ENOMEM * (p-[_;_)->⟨W,_⟩)Θ
* ∃α',q. r=0 * (p-[_;_)->⟨W,q⟩ * q-[q;s)->⟨s,α'⟩)Θ }
* where W = sizeof void*
*)
let posix_memalign_spec us reg ptr siz =
let {us; xs; seg= pseg} = fresh_seg ~loc:ptr ~siz:size_of_ptr us in
let foot = Sh.seg pseg in
let sub, ms, us =
assign ~ws:(Var.Set.of_ reg) ~rs:(Set.union foot.us (Term.fv siz)) ~us
in
let q, us, xs = fresh_var "q" us xs in
let pseg' = {pseg with arr= q} in
let {us= _; xs; seg= qseg} =
fresh_seg ~loc:q ~bas:q ~len:siz ~siz ~xs us
in
let eok = Term.zero in
let enomem = Term.integer (Z.of_int 12) in
let post =
Sh.or_
(Sh.and_ (Term.eq (Term.var reg) enomem) (Sh.rename sub foot))
(Sh.and_
(Term.eq (Term.var reg) eok)
(Sh.rename sub (Sh.star (Sh.seg pseg') (Sh.seg qseg))))
in
{xs; foot; sub; ms; post}
(* { p=0 p-[p;m)->⟨m,α⟩ }
* realloc r p s
* { (r=0 * (pΘ=0 pΘ-[pΘ;m)->⟨m,α⟩))
* ∃α',α'' . r-[r;sΘ)->⟨sΘ,α'⟩
* * (m≤sΘ ? ⟨sΘ,α'⟩=⟨m,α⟩^⟨sΘ-m,α''⟩ : ⟨m,α⟩=⟨sΘ,α'⟩^⟨m-sΘ,α''⟩) }
*)
let realloc_spec us reg ptr siz =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg= pseg} =
fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us
in
let foot = Sh.or_ (null_eq ptr) (Sh.seg pseg) in
let sub, ms, us =
assign ~ws:(Var.Set.of_ reg) ~rs:(Set.union foot.us (Term.fv siz)) ~us
in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let {us; xs; seg= rseg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~xs us in
let a0 = pseg.arr in
let a1 = rseg.arr in
let a2, _, xs = fresh_var "a" us xs in
let post =
Sh.or_
(Sh.and_ Term.(eq loc null) (Sh.rename sub foot))
(Sh.and_
Term.(
conditional ~cnd:(le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|]))
(Sh.seg rseg))
in
{xs; foot; sub; ms; post}
(* { s≠0 * p-[p;m)->⟨m,α⟩ }
* rallocx r p s
* { (r=0 * pΘ-[pΘ;m)->⟨m,α⟩)
* ∃α',α'' . r-[r;sΘ)->⟨sΘ,α'⟩
* * (m≤sΘ ? ⟨sΘ,α'⟩=⟨m,α⟩^⟨sΘ-m,α''⟩ : ⟨m,α⟩=⟨sΘ,α'⟩^⟨m-sΘ,α''⟩) }
*)
let rallocx_spec us reg ptr siz =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg= pseg} =
fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us
in
let pheap = Sh.seg pseg in
let foot = Sh.and_ Term.(dq siz zero) pheap in
let sub, ms, us = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let {us; xs; seg= rseg} = fresh_seg ~loc ~bas:loc ~len:siz ~siz ~xs us in
let a0 = pseg.arr in
let a1 = rseg.arr in
let a2, _, xs = fresh_var "a" us xs in
let post =
Sh.or_
(Sh.and_ Term.(eq loc null) (Sh.rename sub pheap))
(Sh.and_
Term.(
conditional ~cnd:(le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|]))
(Sh.seg rseg))
in
{xs; foot; sub; ms; post}
(* { s≠0 * p-[p;m)->⟨m,α⟩ }
* xallocx r p s e
* { ∃α',α'' . sΘ≤r≤(s+e)Θ * pΘ-[pΘ;r)->⟨r,α'⟩
* * (m≤r ? ⟨r,α'⟩=⟨m,α⟩^⟨r-m,α''⟩ : ⟨m,α⟩=⟨r,α'⟩^⟨m-r,α''⟩) }
*)
let xallocx_spec us reg ptr siz ext =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.and_ Term.(dq siz zero) (Sh.seg seg) in
let sub, ms, us =
assign ~ws:(Var.Set.of_ reg)
~rs:Set.(union foot.us (union (Term.fv siz) (Term.fv ext)))
~us
in
let reg = Term.var reg in
let ptr = Term.rename sub ptr in
let siz = Term.rename sub siz in
let ext = Term.rename sub ext in
let {us; xs; seg= seg'} =
fresh_seg ~loc:ptr ~bas:ptr ~len:reg ~siz:reg ~xs us
in
let a0 = seg.arr in
let a1 = seg'.arr in
let a2, _, xs = fresh_var "a" us xs in
let post =
Sh.and_
Term.(
and_
(conditional ~cnd:(le len siz)
~thn:(eq_concat (siz, a1) [|(len, a0); (sub siz len, a2)|])
~els:(eq_concat (len, a0) [|(siz, a1); (sub len siz, a2)|]))
(and_ (le siz reg) (le reg (add siz ext))))
(Sh.seg seg')
in
{xs; foot; sub; ms; post}
(* { p-[p;m)->⟨m,α⟩ }
* sallocx r p
* { r=m * (p-[p;m)->⟨m,α⟩)Θ }
*)
let sallocx_spec us reg ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.seg seg in
let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in
let post = Sh.and_ Term.(eq (var reg) len) (Sh.rename sub foot) in
{xs; foot; sub; ms; post}
(* { p-[p;m)->⟨m,α⟩ }
* malloc_usable_size r p
* { m≤r * (p-[p;m)->⟨m,α⟩)Θ }
*)
let malloc_usable_size_spec us reg ptr =
let len, us, xs = fresh_var "m" us Var.Set.empty in
let {us; xs; seg} = fresh_seg ~loc:ptr ~bas:ptr ~len ~siz:len ~xs us in
let foot = Sh.seg seg in
let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in
let post = Sh.and_ Term.(le len (var reg)) (Sh.rename sub foot) in
{xs; foot; sub; ms; post}
(* { s≠0 }
* r = nallocx s
* { r=0 r=sΘ }
*)
let nallocx_spec us reg siz =
let xs = Var.Set.empty in
let foot = Sh.pure (Term.dq siz Term.zero) in
let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in
let loc = Term.var reg in
let siz = Term.rename sub siz in
let post = Sh.or_ (null_eq loc) (Sh.pure (Term.eq loc siz)) in
{xs; foot; sub; ms; post}
let size_of_int_mul = Term.mul (Term.size_of Typ.siz)
(* { r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨_,m⟩ * w=0 * n=0 }
* mallctl r i w n
* { ∃α'. r-[_;_)->⟨m,α'⟩ * i-[_;_)->⟨_,m⟩ }
*)
let mallctl_read_spec us r i w n =
let {us; xs; seg= iseg} = fresh_seg ~loc:i us in
let {us; xs; seg= rseg} = fresh_seg ~loc:r ~siz:iseg.arr ~xs us in
let a, _, xs = fresh_var "a" us xs in
let foot =
Sh.and_
Term.(eq w null)
(Sh.and_ Term.(eq n zero) (Sh.star (Sh.seg iseg) (Sh.seg rseg)))
in
let rseg' = {rseg with arr= a} in
let post = Sh.star (Sh.seg rseg') (Sh.seg iseg) in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,_⟩ * i-[_;_)->⟨_,m⟩ * w=0 * n=0 }
* mallctlbymib p l r i w n
* { ∃α'. p-[_;_)->⟨W×l,_⟩ * r-[_;_)->⟨m,α'⟩ * i-[_;_)->⟨_,m⟩ }
* where W = sizeof int
*)
let mallctlbymib_read_spec us p l r i w n =
let wl = size_of_int_mul l in
let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wl us in
let {us; xs; seg= iseg} = fresh_seg ~loc:i ~xs us in
let m = iseg.arr in
let {us; xs; seg= rseg} = fresh_seg ~loc:r ~siz:m ~xs us in
let const = Sh.star (Sh.seg pseg) (Sh.seg iseg) in
let a, _, xs = fresh_var "a" us xs in
let foot =
Sh.and_
Term.(eq w null)
(Sh.and_ Term.(eq n zero) (Sh.star const (Sh.seg rseg)))
in
let rseg' = {rseg with arr= a} in
let post = Sh.star (Sh.seg rseg') const in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { r=0 * i=0 * w-[_;_)->⟨n,_⟩ }
* mallctl r i w n
* { w-[_;_)->⟨n,_⟩ }
*)
let mallctl_write_spec us r i w n =
let {us= _; xs; seg} = fresh_seg ~loc:w ~siz:n us in
let post = Sh.seg seg in
let foot = Sh.and_ Term.(eq r null) (Sh.and_ Term.(eq i zero) post) in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(* { p-[_;_)->⟨W×l,_⟩ * r=0 * i=0 * w-[_;_)->⟨n,_⟩ }
* mallctl r i w n
* { p-[_;_)->⟨W×l,_⟩ * w-[_;_)->⟨n,_⟩ }
* where W = sizeof int
*)
let mallctlbymib_write_spec us p l r i w n =
let wl = size_of_int_mul l in
let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wl us in
let {us= _; xs; seg= wseg} = fresh_seg ~loc:w ~siz:n ~xs us in
let post = Sh.star (Sh.seg pseg) (Sh.seg wseg) in
let foot = Sh.and_ Term.(eq r null) (Sh.and_ Term.(eq i zero) post) in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
let mallctl_specs us r i w n =
[mallctl_read_spec us r i w n; mallctl_write_spec us r i w n]
let mallctlbymib_specs us p j r i w n =
[ mallctlbymib_read_spec us p j r i w n
; mallctlbymib_write_spec us p j r i w n ]
(* { p-[_;_)->⟨W×n,α⟩ * o-[_;_)->⟨_,n⟩ }
* mallctlnametomib p o
* { ∃α'.
* p-[_;_)->⟨W×n,α'⟩ * o-[_;_)->⟨_,n⟩ }
* where W = sizeof int
*
* Note: post is too strong, more accurate would be:
* { ∃α',α²,α³,n'. ⟨W×n,α⟩=⟨W×n',α³⟩^⟨W×(n-n'),α²⟩ *
* p-[_;_)->⟨W×n',α'⟩ * p+W×n'-[_;_)->⟨W×(n-n'),α²⟩ * o-[_;_)->⟨_,n'⟩ }
*)
let mallctlnametomib_spec us p o =
let {us; xs; seg= oseg} = fresh_seg ~loc:o us in
let n = oseg.arr in
let wn = size_of_int_mul n in
let {us; xs; seg= pseg} = fresh_seg ~loc:p ~siz:wn ~xs us in
let a, _, xs = fresh_var "a" us xs in
let foot = Sh.star (Sh.seg oseg) (Sh.seg pseg) in
let pseg' = {pseg with arr= a} in
let post = Sh.star (Sh.seg pseg') (Sh.seg oseg) in
{xs; foot; sub= Var.Subst.empty; ms= Var.Set.empty; post}
(*
* cstring - see e.g. http://www.cplusplus.com/reference/cstring/
*)
(* { p-[b;m)->⟨l,α⟩ }
* r = strlen p
* { r=(b+m-p-1)Θ * (p-[b;m)->⟨l,α⟩)Θ }
*)
let strlen_spec us reg ptr =
let {us; xs; seg} = fresh_seg ~loc:ptr us in
let foot = Sh.seg seg in
let sub, ms, _ = assign ~ws:(Var.Set.of_ reg) ~rs:foot.us ~us in
let {Sh.loc= p; bas= b; len= m; _} = seg in
let ret = Term.sub (Term.sub (Term.add b m) p) Term.one in
let post =
Sh.and_
(Term.eq (Term.var reg) (Term.rename sub ret))
(Sh.rename sub foot)
in
{xs; foot; sub; ms; post}
(*
* Symbolic Execution
*)
let check_preserve_us (q0 : Sh.t) (q1 : Sh.t) =
let gain_us = Set.diff q1.us q0.us in
let lose_us = Set.diff q0.us q1.us in
(Set.is_empty gain_us || fail "gain us: %a" Var.Set.pp gain_us ())
&& (Set.is_empty lose_us || fail "lose us: %a" Var.Set.pp lose_us ())
(* execute a command with given spec from pre *)
let exec_spec pre0 {xs; foot; sub; ms; post} =
([%Trace.call fun {pf} ->
pf "@[%a@]@ @[<2>%a@,@[<hv>{%a %a}@;<1 -1>%a--@ {%a }@]@]" Sh.pp pre0
(Sh.pp_us ~pre:"@<2>∀ " ())
xs Sh.pp foot
(fun fs sub ->
if not (Var.Subst.is_empty sub) then
Format.fprintf fs "∧ %a" Var.Subst.pp sub )
sub
(fun fs ms ->
if not (Set.is_empty ms) then
Format.fprintf fs "%a := " Var.Set.pp ms )
ms Sh.pp post ;
assert (
let vs = Set.diff (Set.diff foot.us xs) pre0.us in
Set.is_empty vs || fail "unbound foot: {%a}" Var.Set.pp vs () ) ;
assert (
let vs = Set.diff (Set.diff post.us xs) pre0.us in
Set.is_empty vs || fail "unbound post: {%a}" Var.Set.pp vs () )]
;
let foot = Sh.extend_us xs foot in
let zs, pre = Sh.bind_exists pre0 ~wrt:xs in
let+ frame = Solver.infer_frame pre xs foot in
Sh.exists (Set.union zs xs)
(Sh.star post (Sh.exists ms (Sh.rename sub frame))))
|>
[%Trace.retn fun {pf} r ->
pf "%a" (Option.pp "%a" Sh.pp) r ;
assert (Option.for_all ~f:(check_preserve_us pre0) r)]
(* execute a multiple-spec command, where the disjunction of the specs
preconditions are known to be tautologous *)
let rec exec_specs pre = function
| ({xs; foot; _} as spec) :: specs ->
let foot = Sh.extend_us xs foot in
let pre_pure = Sh.star (Sh.exists xs (Sh.pure_approx foot)) pre in
let* post = exec_spec pre_pure spec in
let+ posts = exec_specs pre specs in
Sh.or_ post posts
| [] -> Some (Sh.false_ pre.us)
let exec_specs pre specs =
[%Trace.call fun _ -> ()]
;
exec_specs pre specs
|>
[%Trace.retn fun _ r ->
assert (Option.for_all ~f:(check_preserve_us pre) r)]
(*
* Exposed interface
*)
let assume pre cnd =
let post = Sh.and_ cnd pre in
if Sh.is_false post then None else Some post
let kill pre reg =
let ms = Var.Set.of_ reg in
Sh.extend_us ms (Sh.exists ms pre)
let move pre reg_exps =
exec_spec pre (move_spec pre.us reg_exps)
|> function Some post -> post | _ -> fail "Exec.move failed" ()
let load pre ~reg ~ptr ~len = exec_spec pre (load_spec pre.us reg ptr len)
let store pre ~ptr ~exp ~len = exec_spec pre (store_spec pre.us ptr exp len)
let memset pre ~dst ~byt ~len =
exec_spec pre (memset_spec pre.us dst byt len)
let memcpy pre ~dst ~src ~len =
exec_specs pre (memcpy_specs pre.us dst src len)
let memmov pre ~dst ~src ~len =
exec_specs pre (memmov_specs pre.us dst src len)
let alloc pre ~reg ~num ~len = exec_spec pre (alloc_spec pre.us reg num len)
let free pre ~ptr = exec_spec pre (free_spec pre.us ptr)
let nondet pre = function Some reg -> kill pre reg | None -> pre
let abort _ = None
let intrinsic ~skip_throw :
Sh.t -> Var.t option -> Var.t -> Term.t list -> Sh.t option option =
fun pre areturn intrinsic actuals ->
let us = pre.us in
let name =
let n = Var.name intrinsic in
match String.index n '.' with None -> n | Some i -> String.prefix n i
in
let skip pre = Some (Some pre) in
( match (areturn, name, actuals) with
(*
* cstdlib - memory management
*)
(* void* malloc(size_t size) *)
| Some reg, "malloc", [size]
(* void* aligned_alloc(size_t alignment, size_t size) *)
|Some reg, "aligned_alloc", [size; _] ->
Some (exec_spec pre (malloc_spec us reg size))
(* void* calloc(size_t number, size_t size) *)
| Some reg, "calloc", [size; number] ->
Some (exec_spec pre (calloc_spec us reg number size))
(* int posix_memalign(void** ptr, size_t alignment, size_t size) *)
| Some reg, "posix_memalign", [size; _; ptr] ->
Some (exec_spec pre (posix_memalign_spec us reg ptr size))
(* void* realloc(void* ptr, size_t size) *)
| Some reg, "realloc", [size; ptr] ->
Some (exec_spec pre (realloc_spec us reg ptr size))
(*
* jemalloc - non-standard API
*)
(* void* mallocx(size_t size, int flags) *)
| Some reg, "mallocx", [_; size] ->
Some (exec_spec pre (mallocx_spec us reg size))
(* void* rallocx(void* ptr, size_t size, int flags) *)
| Some reg, "rallocx", [_; size; ptr] ->
Some (exec_spec pre (rallocx_spec us reg ptr size))
(* size_t xallocx(void* ptr, size_t size, size_t extra, int flags) *)
| Some reg, "xallocx", [_; extra; size; ptr] ->
Some (exec_spec pre (xallocx_spec us reg ptr size extra))
(* size_t sallocx(void* ptr, int flags) *)
| Some reg, "sallocx", [_; ptr] ->
Some (exec_spec pre (sallocx_spec us reg ptr))
(* void dallocx(void* ptr, int flags) *)
| None, "dallocx", [_; ptr]
(* void sdallocx(void* ptr, size_t size, int flags) *)
|None, "sdallocx", [_; _; ptr] ->
Some (exec_spec pre (dallocx_spec us ptr))
(* size_t nallocx(size_t size, int flags) *)
| Some reg, "nallocx", [_; size] ->
Some (exec_spec pre (nallocx_spec us reg size))
(* size_t malloc_usable_size(void* ptr) *)
| Some reg, "malloc_usable_size", [ptr] ->
Some (exec_spec pre (malloc_usable_size_spec us reg ptr))
(* int mallctl(const char* name, void* oldp, size_t* oldlenp, void* newp,
size_t newlen) *)
| Some _, "mallctl", [newlen; newp; oldlenp; oldp; _] ->
Some (exec_specs pre (mallctl_specs us oldp oldlenp newp newlen))
(* int mallctlnametomib(const char* name, size_t* mibp, size_t* miblenp) *)
| Some _, "mallctlnametomib", [miblenp; mibp; _] ->
Some (exec_spec pre (mallctlnametomib_spec us mibp miblenp))
(* int mallctlbymib(const size_t* mib, size_t miblen, void* oldp, size_t*
oldlenp, void* newp, size_t newlen); *)
| Some _, "mallctlbymib", [newlen; newp; oldlenp; oldp; miblen; mib] ->
Some
(exec_specs pre
(mallctlbymib_specs us mib miblen oldp oldlenp newp newlen))
| _, "malloc_stats_print", _ -> skip pre
(*
* cstring
*)
(* size_t strlen (const char* ptr) *)
| Some reg, "strlen", [ptr] ->
Some (exec_spec pre (strlen_spec us reg ptr))
(*
* cxxabi
*)
| Some _, "__cxa_allocate_exception", [_] when skip_throw ->
skip (Sh.false_ pre.us)
(*
* folly
*)
(* bool folly::usingJEMalloc() *)
| Some _, "_ZN5folly13usingJEMallocEv", [] -> skip pre
| _ -> None )
$> function
| None -> ()
| Some _ ->
[%Trace.info
"@[<2>exec intrinsic@ @[%a%a(@[%a@])@] from@ @[{ %a@ }@]@]"
(Option.pp "%a := " Var.pp)
areturn Var.pp intrinsic (List.pp ",@ " Term.pp)
(List.rev actuals) Sh.pp pre]