You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

142 lines
4.0 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* Properties of the llair model *)
open HolKernel boolLib bossLib Parse;
open arithmeticTheory integerTheory integer_wordTheory wordsTheory;
open settingsTheory miscTheory llairTheory;
new_theory "llair_prop";
numLib.prefer_num ();
Theorem ifits_w2i:
∀(w : 'a word). ifits (w2i w) (dimindex (:'a))
Proof
rw [ifits_def, GSYM INT_MIN_def] >>
metis_tac [INT_MIN, w2i_ge, integer_wordTheory.INT_MAX_def, w2i_le,
intLib.COOPER_PROVE ``!(x:int) y. x y - 1 x < y``]
QED
Theorem truncate_2comp_fits:
∀i size. 0 < size ifits (truncate_2comp i size) size
Proof
rw [truncate_2comp_def, ifits_def] >>
qmatch_goalsub_abbrev_tac `(i + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`]
>- (
`0 (i + s1) % s2` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
rw [])
>- (
`(i + s1) % s2 < 2 * s1` suffices_by intLib.COOPER_TAC >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
drule INT_MOD_BOUNDS >>
rw [Abbr `s1`, Abbr `s2`])
QED
Theorem fits_ident:
∀i size. 0 < size (ifits i size truncate_2comp i size = i)
Proof
rw [ifits_def, truncate_2comp_def] >>
rw [intLib.COOPER_PROVE ``!(x:int) y z. x - y = z <=> x = y + z``] >>
qmatch_goalsub_abbrev_tac `(_ + s1) % s2` >>
`s2 0 ¬(s2 < 0)` by rw [Abbr `s2`] >>
`2 * s1 = s2` by rw [Abbr `s1`, Abbr `s2`, GSYM EXP] >>
eq_tac >>
rw []
>- (
simp [Once INT_ADD_COMM] >>
irule INT_LESS_MOD >>
rw [] >>
intLib.COOPER_TAC)
>- (
`0 (i + s1) % (2 * s1)` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
>- (
`(i + s1) % (2 * s1) < 2 * s1` suffices_by intLib.COOPER_TAC >>
drule INT_MOD_BOUNDS >>
simp [])
QED
Theorem i2n_n2i:
!n size. 0 < size (nfits n size (i2n (n2i n size) = n))
Proof
rw [nfits_def, n2i_def, i2n_def] >> rw []
>- intLib.COOPER_TAC
>- (
`2 ** size n` by intLib.COOPER_TAC >> simp [INT_SUB] >>
Cases_on `n = 0` >> fs [] >>
`n - 2 ** size < n` suffices_by intLib.COOPER_TAC >>
irule SUB_LESS >> simp [])
>- (
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
fs [])
QED
Theorem n2i_i2n:
!i size. 0 < size (ifits i size (n2i (i2n (IntV i size)) size) = IntV i size)
Proof
rw [ifits_def, n2i_def, i2n_def] >> rw [] >> fs []
>- (
eq_tac >> rw []
>- (
simp [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z x = y + z``] >>
`2 ** (size - 1) < 2 ** size` suffices_by intLib.COOPER_TAC >>
fs [INT_OF_NUM])
>- (
fs [intLib.COOPER_PROVE ``∀(x:int) y z. x - y = z x = y + z``] >>
fs [INT_OF_NUM] >>
`?j. i = -j` by intLib.COOPER_TAC >> rw [] >> fs [] >>
qpat_x_assum `_ Num _` mp_tac >>
fs [GSYM INT_OF_NUM] >>
ASM_REWRITE_TAC [GSYM INT_LE] >> rw [] >>
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
intLib.COOPER_TAC)
>- intLib.COOPER_TAC)
>- (
eq_tac >> rw []
>- intLib.COOPER_TAC
>- intLib.COOPER_TAC >>
`0 i` by intLib.COOPER_TAC >>
fs [GSYM INT_OF_NUM] >>
`&(2 ** size) = 0` by intLib.COOPER_TAC >>
fs [])
>- (
eq_tac >> rw []
>- (
`2 ** size = 2 * 2 ** (size - 1)` by rw [GSYM EXP, ADD1] >> fs [] >>
intLib.COOPER_TAC)
>- intLib.COOPER_TAC
>- intLib.COOPER_TAC)
>- intLib.COOPER_TAC
QED
Theorem w2n_i2n:
∀w. w2n (w : 'a word) = i2n (IntV (w2i w) (dimindex (:'a)))
Proof
rw [i2n_def] >> Cases_on `w` >> fs []
>- (
`INT_MIN (:α) n`
by (
fs [w2i_def] >> rw [] >>
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
rfs []) >>
rw [w2i_n2w_neg, dimword_def, int_arithTheory.INT_NUM_SUB])
>- (
`n < INT_MIN (:'a)`
by (
fs [w2i_def] >> rw [] >>
BasicProvers.EVERY_CASE_TAC >> fs [word_msb_n2w_numeric] >>
rfs []) >>
rw [w2i_n2w_pos])
QED
export_theory ();