You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

458 lines
18 KiB

(*
* Copyright (c) 2016 - present
*
* Programming Research Laboratory (ROPAS)
* Seoul National University, Korea
* All rights reserved.
*
* This source code is licensed under the BSD style license found in the
* LICENSE file in the root directory of this source tree. An additional grant
* of patent rights can be found in the PATENTS file in the same directory.
*)
open! IStd
open AbsLoc
module F = Format
module L = Logging
module Dom = BufferOverrunDomain
module Summary = Summary.Make (struct
type summary = Dom.Summary.t
let update_payload astate payload =
{ payload with Specs.buffer_overrun = Some astate }
let read_from_payload payload =
payload.Specs.buffer_overrun
end)
module TransferFunctions (CFG : ProcCfg.S) =
struct
module CFG = CFG
module Domain = Dom.Mem
module Sem = BufferOverrunSemantics.Make (CFG)
type extras = Procname.t -> Procdesc.t option
(* NOTE: heuristic *)
let get_malloc_info : Exp.t -> Typ.t * Exp.t
= function
| Exp.BinOp (Binop.Mult, Exp.Sizeof (typ, _, _), size)
| Exp.BinOp (Binop.Mult, size, Exp.Sizeof (typ, _, _)) -> (typ, size)
| Exp.Sizeof (typ, _, _) -> (typ, Exp.one)
| x -> (Typ.Tint Typ.IChar, x)
let model_malloc
: Procname.t -> (Ident.t * Typ.t) option -> (Exp.t * Typ.t) list -> CFG.node
-> Dom.Mem.t -> Dom.Mem.t
= fun pname ret params node mem ->
match ret with
| Some (id, _) ->
let (typ, size) = get_malloc_info (IList.hd params |> fst) in
let size = Sem.eval size mem (CFG.loc node) |> Dom.Val.get_itv in
let v = Sem.eval_array_alloc pname node typ Itv.zero size 0 1 in
Dom.Mem.add_stack (Loc.of_id id) v mem
| _ -> mem
let model_realloc
: Procname.t -> (Ident.t * Typ.t) option -> (Exp.t * Typ.t) list -> CFG.node
-> Dom.Mem.t -> Dom.Mem.t
= fun pname ret params node mem ->
model_malloc pname ret (IList.tl params) node mem
let model_natual_itv : (Ident.t * Typ.t) option -> Dom.Mem.t -> Dom.Mem.t
= fun ret mem ->
match ret with
| Some (id, _) -> Dom.Mem.add_stack (Loc.of_id id) Dom.Val.nat_itv mem
| _ -> mem
let model_unknown_itv : (Ident.t * Typ.t) option -> Dom.Mem.t -> Dom.Mem.t
= fun ret mem ->
match ret with
Some (id, _) -> Dom.Mem.add_stack (Loc.of_id id) Dom.Val.top_itv mem
| None -> mem
let model_infer_print
: (Exp.t * Typ.t) list -> Dom.Mem.t -> Location.t -> Dom.Mem.t
= fun params mem loc ->
match params with
| (e, _) :: _ ->
(* TODO: only print when debug mode? *)
F.fprintf F.err_formatter "@[<v>=== Infer Print === at %a@,"
Location.pp loc;
Dom.Val.pp F.err_formatter (Sem.eval e mem loc);
F.fprintf F.err_formatter "@]";
mem
| _ -> mem
let handle_unknown_call
: Procname.t -> (Ident.t * Typ.t) option -> Procname.t
-> (Exp.t * Typ.t) list -> CFG.node -> Dom.Mem.t -> Location.t
-> Dom.Mem.t
= fun pname ret callee_pname params node mem loc ->
match Procname.get_method callee_pname with
| "malloc"
| "__new_array" -> model_malloc pname ret params node mem
| "realloc" -> model_realloc pname ret params node mem
| "strlen"
| "fgetc" -> model_natual_itv ret mem
| "infer_print" -> model_infer_print params mem loc
| _ -> model_unknown_itv ret mem
let rec declare_array
: Procname.t -> CFG.node -> Loc.t -> Typ.t -> IntLit.t -> inst_num:int
-> dimension:int -> Dom.Mem.astate -> Dom.Mem.astate
= fun pname node loc typ len ~inst_num ~dimension mem ->
let size = IntLit.to_int len |> Itv.of_int in
let arr =
Sem.eval_array_alloc pname node typ Itv.zero size inst_num dimension
in
let mem =
if Int.equal dimension 1
then Dom.Mem.add_stack loc arr mem
else Dom.Mem.add_heap loc arr mem
in
let loc =
Loc.of_allocsite (Sem.get_allocsite pname node inst_num dimension)
in
match typ with
| Typ.Tarray (typ, Some len) ->
declare_array pname node loc typ len ~inst_num
~dimension:(dimension + 1) mem
| _ -> mem
let declare_symbolic_array
: Procname.t -> Tenv.t -> CFG.node -> Loc.t -> Typ.t -> inst_num:int
-> sym_num:int -> dimension:int -> Dom.Mem.astate -> Dom.Mem.astate * int
= fun pname tenv node loc typ ~inst_num ~sym_num ~dimension mem ->
let offset = Itv.make_sym pname sym_num in
let size = Itv.make_sym pname (sym_num + 2) in
let arr =
Sem.eval_array_alloc pname node typ offset size inst_num dimension
in
let elem_val = Dom.Val.make_sym pname (sym_num + 4) in
let arr_loc = arr |> Dom.Val.get_array_blk |> ArrayBlk.get_pow_loc in
let mem =
mem
|> Dom.Mem.add_heap loc arr
|> Dom.Mem.strong_update_heap arr_loc elem_val
in
let decl_fld (mem, sym_num) (fn, typ, _) =
let loc =
mem |> Dom.Mem.find_heap loc |> Dom.Val.get_all_locs |> PowLoc.choose
in
let field = Loc.append_field loc fn in
match typ with
| Typ.Tint _
| Typ.Tfloat _ ->
let v = Dom.Val.make_sym pname sym_num in
(Dom.Mem.add_heap field v mem, sym_num + 2)
| Typ.Tptr (typ, _) ->
let offset = Itv.make_sym pname sym_num in
let size = Itv.make_sym pname (sym_num + 2) in
let v =
Sem.eval_array_alloc pname node typ offset size inst_num dimension
in
(Dom.Mem.add_heap field v mem, sym_num + 4)
| _ -> (mem, sym_num)
in
match typ with
| Typ.Tstruct typename ->
(match Tenv.lookup tenv typename with
| Some str ->
IList.fold_left decl_fld (mem, sym_num + 6) str.StructTyp.fields
| _ -> (mem, sym_num + 6))
| _ -> (mem, sym_num + 6)
let declare_symbolic_parameter
: Procdesc.t -> Tenv.t -> CFG.node -> int -> Dom.Mem.t -> Dom.Mem.t
= fun pdesc tenv node inst_num mem ->
let pname = Procdesc.get_proc_name pdesc in
let add_formal (mem, inst_num, sym_num) (pvar, typ) =
match typ with
| Typ.Tint _ ->
let v = Dom.Val.make_sym pname sym_num in
let mem = Dom.Mem.add_heap (Loc.of_pvar pvar) v mem in
(mem, inst_num + 1, sym_num + 2)
| Typ.Tptr (typ, _) ->
let (mem, sym_num) =
declare_symbolic_array pname tenv node (Loc.of_pvar pvar) typ
~inst_num ~sym_num ~dimension:1 mem
in
(mem, inst_num + 1, sym_num)
| _ -> (mem, inst_num, sym_num) (* TODO: add other cases if necessary *)
in
IList.fold_left add_formal (mem, inst_num, 0) (Sem.get_formals pdesc)
|> fst3
let instantiate_ret
: Tenv.t -> Procdesc.t option -> Procname.t -> (Exp.t * Typ.t) list
-> Dom.Mem.t -> Dom.Summary.t -> Location.t -> Dom.Val.astate
= fun tenv callee_pdesc callee_pname params caller_mem summary loc ->
let callee_entry_mem = Dom.Summary.get_input summary in
let callee_exit_mem = Dom.Summary.get_output summary in
match callee_pdesc with
| Some pdesc ->
let subst_map =
Sem.get_subst_map tenv pdesc params caller_mem callee_entry_mem loc
in
let ret_loc = Loc.of_pvar (Pvar.get_ret_pvar callee_pname) in
let ret_val = Dom.Mem.find_heap ret_loc callee_exit_mem in
Dom.Val.subst ret_val subst_map
|> Dom.Val.normalize (* normalize bottom *)
| _ -> Dom.Val.bot
let print_debug_info : Sil.instr -> Dom.Mem.t -> Dom.Mem.t -> unit
= fun instr pre post ->
if Config.bo_debug >= 2 then
begin
F.fprintf F.err_formatter "@.@.================================@.";
F.fprintf F.err_formatter "@[<v 2>Pre-state : @,";
Dom.Mem.pp F.err_formatter pre;
F.fprintf F.err_formatter "@]@.@.";
Sil.pp_instr Pp.text F.err_formatter instr;
F.fprintf F.err_formatter "@.@.";
F.fprintf F.err_formatter "@[<v 2>Post-state : @,";
Dom.Mem.pp F.err_formatter post;
F.fprintf F.err_formatter "@]@.";
F.fprintf F.err_formatter "================================@.@."
end
let exec_instr
: Dom.Mem.t -> extras ProcData.t -> CFG.node -> Sil.instr -> Dom.Mem.astate
= fun mem { pdesc; tenv; extras } node instr ->
let pname = Procdesc.get_proc_name pdesc in
let try_decl_arr (mem, inst_num) (pvar, typ) =
match typ with
| Typ.Tarray (typ, Some len) ->
let loc = Loc.of_var (Var.of_pvar pvar) in
let mem =
declare_array pname node loc typ len ~inst_num ~dimension:1 mem
in
(mem, inst_num + 1)
| _ -> (mem, inst_num)
in
let output_mem =
match instr with
| Load (id, exp, _, loc) ->
let locs = Sem.eval exp mem loc |> Dom.Val.get_all_locs in
let v = Dom.Mem.find_heap_set locs mem in
Dom.Mem.add_stack (Loc.of_var (Var.of_id id)) v mem
|> Dom.Mem.load_alias id exp
| Store (exp1, _, exp2, loc) ->
let locs = Sem.eval exp1 mem loc |> Dom.Val.get_all_locs in
Dom.Mem.update_mem locs (Sem.eval exp2 mem loc) mem
|> Dom.Mem.store_alias exp1 exp2
| Prune (exp, loc, _, _) -> Sem.prune exp loc mem
| Call (ret, Const (Cfun callee_pname), params, loc, _) ->
(match Summary.read_summary pdesc callee_pname with
| Some summary ->
let callee = extras callee_pname in
let ret_val =
instantiate_ret tenv callee callee_pname params mem summary loc
in
(match ret with
| Some (id, _) ->
Dom.Mem.add_stack (Loc.of_var (Var.of_id id)) ret_val mem
| _ -> mem)
| None ->
handle_unknown_call pname ret callee_pname params node mem loc)
| Declare_locals (locals, _) ->
(* array allocation in stack e.g., int arr[10] *)
let (mem, inst_num) = IList.fold_left try_decl_arr (mem, 1) locals in
declare_symbolic_parameter pdesc tenv node inst_num mem
| Call _
| Remove_temps _
| Abstract _
| Nullify _ -> mem
in
print_debug_info instr mem output_mem;
output_mem
end
module Analyzer = AbstractInterpreter.Make (ProcCfg.Normal) (TransferFunctions)
module Interprocedural = AbstractInterpreter.Interprocedural (Summary)
module CFG = Analyzer.TransferFunctions.CFG
module Sem = BufferOverrunSemantics.Make (CFG)
module Report =
struct
type extras = Procname.t -> Procdesc.t option
let add_condition
: Procname.t -> CFG.node -> Exp.t -> Location.t -> Dom.Mem.astate
-> Dom.ConditionSet.t -> Dom.ConditionSet.t
= fun pname node exp loc mem cond_set ->
let array_access =
match exp with
| Exp.Var _ ->
let arr = Sem.eval exp mem loc |> Dom.Val.get_array_blk in
Some (arr, Itv.zero, true)
| Exp.Lindex (e1, e2)
| Exp.BinOp (Binop.PlusA, e1, e2) ->
let arr = Sem.eval e1 mem loc |> Dom.Val.get_array_blk in
let idx = Sem.eval e2 mem loc |> Dom.Val.get_itv in
Some (arr, idx, true)
| Exp.BinOp (Binop.MinusA, e1, e2) ->
let arr = Sem.eval e1 mem loc |> Dom.Val.get_array_blk in
let idx = Sem.eval e2 mem loc |> Dom.Val.get_itv in
Some (arr, idx, false)
| _ -> None
in
match array_access with
| Some (arr, idx, is_plus) ->
let site = Sem.get_allocsite pname node 0 0 in
let size = ArrayBlk.sizeof arr in
let offset = ArrayBlk.offsetof arr in
let idx = (if is_plus then Itv.plus else Itv.minus) offset idx in
(if Config.bo_debug >= 2 then
(F.fprintf F.err_formatter "@[<v 2>Add condition :@,";
F.fprintf F.err_formatter "array: %a@," ArrayBlk.pp arr;
F.fprintf F.err_formatter " idx: %a@," Itv.pp idx;
F.fprintf F.err_formatter "@]@."));
if size <> Itv.bot && idx <> Itv.bot then
Dom.ConditionSet.add_bo_safety pname loc site ~size ~idx cond_set
else cond_set
| None -> cond_set
let instantiate_cond
: Tenv.t -> Procname.t -> Procdesc.t option -> (Exp.t * Typ.t) list
-> Dom.Mem.t -> Summary.summary -> Location.t -> Dom.ConditionSet.t
= fun tenv caller_pname callee_pdesc params caller_mem summary loc ->
let callee_entry_mem = Dom.Summary.get_input summary in
let callee_cond = Dom.Summary.get_cond_set summary in
match callee_pdesc with
| Some pdesc ->
let subst_map =
Sem.get_subst_map tenv pdesc params caller_mem callee_entry_mem loc
in
let pname = Procdesc.get_proc_name pdesc in
Dom.ConditionSet.subst callee_cond subst_map caller_pname pname loc
| _ -> callee_cond
let print_debug_info : Sil.instr -> Dom.Mem.t -> Dom.ConditionSet.t -> unit
= fun instr pre cond_set ->
if Config.bo_debug >= 2 then
(F.fprintf F.err_formatter "@.@.================================@.";
F.fprintf F.err_formatter "@[<v 2>Pre-state : @,";
Dom.Mem.pp F.err_formatter pre;
F.fprintf F.err_formatter "@]@.@.";
Sil.pp_instr Pp.text F.err_formatter instr;
F.fprintf F.err_formatter "@[<v 2>@.@.";
Dom.ConditionSet.pp F.err_formatter cond_set;
F.fprintf F.err_formatter "@]@.";
F.fprintf F.err_formatter "================================@.@.")
let collect_instr
: extras ProcData.t -> CFG.node -> Dom.ConditionSet.t * Dom.Mem.t
-> Sil.instr -> Dom.ConditionSet.t * Dom.Mem.t
= fun ({ pdesc; tenv; extras } as pdata) node (cond_set, mem) instr ->
let pname = Procdesc.get_proc_name pdesc in
let cond_set =
match instr with
| Sil.Load (_, exp, _, loc)
| Sil.Store (exp, _, _, loc) ->
add_condition pname node exp loc mem cond_set
| Sil.Call (_, Const (Cfun callee_pname), params, loc, _) ->
(match Summary.read_summary pdesc callee_pname with
| Some summary ->
let callee = extras callee_pname in
instantiate_cond tenv pname callee params mem summary loc
|> Dom.ConditionSet.rm_invalid
|> Dom.ConditionSet.join cond_set
| _ -> cond_set)
| _ -> cond_set
in
let mem = Analyzer.TransferFunctions.exec_instr mem pdata node instr in
print_debug_info instr mem cond_set;
(cond_set, mem)
let collect_instrs
: extras ProcData.t -> CFG.node -> Sil.instr list -> Dom.Mem.t
-> Dom.ConditionSet.t -> Dom.ConditionSet.t
= fun pdata node instrs mem cond_set ->
IList.fold_left (collect_instr pdata node) (cond_set, mem) instrs
|> fst
let collect_node
: extras ProcData.t -> Analyzer.invariant_map -> Dom.ConditionSet.t ->
CFG.node -> Dom.ConditionSet.t
= fun pdata inv_map cond_set node ->
let instrs = CFG.instr_ids node |> IList.map fst in
match Analyzer.extract_pre (CFG.id node) inv_map with
| Some mem -> collect_instrs pdata node instrs mem cond_set
| _ -> cond_set
let collect : extras ProcData.t -> Analyzer.invariant_map -> Dom.ConditionSet.t
= fun ({ pdesc } as pdata) inv_map ->
let add_node1 acc node = collect_node pdata inv_map acc node in
Procdesc.fold_nodes add_node1 Dom.ConditionSet.empty pdesc
let report_error : Procdesc.t -> Dom.ConditionSet.t -> unit
= fun pdesc conds ->
let pname = Procdesc.get_proc_name pdesc in
let report1 cond =
let alarm = Dom.Condition.check cond in
let (caller_pname, loc) =
match Dom.Condition.get_trace cond with
| Dom.Condition.Inter (caller_pname, _, loc) -> (caller_pname, loc)
| Dom.Condition.Intra pname -> (pname, Dom.Condition.get_location cond)
in
match alarm with
| None -> ()
| Some bucket when Procname.equal pname caller_pname ->
let description = Dom.Condition.to_string cond in
let error_desc = Localise.desc_buffer_overrun bucket description in
let exn = Exceptions.Checkers (Localise.to_string Localise.buffer_overrun, error_desc) in
let trace = [Errlog.make_trace_element 0 loc description []] in
Reporting.log_error pname ~loc ~ltr:trace exn
| _ -> ()
in
Dom.ConditionSet.iter report1 conds
end
let compute_post
: Analyzer.TransferFunctions.extras ProcData.t -> Summary.summary option
= fun { pdesc; tenv; extras = get_pdesc } ->
let cfg = CFG.from_pdesc pdesc in
let pdata = ProcData.make pdesc tenv get_pdesc in
let pname = Procdesc.get_proc_name pdesc in
let inv_map = Analyzer.exec_pdesc ~initial:Dom.Mem.bot pdata in
let entry_mem =
let entry_id = CFG.id (CFG.start_node cfg) in
Analyzer.extract_post entry_id inv_map
in
let exit_mem =
let exit_id = CFG.id (CFG.exit_node cfg) in
Analyzer.extract_post exit_id inv_map
in
let cond_set = Report.collect pdata inv_map in
Report.report_error pdesc cond_set;
match entry_mem, exit_mem with
| Some entry_mem, Some exit_mem ->
Summary.write_summary pname (entry_mem, exit_mem, cond_set);
Some (entry_mem, exit_mem, cond_set)
| _ -> None
let print_summary : Procname.t -> Dom.Summary.t -> unit
= fun proc_name s ->
F.fprintf F.err_formatter "@.@[<v 2>Summary of %a :@,"
Procname.pp proc_name;
Dom.Summary.pp_summary F.err_formatter s;
F.fprintf F.err_formatter "@]@."
let checker : Callbacks.proc_callback_args -> unit
= fun ({ proc_name } as callback) ->
let make_extras _ = callback.get_proc_desc in
let post =
Interprocedural.compute_and_store_post
~compute_post
~make_extras
callback
in
match post with
| Some s when Config.bo_debug >= 1 -> print_summary proc_name s
| _ -> ()