2687 lines
99 KiB
2687 lines
99 KiB
(*
|
|
* Copyright (c) 2009 - 2013 Monoidics ltd.
|
|
* Copyright (c) 2013 - present Facebook, Inc.
|
|
* All rights reserved.
|
|
*
|
|
* This source code is licensed under the BSD style license found in the
|
|
* LICENSE file in the root directory of this source tree. An additional grant
|
|
* of patent rights can be found in the PATENTS file in the same directory.
|
|
*)
|
|
|
|
open! IStd
|
|
|
|
(** Functions for Propositions (i.e., Symbolic Heaps) *)
|
|
|
|
module L = Logging
|
|
module F = Format
|
|
|
|
(** type to describe different strategies for initializing fields of a structure. [No_init] does not
|
|
initialize any fields of the struct. [Fld_init] initializes the fields of the struct with fresh
|
|
variables (C) or default values (Java). *)
|
|
type struct_init_mode = No_init | Fld_init
|
|
|
|
let unSome = function Some x -> x | _ -> assert false
|
|
|
|
(** kind for normal props, i.e. normalized *)
|
|
type normal
|
|
|
|
(** kind for exposed props *)
|
|
type exposed
|
|
|
|
(** kind for sorted props *)
|
|
type sorted
|
|
|
|
type pi = Sil.atom list [@@deriving compare]
|
|
|
|
type sigma = Sil.hpred list [@@deriving compare]
|
|
|
|
let equal_pi = [%compare.equal : pi]
|
|
|
|
let equal_sigma = [%compare.equal : sigma]
|
|
|
|
module Core : sig
|
|
(** the kind 'a should range over [normal] and [exposed] *)
|
|
type 'a t = private
|
|
{ sigma: sigma (** spatial part *)
|
|
; sub: Sil.exp_subst (** substitution *)
|
|
; pi: pi (** pure part *)
|
|
; sigma_fp: sigma (** abduced spatial part *)
|
|
; pi_fp: pi (** abduced pure part *) }
|
|
[@@deriving compare]
|
|
|
|
val prop_emp : normal t
|
|
(** Proposition [true /\ emp]. *)
|
|
|
|
val set :
|
|
?sub:Sil.exp_subst -> ?pi:pi -> ?sigma:sigma -> ?pi_fp:pi -> ?sigma_fp:sigma -> 'a t
|
|
-> exposed t
|
|
(** Set individual fields of the prop. *)
|
|
|
|
val unsafe_cast_to_normal : exposed t -> normal t
|
|
(** Cast an exposed prop to a normalized one by just changing the type *)
|
|
|
|
val unsafe_cast_to_sorted : exposed t -> sorted t
|
|
end = struct
|
|
(** A proposition. The following invariants are mantained. [sub] is of
|
|
the form id1 = e1 ... idn = en where: the id's are distinct and do not
|
|
occur in the e's nor in [pi] or [sigma]; the id's are in sorted
|
|
order; the id's are not existentials; if idn = yn (for yn not
|
|
existential) then idn < yn in the order on ident's. [pi] is sorted
|
|
and normalized, and does not contain x = e. [sigma] is sorted and
|
|
normalized. *)
|
|
type 'a t =
|
|
{ sigma: sigma (** spatial part *)
|
|
; sub: Sil.exp_subst (** substitution *)
|
|
; pi: pi (** pure part *)
|
|
; sigma_fp: sigma (** abduced spatial part *)
|
|
; pi_fp: pi (** abduced pure part *) }
|
|
[@@deriving compare]
|
|
|
|
(** Proposition [true /\ emp]. *)
|
|
let prop_emp : normal t = {sub= Sil.exp_sub_empty; pi= []; sigma= []; pi_fp= []; sigma_fp= []}
|
|
|
|
let set ?sub ?pi ?sigma ?pi_fp ?sigma_fp p =
|
|
let set_ p ?(sub= p.sub) ?(pi= p.pi) ?(sigma= p.sigma) ?(pi_fp= p.pi_fp)
|
|
?(sigma_fp= p.sigma_fp) () =
|
|
{sub; pi; sigma; pi_fp; sigma_fp}
|
|
in
|
|
set_ p ?sub ?pi ?sigma ?pi_fp ?sigma_fp ()
|
|
|
|
|
|
let unsafe_cast_to_normal (p: exposed t) : normal t = (p :> normal t)
|
|
|
|
let unsafe_cast_to_sorted (p: exposed t) : sorted t = (p :> sorted t)
|
|
end
|
|
|
|
include Core
|
|
|
|
(** {2 Basic Functions for Propositions} *)
|
|
|
|
let expose (p: normal t) : exposed t = Obj.magic p
|
|
|
|
let expose_sorted (p: sorted t) : exposed t = Obj.magic p
|
|
|
|
(** {1 Functions for Comparison} *)
|
|
|
|
(** Comparison between propositions. Lexicographical order. *)
|
|
let compare_prop p1 p2 = compare (fun _ _ -> 0) p1 p2
|
|
|
|
(** {1 Functions for Pretty Printing} *)
|
|
|
|
(** Pretty print a footprint. *)
|
|
let pp_footprint pe_ f fp =
|
|
let pe = {pe_ with Pp.cmap_norm= pe_.Pp.cmap_foot} in
|
|
let pp_pi f () =
|
|
if fp.pi_fp <> [] then
|
|
F.fprintf f "%a ;@\n"
|
|
(Pp.semicolon_seq ~print_env:{pe with break_lines= false} (Sil.pp_atom pe))
|
|
fp.pi_fp
|
|
in
|
|
if fp.pi_fp <> [] || fp.sigma_fp <> [] then
|
|
F.fprintf f "@\n[footprint@\n @[%a%a@] ]" pp_pi ()
|
|
(Pp.semicolon_seq ~print_env:pe (Sil.pp_hpred pe))
|
|
fp.sigma_fp
|
|
|
|
|
|
let pp_texp_simple pe =
|
|
match pe.Pp.opt with SIM_DEFAULT -> Sil.pp_texp pe | SIM_WITH_TYP -> Sil.pp_texp_full pe
|
|
|
|
|
|
(** Pretty print a pointsto representing a stack variable as an equality *)
|
|
let pp_hpred_stackvar pe0 f (hpred: Sil.hpred) =
|
|
let pe, changed = Sil.color_pre_wrapper pe0 f hpred in
|
|
( match hpred with
|
|
| Hpointsto (Exp.Lvar pvar, se, te) ->
|
|
let pe' =
|
|
match se with
|
|
| Eexp (Exp.Var _, _) when not (Pvar.is_global pvar) ->
|
|
{pe with obj_sub= None} (* dont use obj sub on the var defining it *)
|
|
| _ ->
|
|
pe
|
|
in
|
|
F.fprintf f "%a = %a:%a" Pvar.pp_value pvar (Sil.pp_sexp pe') se (pp_texp_simple pe') te
|
|
| Hpointsto _ | Hlseg _ | Hdllseg _ ->
|
|
assert false (* should not happen *) ) ;
|
|
Sil.color_post_wrapper changed f
|
|
|
|
|
|
(** Pretty print a substitution. *)
|
|
let pp_sub pe f = function
|
|
| `Exp sub ->
|
|
let pi_sub = List.map ~f:(fun (id, e) -> Sil.Aeq (Var id, e)) (Sil.sub_to_list sub) in
|
|
Pp.semicolon_seq ~print_env:{pe with break_lines= false} (Sil.pp_atom pe) f pi_sub
|
|
| `Typ _ ->
|
|
F.fprintf f "Printing typ_subst not implemented."
|
|
|
|
|
|
(** Dump a substitution. *)
|
|
let d_sub (sub: Sil.subst) = L.add_print_action (PTsub, Obj.repr sub)
|
|
|
|
let pp_sub_entry pe0 f entry =
|
|
let pe, changed = Sil.color_pre_wrapper pe0 f entry in
|
|
let x, e = entry in
|
|
F.fprintf f "%a = %a" Ident.pp x (Sil.pp_exp_printenv pe) e ;
|
|
Sil.color_post_wrapper changed f
|
|
|
|
|
|
(** Pretty print a substitution as a list of (ident,exp) pairs *)
|
|
let pp_subl pe =
|
|
if Config.smt_output then Pp.semicolon_seq ~print_env:pe (pp_sub_entry pe)
|
|
else Pp.semicolon_seq ~print_env:{pe with break_lines= false} (pp_sub_entry pe)
|
|
|
|
|
|
(** Pretty print a pi. *)
|
|
let pp_pi pe =
|
|
if Config.smt_output then Pp.semicolon_seq ~print_env:pe (Sil.pp_atom pe)
|
|
else Pp.semicolon_seq ~print_env:{pe with break_lines= false} (Sil.pp_atom pe)
|
|
|
|
|
|
(** Dump a pi. *)
|
|
let d_pi (pi: pi) = L.add_print_action (PTpi, Obj.repr pi)
|
|
|
|
(** Pretty print a sigma. *)
|
|
let pp_sigma pe = Pp.semicolon_seq ~print_env:pe (Sil.pp_hpred pe)
|
|
|
|
(** Split sigma into stack and nonstack parts.
|
|
The boolean indicates whether the stack should only include local variales. *)
|
|
let sigma_get_stack_nonstack only_local_vars sigma =
|
|
let hpred_is_stack_var = function
|
|
| Sil.Hpointsto (Lvar pvar, _, _) ->
|
|
not only_local_vars || Pvar.is_local pvar
|
|
| _ ->
|
|
false
|
|
in
|
|
List.partition_tf ~f:hpred_is_stack_var sigma
|
|
|
|
|
|
(** Pretty print a sigma in simple mode. *)
|
|
let pp_sigma_simple pe env fmt sigma =
|
|
let sigma_stack, sigma_nonstack = sigma_get_stack_nonstack false sigma in
|
|
let pp_stack fmt sg_ =
|
|
let sg = List.sort ~cmp:Sil.compare_hpred sg_ in
|
|
if sg <> [] then
|
|
Format.fprintf fmt "%a" (Pp.semicolon_seq ~print_env:pe (pp_hpred_stackvar pe)) sg
|
|
in
|
|
let pp_nl fmt doit = if doit then Format.fprintf fmt " ;@\n" in
|
|
let pp_nonstack fmt = Pp.semicolon_seq ~print_env:pe (Sil.pp_hpred_env pe (Some env)) fmt in
|
|
if sigma_stack <> [] || sigma_nonstack <> [] then
|
|
Format.fprintf fmt "%a%a%a" pp_stack sigma_stack pp_nl
|
|
(sigma_stack <> [] && sigma_nonstack <> [])
|
|
pp_nonstack sigma_nonstack
|
|
|
|
|
|
(** Dump a sigma. *)
|
|
let d_sigma (sigma: sigma) = L.add_print_action (PTsigma, Obj.repr sigma)
|
|
|
|
(** Dump a pi and a sigma *)
|
|
let d_pi_sigma pi sigma =
|
|
let d_separator () = if pi <> [] && sigma <> [] then L.d_strln " *" in
|
|
d_pi pi ; d_separator () ; d_sigma sigma
|
|
|
|
|
|
let pi_of_subst sub = List.map ~f:(fun (id1, e2) -> Sil.Aeq (Var id1, e2)) (Sil.sub_to_list sub)
|
|
|
|
(** Return the pure part of [prop]. *)
|
|
let get_pure (p: 'a t) : pi = pi_of_subst p.sub @ p.pi
|
|
|
|
(* Same with get_pure, except that when we have both "x = t" and "y = t" where t is a primed ident,
|
|
* we add "x = y" to the result. This is crucial for the normalizer, as it tend to drop "x = t" before
|
|
* processing "y = t". If we don't explicitly preserve "x = y", the normalizer cannot pick it up *)
|
|
let get_pure_extended p =
|
|
let base = get_pure p in
|
|
let primed_atoms, _ =
|
|
List.fold base ~init:([], Ident.Map.empty) ~f:(fun ((atoms, primed_map) as acc) base_atom ->
|
|
let extend_atoms id pid =
|
|
try
|
|
let old_id = Ident.Map.find pid primed_map in
|
|
let new_atom = Sil.Aeq (Var id, Var old_id) in
|
|
(new_atom :: atoms, primed_map)
|
|
with Not_found -> (atoms, Ident.Map.add pid id primed_map)
|
|
in
|
|
match base_atom with
|
|
| Sil.Aeq (Exp.Var id0, Exp.Var id1) when Ident.is_primed id0 && not (Ident.is_primed id1) ->
|
|
extend_atoms id1 id0
|
|
| Sil.Aeq (Exp.Var id0, Exp.Var id1) when Ident.is_primed id1 && not (Ident.is_primed id0) ->
|
|
extend_atoms id0 id1
|
|
| _ ->
|
|
acc )
|
|
in
|
|
primed_atoms @ base
|
|
|
|
|
|
(** Print existential quantification *)
|
|
let pp_evars f evars =
|
|
if evars <> [] then F.fprintf f "exists [%a]. " (Pp.comma_seq Ident.pp) evars
|
|
|
|
|
|
(** Print an hpara in simple mode *)
|
|
let pp_hpara_simple pe_ env n f pred =
|
|
let pe = Pp.reset_obj_sub pe_ in
|
|
(* no free vars: disable object substitution *)
|
|
F.fprintf f "P%d = %a%a" n pp_evars pred.Sil.evars
|
|
(Pp.semicolon_seq ~print_env:pe (Sil.pp_hpred_env pe (Some env)))
|
|
pred.Sil.body
|
|
|
|
|
|
(** Print an hpara_dll in simple mode *)
|
|
let pp_hpara_dll_simple pe_ env n f pred =
|
|
let pe = Pp.reset_obj_sub pe_ in
|
|
(* no free vars: disable object substitution *)
|
|
F.fprintf f "P%d = %a%a" n pp_evars pred.Sil.evars_dll
|
|
(Pp.semicolon_seq ~print_env:pe (Sil.pp_hpred_env pe (Some env)))
|
|
pred.Sil.body_dll
|
|
|
|
|
|
(** Create an environment mapping (ident) expressions to the program variables containing them *)
|
|
let create_pvar_env (sigma: sigma) : Exp.t -> Exp.t =
|
|
let env = ref [] in
|
|
let filter = function
|
|
| Sil.Hpointsto (Lvar pvar, Eexp (Var v, _), _) ->
|
|
if not (Pvar.is_global pvar) then env := (Exp.Var v, Exp.Lvar pvar) :: !env
|
|
| _ ->
|
|
()
|
|
in
|
|
List.iter ~f:filter sigma ;
|
|
let find e =
|
|
List.find ~f:(fun (e1, _) -> Exp.equal e1 e) !env |> Option.map ~f:snd
|
|
|> Option.value ~default:e
|
|
in
|
|
find
|
|
|
|
|
|
(** Update the object substitution given the stack variables in the prop *)
|
|
let prop_update_obj_sub pe prop =
|
|
if !Config.pp_simple then Pp.set_obj_sub pe (create_pvar_env prop.sigma) else pe
|
|
|
|
|
|
(** Pretty print a footprint in simple mode. *)
|
|
let pp_footprint_simple pe_ env f fp =
|
|
let pe = {pe_ with Pp.cmap_norm= pe_.Pp.cmap_foot} in
|
|
let pp_pure f pi = if pi <> [] then F.fprintf f "%a *@\n" (pp_pi pe) pi in
|
|
if fp.pi_fp <> [] || fp.sigma_fp <> [] then
|
|
F.fprintf f "@\n[footprint@\n @[%a%a@] ]" pp_pure fp.pi_fp (pp_sigma_simple pe env)
|
|
fp.sigma_fp
|
|
|
|
|
|
(** Create a predicate environment for a prop *)
|
|
let prop_pred_env prop =
|
|
let env = Sil.Predicates.empty_env () in
|
|
List.iter ~f:(Sil.Predicates.process_hpred env) prop.sigma ;
|
|
List.iter ~f:(Sil.Predicates.process_hpred env) prop.sigma_fp ;
|
|
env
|
|
|
|
|
|
(** Pretty print a proposition. *)
|
|
let pp_prop pe0 f prop =
|
|
let pe = prop_update_obj_sub pe0 prop in
|
|
let do_print f () =
|
|
let subl = Sil.sub_to_list prop.sub in
|
|
(* since prop diff is based on physical equality, we need to extract the sub verbatim *)
|
|
let pi = prop.pi in
|
|
let pp_pure f () =
|
|
if subl <> [] then F.fprintf f "%a ;@\n" (pp_subl pe) subl ;
|
|
if pi <> [] then F.fprintf f "%a ;@\n" (pp_pi pe) pi
|
|
in
|
|
if !Config.pp_simple then
|
|
let env = prop_pred_env prop in
|
|
let iter_f n hpara = F.fprintf f "@,@[<h>%a@]" (pp_hpara_simple pe env n) hpara in
|
|
let iter_f_dll n hpara_dll =
|
|
F.fprintf f "@,@[<h>%a@]" (pp_hpara_dll_simple pe env n) hpara_dll
|
|
in
|
|
let pp_predicates _ () =
|
|
if Sil.Predicates.is_empty env then ()
|
|
else (
|
|
F.fprintf f "@,where" ;
|
|
Sil.Predicates.iter env iter_f iter_f_dll )
|
|
in
|
|
F.fprintf f "%a%a%a%a" pp_pure () (pp_sigma_simple pe env) prop.sigma
|
|
(pp_footprint_simple pe env) prop pp_predicates ()
|
|
else F.fprintf f "%a%a%a" pp_pure () (pp_sigma pe) prop.sigma (pp_footprint pe) prop
|
|
in
|
|
if !Config.forcing_delayed_prints then
|
|
(* print in html mode *)
|
|
F.fprintf f "%a%a%a" Io_infer.Html.pp_start_color Pp.Blue do_print ()
|
|
Io_infer.Html.pp_end_color ()
|
|
else (* print in text mode *) do_print f ()
|
|
|
|
|
|
let pp_prop_with_typ pe f p = pp_prop {pe with opt= SIM_WITH_TYP} f p
|
|
|
|
(** Dump a proposition. *)
|
|
let d_prop (prop: 'a t) = L.add_print_action (PTprop, Obj.repr prop)
|
|
|
|
(** Print a list of propositions, prepending each one with the given string *)
|
|
let pp_proplist_with_typ pe f plist =
|
|
let rec pp_seq_newline f = function
|
|
| [] ->
|
|
()
|
|
| [x] ->
|
|
F.fprintf f "@[%a@]" (pp_prop_with_typ pe) x
|
|
| x :: l ->
|
|
F.fprintf f "@[%a@]@\n(||)@\n%a" (pp_prop_with_typ pe) x pp_seq_newline l
|
|
in
|
|
F.fprintf f "@[<v>%a@]" pp_seq_newline plist
|
|
|
|
|
|
(** dump a proplist *)
|
|
let d_proplist_with_typ (pl: 'a t list) = L.add_print_action (PTprop_list_with_typ, Obj.repr pl)
|
|
|
|
(** {1 Functions for computing free non-program variables} *)
|
|
|
|
let pi_gen_free_vars pi = ISequence.gen_sequence_list pi ~f:Sil.atom_gen_free_vars
|
|
|
|
let pi_free_vars pi = Sequence.Generator.run (pi_gen_free_vars pi)
|
|
|
|
let sigma_gen_free_vars sigma = ISequence.gen_sequence_list sigma ~f:Sil.hpred_gen_free_vars
|
|
|
|
let sigma_free_vars sigma = Sequence.Generator.run (sigma_gen_free_vars sigma)
|
|
|
|
(** Find free variables in the footprint part of the prop *)
|
|
let footprint_gen_free_vars {sigma_fp; pi_fp} =
|
|
Sequence.Generator.(sigma_gen_free_vars sigma_fp >>= fun () -> pi_gen_free_vars pi_fp)
|
|
|
|
|
|
let footprint_free_vars prop = Sequence.Generator.run (footprint_gen_free_vars prop)
|
|
|
|
let gen_free_vars {sigma; sigma_fp; sub; pi; pi_fp} =
|
|
let open Sequence.Generator in
|
|
sigma_gen_free_vars sigma
|
|
>>= fun () ->
|
|
sigma_gen_free_vars sigma_fp
|
|
>>= fun () ->
|
|
Sil.exp_subst_gen_free_vars sub
|
|
>>= fun () -> pi_gen_free_vars pi >>= fun () -> pi_gen_free_vars pi_fp
|
|
|
|
|
|
let free_vars prop = Sequence.Generator.run (gen_free_vars prop)
|
|
|
|
let exposed_gen_free_vars prop = gen_free_vars (unsafe_cast_to_normal prop)
|
|
|
|
let sorted_gen_free_vars prop = exposed_gen_free_vars (expose_sorted prop)
|
|
|
|
let sorted_free_vars prop = Sequence.Generator.run (sorted_gen_free_vars prop)
|
|
|
|
(** free vars of the prop, excluding the pure part *)
|
|
let non_pure_gen_free_vars {sigma; sigma_fp} =
|
|
Sequence.Generator.(sigma_gen_free_vars sigma >>= fun () -> sigma_gen_free_vars sigma_fp)
|
|
|
|
|
|
let non_pure_free_vars prop = Sequence.Generator.run (non_pure_gen_free_vars prop)
|
|
|
|
(** {2 Functions for Subsitition} *)
|
|
|
|
let pi_sub (subst: Sil.subst) pi =
|
|
let f = Sil.atom_sub subst in
|
|
List.map ~f pi
|
|
|
|
|
|
let sigma_sub subst sigma =
|
|
let f = Sil.hpred_sub subst in
|
|
List.map ~f sigma
|
|
|
|
|
|
(** Return [true] if the atom is an inequality *)
|
|
let atom_is_inequality (atom: Sil.atom) =
|
|
match atom with
|
|
| Aeq (BinOp ((Le | Lt), _, _), Const Cint i) when IntLit.isone i ->
|
|
true
|
|
| _ ->
|
|
false
|
|
|
|
|
|
(** If the atom is [e<=n] return [e,n] *)
|
|
let atom_exp_le_const (atom: Sil.atom) =
|
|
match atom with
|
|
| Aeq (BinOp (Le, e1, Const Cint n), Const Cint i) when IntLit.isone i ->
|
|
Some (e1, n)
|
|
| _ ->
|
|
None
|
|
|
|
|
|
(** If the atom is [n<e] return [n,e] *)
|
|
let atom_const_lt_exp (atom: Sil.atom) =
|
|
match atom with
|
|
| Aeq (BinOp (Lt, Const Cint n, e1), Const Cint i) when IntLit.isone i ->
|
|
Some (n, e1)
|
|
| _ ->
|
|
None
|
|
|
|
|
|
let exp_reorder e1 e2 = if Exp.compare e1 e2 <= 0 then (e1, e2) else (e2, e1)
|
|
|
|
let rec pp_path f = function
|
|
| [] ->
|
|
()
|
|
| (name, fld) :: path ->
|
|
F.fprintf f "%a.%a: " Typ.Name.pp name Typ.Fieldname.pp fld ;
|
|
pp_path f path
|
|
|
|
|
|
(** create a strexp of the given type, populating the structures if [struct_init_mode] is [Fld_init] *)
|
|
let rec create_strexp_of_type ~path tenv struct_init_mode (typ: Typ.t) len inst : Sil.strexp =
|
|
let init_value () =
|
|
let create_fresh_var () =
|
|
let fresh_id =
|
|
Ident.create_fresh (if !Config.footprint then Ident.kfootprint else Ident.kprimed)
|
|
in
|
|
Exp.Var fresh_id
|
|
in
|
|
if Language.curr_language_is Java && Sil.equal_inst inst Sil.Ialloc then
|
|
match typ.desc with Tfloat _ -> Exp.Const (Cfloat 0.0) | _ -> Exp.zero
|
|
else create_fresh_var ()
|
|
in
|
|
match (typ.desc, len) with
|
|
| (Tint _ | Tfloat _ | Tvoid | Tfun _ | Tptr _ | TVar _), None ->
|
|
Eexp (init_value (), inst)
|
|
| Tstruct name, _
|
|
-> (
|
|
if List.exists ~f:(fun (n, _) -> Typ.Name.equal n name) path then
|
|
L.die InternalError
|
|
"Ill-founded recursion in [create_strexp_of_type]: a sub-element of struct %a is also \
|
|
of type struct %a: %a:%a" Typ.Name.pp name Typ.Name.pp name pp_path (List.rev path)
|
|
Typ.Name.pp name ;
|
|
match (struct_init_mode, Tenv.lookup tenv name) with
|
|
| Fld_init, Some {fields} ->
|
|
(* pass len as an accumulator, so that it is passed to create_strexp_of_type for the last
|
|
field, but always return None so that only the last field receives len *)
|
|
let f (fld, t, _) (flds, len) =
|
|
( ( fld
|
|
, create_strexp_of_type ~path:((name, fld) :: path) tenv struct_init_mode t len inst
|
|
)
|
|
:: flds
|
|
, None )
|
|
in
|
|
let flds, _ = List.fold_right ~f fields ~init:([], len) in
|
|
Estruct (flds, inst)
|
|
| _ ->
|
|
Estruct ([], inst) )
|
|
| Tarray {length= len_opt}, None ->
|
|
let len =
|
|
match len_opt with None -> Exp.get_undefined false | Some len -> Exp.Const (Cint len)
|
|
in
|
|
Earray (len, [], inst)
|
|
| Tarray _, Some len ->
|
|
Earray (len, [], inst)
|
|
| (Tint _ | Tfloat _ | Tvoid | Tfun _ | Tptr _ | TVar _), Some _ ->
|
|
assert false
|
|
|
|
|
|
let create_strexp_of_type tenv struct_init_mode (typ: Typ.t) len inst : Sil.strexp =
|
|
create_strexp_of_type ~path:[] tenv struct_init_mode (typ : Typ.t) len inst
|
|
|
|
|
|
let replace_array_contents (hpred: Sil.hpred) esel : Sil.hpred =
|
|
match hpred with
|
|
| Hpointsto (root, Sil.Earray (len, [], inst), te) ->
|
|
Hpointsto (root, Earray (len, esel, inst), te)
|
|
| _ ->
|
|
assert false
|
|
|
|
|
|
(** remove duplicate atoms and redundant inequalities from a sorted pi *)
|
|
let rec pi_sorted_remove_redundant (pi: pi) =
|
|
match pi with
|
|
| (Aeq (BinOp (Le, e1, Const Cint n1), Const Cint i1) as a1)
|
|
:: (Aeq (BinOp (Le, e2, Const Cint n2), Const Cint i2)) :: rest
|
|
when IntLit.isone i1 && IntLit.isone i2 && Exp.equal e1 e2 && IntLit.lt n1 n2 ->
|
|
(* second inequality redundant *)
|
|
pi_sorted_remove_redundant (a1 :: rest)
|
|
| (Aeq (BinOp (Lt, Const Cint n1, e1), Const Cint i1))
|
|
:: (Aeq (BinOp (Lt, Const Cint n2, e2), Const Cint i2) as a2) :: rest
|
|
when IntLit.isone i1 && IntLit.isone i2 && Exp.equal e1 e2 && IntLit.lt n1 n2 ->
|
|
(* first inequality redundant *)
|
|
pi_sorted_remove_redundant (a2 :: rest)
|
|
| a1 :: a2 :: rest ->
|
|
if Sil.equal_atom a1 a2 then pi_sorted_remove_redundant (a2 :: rest)
|
|
else a1 :: pi_sorted_remove_redundant (a2 :: rest)
|
|
| [a] ->
|
|
[a]
|
|
| [] ->
|
|
[]
|
|
|
|
|
|
(** find the unsigned expressions in sigma (immediately inside a pointsto, for now) *)
|
|
let sigma_get_unsigned_exps sigma =
|
|
let uexps = ref [] in
|
|
let do_hpred (hpred: Sil.hpred) =
|
|
match hpred with
|
|
| Hpointsto (_, Eexp (e, _), Sizeof {typ= {desc= Tint ik}}) when Typ.ikind_is_unsigned ik ->
|
|
uexps := e :: !uexps
|
|
| _ ->
|
|
()
|
|
in
|
|
List.iter ~f:do_hpred sigma ; !uexps
|
|
|
|
|
|
(** Collapse consecutive indices that should be added. For instance,
|
|
this function reduces x[1][1] to x[2]. The [typ] argument is used
|
|
to ensure the soundness of this collapsing. *)
|
|
let exp_collapse_consecutive_indices_prop (typ: Typ.t) exp =
|
|
let typ_is_base (typ1: Typ.t) =
|
|
match typ1.desc with Tint _ | Tfloat _ | Tstruct _ | Tvoid | Tfun _ -> true | _ -> false
|
|
in
|
|
let typ_is_one_step_from_base =
|
|
match typ.desc with Tptr (t, _) | Tarray {elt= t} -> typ_is_base t | _ -> false
|
|
in
|
|
let rec exp_remove (e0: Exp.t) =
|
|
match e0 with
|
|
| Lindex (Lindex (base, e1), e2) ->
|
|
let e0' : Exp.t = Lindex (base, BinOp (PlusA, e1, e2)) in
|
|
exp_remove e0'
|
|
| _ ->
|
|
e0
|
|
in
|
|
if typ_is_one_step_from_base then exp_remove exp else exp
|
|
|
|
|
|
(** {2 Compaction} *)
|
|
|
|
(** Return a compact representation of the prop *)
|
|
let prop_compact sh (prop: normal t) : normal t =
|
|
let sigma' = List.map ~f:(Sil.hpred_compact sh) prop.sigma in
|
|
unsafe_cast_to_normal (set prop ~sigma:sigma')
|
|
|
|
|
|
(** {2 Query about Proposition} *)
|
|
|
|
(** Check if the sigma part of the proposition is emp *)
|
|
let prop_is_emp p = match p.sigma with [] -> true | _ -> false
|
|
|
|
(** {2 Functions for changing and generating propositions} *)
|
|
|
|
(** Conjoin a heap predicate by separating conjunction. *)
|
|
let prop_hpred_star (p: 'a t) (h: Sil.hpred) : exposed t =
|
|
let sigma' = h :: p.sigma in
|
|
set p ~sigma:sigma'
|
|
|
|
|
|
let prop_sigma_star (p: 'a t) (sigma: sigma) : exposed t =
|
|
let sigma' = sigma @ p.sigma in
|
|
set p ~sigma:sigma'
|
|
|
|
|
|
(* Module for normalization *)
|
|
module Normalize = struct
|
|
(** Eliminates all empty lsegs from sigma, and collect equalities
|
|
The empty lsegs include
|
|
(a) "lseg_pe para 0 e elist",
|
|
(b) "dllseg_pe para iF oB oF iB elist" with iF = 0 or iB = 0,
|
|
(c) "lseg_pe para e1 e2 elist" and the rest of sigma contains the "cell" e1,
|
|
(d) "dllseg_pe para iF oB oF iB elist" and the rest of sigma contains
|
|
cell iF or iB. *)
|
|
let sigma_remove_emptylseg sigma =
|
|
let alloc_set =
|
|
let rec f_alloc set (sigma1: sigma) =
|
|
match sigma1 with
|
|
| [] ->
|
|
set
|
|
| (Hpointsto (e, _, _)) :: sigma' | (Hlseg (Sil.Lseg_NE, _, e, _, _)) :: sigma' ->
|
|
f_alloc (Exp.Set.add e set) sigma'
|
|
| (Hdllseg (Sil.Lseg_NE, _, iF, _, _, iB, _)) :: sigma' ->
|
|
f_alloc (Exp.Set.add iF (Exp.Set.add iB set)) sigma'
|
|
| _ :: sigma' ->
|
|
f_alloc set sigma'
|
|
in
|
|
f_alloc Exp.Set.empty sigma
|
|
in
|
|
let rec f eqs_zero sigma_passed (sigma1: sigma) =
|
|
match sigma1 with
|
|
| [] ->
|
|
(List.rev eqs_zero, List.rev sigma_passed)
|
|
| (Hpointsto _ as hpred) :: sigma' ->
|
|
f eqs_zero (hpred :: sigma_passed) sigma'
|
|
| (Hlseg (Lseg_PE, _, e1, e2, _)) :: sigma'
|
|
when Exp.equal e1 Exp.zero || Exp.Set.mem e1 alloc_set ->
|
|
f (Sil.Aeq (e1, e2) :: eqs_zero) sigma_passed sigma'
|
|
| (Hlseg _ as hpred) :: sigma' ->
|
|
f eqs_zero (hpred :: sigma_passed) sigma'
|
|
| (Hdllseg (Lseg_PE, _, iF, oB, oF, iB, _)) :: sigma'
|
|
when Exp.equal iF Exp.zero || Exp.Set.mem iF alloc_set || Exp.equal iB Exp.zero
|
|
|| Exp.Set.mem iB alloc_set ->
|
|
f (Sil.Aeq (iF, oF) :: Sil.Aeq (iB, oB) :: eqs_zero) sigma_passed sigma'
|
|
| (Hdllseg _ as hpred) :: sigma' ->
|
|
f eqs_zero (hpred :: sigma_passed) sigma'
|
|
in
|
|
f [] [] sigma
|
|
|
|
|
|
let sigma_intro_nonemptylseg e1 e2 sigma =
|
|
let rec f sigma_passed (sigma1: sigma) =
|
|
match sigma1 with
|
|
| [] ->
|
|
List.rev sigma_passed
|
|
| (Hpointsto _ as hpred) :: sigma' ->
|
|
f (hpred :: sigma_passed) sigma'
|
|
| (Hlseg (Lseg_PE, para, f1, f2, shared)) :: sigma'
|
|
when Exp.equal e1 f1 && Exp.equal e2 f2 || Exp.equal e2 f1 && Exp.equal e1 f2 ->
|
|
f (Sil.Hlseg (Lseg_NE, para, f1, f2, shared) :: sigma_passed) sigma'
|
|
| (Hlseg _ as hpred) :: sigma' ->
|
|
f (hpred :: sigma_passed) sigma'
|
|
| (Hdllseg (Lseg_PE, para, iF, oB, oF, iB, shared)) :: sigma'
|
|
when Exp.equal e1 iF && Exp.equal e2 oF || Exp.equal e2 iF && Exp.equal e1 oF
|
|
|| Exp.equal e1 iB && Exp.equal e2 oB || Exp.equal e2 iB && Exp.equal e1 oB ->
|
|
f (Sil.Hdllseg (Lseg_NE, para, iF, oB, oF, iB, shared) :: sigma_passed) sigma'
|
|
| (Hdllseg _ as hpred) :: sigma' ->
|
|
f (hpred :: sigma_passed) sigma'
|
|
in
|
|
f [] sigma
|
|
|
|
|
|
let ( -- ) = IntLit.sub
|
|
|
|
let ( ++ ) = IntLit.add
|
|
|
|
let sym_eval ?(destructive= false) tenv abs e =
|
|
let lookup = Tenv.lookup tenv in
|
|
let rec eval (e: Exp.t) : Exp.t =
|
|
(* L.d_str " ["; Sil.d_exp e; L.d_str"] "; *)
|
|
match e with
|
|
| Var _ ->
|
|
e
|
|
| Closure c ->
|
|
let captured_vars =
|
|
List.map ~f:(fun (exp, pvar, typ) -> (eval exp, pvar, typ)) c.captured_vars
|
|
in
|
|
Closure {c with captured_vars}
|
|
| Const _ ->
|
|
e
|
|
| Sizeof {nbytes= Some n} when destructive ->
|
|
Exp.Const (Const.Cint (IntLit.of_int n))
|
|
| Sizeof {typ= {desc= Tarray {elt= {desc= Tint ik}}}; dynamic_length= Some l}
|
|
when Typ.ikind_is_char ik && Language.curr_language_is Clang ->
|
|
eval l
|
|
| Sizeof {typ= {desc= Tarray {elt= {desc= Tint ik}; length= Some l}}}
|
|
when Typ.ikind_is_char ik && Language.curr_language_is Clang ->
|
|
Const (Cint l)
|
|
| Sizeof _ ->
|
|
e
|
|
| Cast (_, e1) ->
|
|
eval e1
|
|
| UnOp (Unop.LNot, e1, topt) -> (
|
|
match eval e1 with
|
|
| Const Cint i when IntLit.iszero i ->
|
|
Exp.one
|
|
| Const Cint _ ->
|
|
Exp.zero
|
|
| UnOp (LNot, e1', _) ->
|
|
e1'
|
|
| e1' ->
|
|
if abs then Exp.get_undefined false else UnOp (LNot, e1', topt) )
|
|
| UnOp (Neg, e1, topt) -> (
|
|
match eval e1 with
|
|
| UnOp (Neg, e2', _) ->
|
|
e2'
|
|
| Const Cint i ->
|
|
Exp.int (IntLit.neg i)
|
|
| Const Cfloat v ->
|
|
Exp.float ~-.v
|
|
| Var id ->
|
|
UnOp (Neg, Var id, topt)
|
|
| e1' ->
|
|
if abs then Exp.get_undefined false else UnOp (Neg, e1', topt) )
|
|
| UnOp (BNot, e1, topt) -> (
|
|
match eval e1 with
|
|
| UnOp (BNot, e2', _) ->
|
|
e2'
|
|
| Const Cint i ->
|
|
Exp.int (IntLit.lognot i)
|
|
| e1' ->
|
|
if abs then Exp.get_undefined false else UnOp (BNot, e1', topt) )
|
|
| BinOp (Le, e1, e2) -> (
|
|
match (eval e1, eval e2) with
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.bool (IntLit.leq n m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.bool (v <= w)
|
|
| BinOp (PlusA, e3, Const Cint n), Const Cint m ->
|
|
BinOp (Le, e3, Exp.int (m -- n))
|
|
| e1', e2' ->
|
|
Exp.le e1' e2' )
|
|
| BinOp (Lt, e1, e2) -> (
|
|
match (eval e1, eval e2) with
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.bool (IntLit.lt n m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.bool (v < w)
|
|
| Const Cint n, BinOp (MinusA, f1, f2) ->
|
|
BinOp (Le, BinOp (MinusA, f2, f1), Exp.int (IntLit.minus_one -- n))
|
|
| BinOp (MinusA, f1, f2), Const Cint n ->
|
|
Exp.le (BinOp (MinusA, f1, f2)) (Exp.int (n -- IntLit.one))
|
|
| BinOp (PlusA, e3, Const Cint n), Const Cint m ->
|
|
BinOp (Lt, e3, Exp.int (m -- n))
|
|
| e1', e2' ->
|
|
Exp.lt e1' e2' )
|
|
| BinOp (Ge, e1, e2) ->
|
|
eval (Exp.le e2 e1)
|
|
| BinOp (Gt, e1, e2) ->
|
|
eval (Exp.lt e2 e1)
|
|
| BinOp (Eq, e1, e2) -> (
|
|
match (eval e1, eval e2) with
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.bool (IntLit.eq n m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.bool (Float.equal v w)
|
|
| Const Cint _, Exp.Lvar _ | Exp.Lvar _, Const Cint _ ->
|
|
(* Comparing pointer with nonzero integer is undefined behavior in ISO C++ *)
|
|
(* Assume they are not equal *)
|
|
Exp.zero
|
|
| e1', e2' ->
|
|
Exp.eq e1' e2' )
|
|
| BinOp (Ne, e1, e2) -> (
|
|
match (eval e1, eval e2) with
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.bool (IntLit.neq n m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.bool (v <> w)
|
|
| Const Cint _, Exp.Lvar _ | Exp.Lvar _, Const Cint _ ->
|
|
(* Comparing pointer with nonzero integer is undefined behavior in ISO C++ *)
|
|
(* Assume they are not equal *)
|
|
Exp.one
|
|
| e1', e2' ->
|
|
Exp.ne e1' e2' )
|
|
| BinOp (LAnd, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| Const Cint i, _ when IntLit.iszero i ->
|
|
e1'
|
|
| Const Cint _, _ ->
|
|
e2'
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
e2'
|
|
| _, Const Cint _ ->
|
|
e1'
|
|
| _ ->
|
|
BinOp (LAnd, e1', e2') )
|
|
| BinOp (LOr, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| Const Cint i, _ when IntLit.iszero i ->
|
|
e2'
|
|
| Const Cint _, _ ->
|
|
e1'
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
e1'
|
|
| _, Const Cint _ ->
|
|
e2'
|
|
| _ ->
|
|
BinOp (LOr, e1', e2') )
|
|
| BinOp (PlusPI, Lindex (ep, e1), e2) ->
|
|
(* array access with pointer arithmetic *)
|
|
let e' : Exp.t = BinOp (PlusA, e1, e2) in
|
|
eval (Exp.Lindex (ep, e'))
|
|
| BinOp (PlusPI, BinOp (PlusPI, e11, e12), e2) ->
|
|
(* take care of pattern ((ptr + off1) + off2) *)
|
|
(* progress: convert inner +I to +A *)
|
|
let e2' : Exp.t = BinOp (PlusA, e12, e2) in
|
|
eval (Exp.BinOp (PlusPI, e11, e2'))
|
|
| BinOp ((PlusA as oplus), e1, e2) | BinOp ((PlusPI as oplus), e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
let isPlusA = Binop.equal oplus Binop.PlusA in
|
|
let ominus = if isPlusA then Binop.MinusA else Binop.MinusPI in
|
|
let ( +++ ) (x: Exp.t) (y: Exp.t) : Exp.t =
|
|
match (x, y) with
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
x
|
|
| Const Cint i, Const Cint j ->
|
|
Const (Cint (IntLit.add i j))
|
|
| _ ->
|
|
BinOp (oplus, x, y)
|
|
in
|
|
let ( --- ) (x: Exp.t) (y: Exp.t) : Exp.t =
|
|
match (x, y) with
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
x
|
|
| Const Cint i, Const Cint j ->
|
|
Const (Cint (IntLit.sub i j))
|
|
| _ ->
|
|
BinOp (ominus, x, y)
|
|
in
|
|
(* test if the extensible array at the end of [typ] has elements of type [elt] *)
|
|
let extensible_array_element_typ_equal elt typ =
|
|
Option.value_map ~f:(Typ.equal elt) ~default:false
|
|
(Typ.Struct.get_extensible_array_element_typ ~lookup typ)
|
|
in
|
|
match (e1', e2') with
|
|
(* pattern for arrays and extensible structs:
|
|
sizeof(struct s {... t[l]}) + k * sizeof(t)) = sizeof(struct s {... t[l + k]}) *)
|
|
| ( Sizeof ({typ; dynamic_length= len1_opt} as sizeof_data)
|
|
, BinOp (Mult, len2, Sizeof {typ= elt; dynamic_length= None}) )
|
|
when isPlusA && extensible_array_element_typ_equal elt typ ->
|
|
let len = match len1_opt with Some len1 -> len1 +++ len2 | None -> len2 in
|
|
Sizeof {sizeof_data with dynamic_length= Some len}
|
|
| Const c, _ when Const.iszero_int_float c ->
|
|
e2'
|
|
| _, Const c when Const.iszero_int_float c ->
|
|
e1'
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.int (n ++ m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.float (v +. w)
|
|
| UnOp (Neg, f1, _), f2 | f2, UnOp (Neg, f1, _) ->
|
|
BinOp (ominus, f2, f1)
|
|
| BinOp (PlusA, e, Const Cint n1), Const Cint n2
|
|
| BinOp (PlusPI, e, Const Cint n1), Const Cint n2
|
|
| Const Cint n2, BinOp (PlusA, e, Const Cint n1)
|
|
| Const Cint n2, BinOp (PlusPI, e, Const Cint n1) ->
|
|
e +++ Exp.int (n1 ++ n2)
|
|
| BinOp (MinusA, Const Cint n1, e), Const Cint n2
|
|
| Const Cint n2, BinOp (MinusA, Const Cint n1, e) ->
|
|
Exp.int (n1 ++ n2) --- e
|
|
| BinOp (MinusA, e1, e2), e3 ->
|
|
(* (e1-e2)+e3 --> e1 + (e3-e2) *)
|
|
(* progress: brings + to the outside *)
|
|
eval (e1 +++ (e3 --- e2))
|
|
| _, Const _ ->
|
|
e1' +++ e2'
|
|
| Const _, _ ->
|
|
if isPlusA then e2' +++ e1' else e1' +++ e2'
|
|
| Var _, Var _ ->
|
|
e1' +++ e2'
|
|
| _ ->
|
|
if abs && isPlusA then Exp.get_undefined false
|
|
else if abs && not isPlusA then e1' +++ Exp.get_undefined false
|
|
else e1' +++ e2' )
|
|
| BinOp ((MinusA as ominus), e1, e2) | BinOp ((MinusPI as ominus), e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
let isMinusA = Binop.equal ominus Binop.MinusA in
|
|
let oplus = if isMinusA then Binop.PlusA else Binop.PlusPI in
|
|
let ( +++ ) x y : Exp.t = BinOp (oplus, x, y) in
|
|
let ( --- ) x y : Exp.t = BinOp (ominus, x, y) in
|
|
if Exp.equal e1' e2' then Exp.zero
|
|
else
|
|
match (e1', e2') with
|
|
| Const c, _ when Const.iszero_int_float c ->
|
|
eval (Exp.UnOp (Neg, e2', None))
|
|
| _, Const c when Const.iszero_int_float c ->
|
|
e1'
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.int (n -- m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.float (v -. w)
|
|
| _, UnOp (Neg, f2, _) ->
|
|
eval (e1 +++ f2)
|
|
| _, Const Cint n ->
|
|
eval (e1' +++ Exp.int (IntLit.neg n))
|
|
| Const _, _ ->
|
|
e1' --- e2'
|
|
| Var _, Var _ ->
|
|
e1' --- e2'
|
|
| _, _ ->
|
|
if abs then Exp.get_undefined false else e1' --- e2' )
|
|
| BinOp (MinusPP, e1, e2) ->
|
|
if abs then Exp.get_undefined false else BinOp (MinusPP, eval e1, eval e2)
|
|
| BinOp (Mult, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| Const c, _ when Const.iszero_int_float c ->
|
|
Exp.zero
|
|
| Const c, _ when Const.isone_int_float c ->
|
|
e2'
|
|
| Const c, _ when Const.isminusone_int_float c ->
|
|
eval (Exp.UnOp (Neg, e2', None))
|
|
| _, Const c when Const.iszero_int_float c ->
|
|
Exp.zero
|
|
| _, Const c when Const.isone_int_float c ->
|
|
e1'
|
|
| _, Const c when Const.isminusone_int_float c ->
|
|
eval (Exp.UnOp (Neg, e1', None))
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.int (IntLit.mul n m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.float (v *. w)
|
|
| Var _, Var _ ->
|
|
BinOp (Mult, e1', e2')
|
|
| _, Sizeof _ | Sizeof _, _ ->
|
|
BinOp (Mult, e1', e2')
|
|
| _, _ ->
|
|
if abs then Exp.get_undefined false else BinOp (Mult, e1', e2') )
|
|
| BinOp (Div, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| _, Const c when Const.iszero_int_float c ->
|
|
Exp.get_undefined false
|
|
| Const c, _ when Const.iszero_int_float c ->
|
|
e1'
|
|
| _, Const c when Const.isone_int_float c ->
|
|
e1'
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.int (IntLit.div n m)
|
|
| Const Cfloat v, Const Cfloat w ->
|
|
Exp.float (v /. w)
|
|
| ( Sizeof {typ= {desc= Tarray {elt}}; dynamic_length= Some len}
|
|
, Sizeof {typ= elt2; dynamic_length= None} )
|
|
(* pattern: sizeof(elt[len]) / sizeof(elt) = len *)
|
|
when Typ.equal elt elt2 ->
|
|
len
|
|
| ( Sizeof {typ= {desc= Tarray {elt; length= Some len}}; dynamic_length= None}
|
|
, Sizeof {typ= elt2; dynamic_length= None} )
|
|
(* pattern: sizeof(elt[len]) / sizeof(elt) = len *)
|
|
when Typ.equal elt elt2 ->
|
|
Const (Cint len)
|
|
| _ ->
|
|
if abs then Exp.get_undefined false else BinOp (Div, e1', e2') )
|
|
| BinOp (Mod, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
Exp.get_undefined false
|
|
| Const Cint i, _ when IntLit.iszero i ->
|
|
e1'
|
|
| _, Const Cint i when IntLit.isone i ->
|
|
Exp.zero
|
|
| Const Cint n, Const Cint m ->
|
|
Exp.int (IntLit.rem n m)
|
|
| _ ->
|
|
if abs then Exp.get_undefined false else BinOp (Mod, e1', e2') )
|
|
| BinOp (Shiftlt, e1, e2)
|
|
-> (
|
|
if abs then Exp.get_undefined false
|
|
else
|
|
match (e1, e2) with
|
|
| Const Cint n, Const Cint m -> (
|
|
try Exp.int (IntLit.shift_left n m) with IntLit.OversizedShift ->
|
|
BinOp (Shiftlt, eval e1, eval e2) )
|
|
| _, Const Cint m when IntLit.iszero m ->
|
|
eval e1
|
|
| _, Const Cint m when IntLit.isone m ->
|
|
eval (Exp.BinOp (PlusA, e1, e1))
|
|
| Const Cint m, _ when IntLit.iszero m ->
|
|
e1
|
|
| _ ->
|
|
BinOp (Shiftlt, eval e1, eval e2) )
|
|
| BinOp (Shiftrt, e1, e2)
|
|
-> (
|
|
if abs then Exp.get_undefined false
|
|
else
|
|
match (e1, e2) with
|
|
| Const Cint n, Const Cint m -> (
|
|
try Exp.int (IntLit.shift_right n m) with IntLit.OversizedShift ->
|
|
BinOp (Shiftrt, eval e1, eval e2) )
|
|
| _, Const Cint m when IntLit.iszero m ->
|
|
eval e1
|
|
| Const Cint m, _ when IntLit.iszero m ->
|
|
e1
|
|
| _ ->
|
|
BinOp (Shiftrt, eval e1, eval e2) )
|
|
| BinOp (BAnd, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| Const Cint i, _ when IntLit.iszero i ->
|
|
e1'
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
e2'
|
|
| Const Cint i1, Const Cint i2 ->
|
|
Exp.int (IntLit.logand i1 i2)
|
|
| _ ->
|
|
if abs then Exp.get_undefined false else BinOp (BAnd, e1', e2') )
|
|
| BinOp (BOr, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| Const Cint i, _ when IntLit.iszero i ->
|
|
e2'
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
e1'
|
|
| Const Cint i1, Const Cint i2 ->
|
|
Exp.int (IntLit.logor i1 i2)
|
|
| _ ->
|
|
if abs then Exp.get_undefined false else BinOp (BOr, e1', e2') )
|
|
| BinOp (BXor, e1, e2)
|
|
-> (
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
match (e1', e2') with
|
|
| Const Cint i, _ when IntLit.iszero i ->
|
|
e2'
|
|
| _, Const Cint i when IntLit.iszero i ->
|
|
e1'
|
|
| Const Cint i1, Const Cint i2 ->
|
|
Exp.int (IntLit.logxor i1 i2)
|
|
| _ ->
|
|
if abs then Exp.get_undefined false else BinOp (BXor, e1', e2') )
|
|
| Exn _ ->
|
|
e
|
|
| Lvar _ ->
|
|
e
|
|
| Lfield (e1, fld, typ) ->
|
|
let e1' = eval e1 in
|
|
Lfield (e1', fld, typ)
|
|
| Lindex (Lvar pv, e2)
|
|
when false (* removed: it interferes with re-arrangement and error messages *) ->
|
|
(* &x[n] --> &x + n *)
|
|
eval (Exp.BinOp (PlusPI, Lvar pv, e2))
|
|
| Lindex (BinOp (PlusPI, ep, e1), e2) ->
|
|
(* array access with pointer arithmetic *)
|
|
let e' : Exp.t = BinOp (PlusA, e1, e2) in
|
|
eval (Exp.Lindex (ep, e'))
|
|
| Lindex (e1, e2) ->
|
|
let e1' = eval e1 in
|
|
let e2' = eval e2 in
|
|
Lindex (e1', e2')
|
|
in
|
|
let e' = eval e in
|
|
(* L.d_str "sym_eval "; Sil.d_exp e; L.d_str" --> "; Sil.d_exp e'; L.d_ln (); *)
|
|
if Exp.equal e e' then e else e'
|
|
|
|
|
|
let exp_normalize ?destructive tenv sub exp =
|
|
let exp' = Sil.exp_sub sub exp in
|
|
let abstract_expressions = !Config.abs_val >= 1 in
|
|
sym_eval ?destructive tenv abstract_expressions exp'
|
|
|
|
|
|
let texp_normalize tenv sub (exp: Exp.t) : Exp.t =
|
|
match exp with
|
|
| Sizeof {dynamic_length= None} ->
|
|
exp
|
|
| Sizeof ({dynamic_length= Some dyn_len} as sizeof_data) ->
|
|
let dyn_len' = exp_normalize tenv sub dyn_len in
|
|
if phys_equal dyn_len dyn_len' then exp
|
|
else Sizeof {sizeof_data with dynamic_length= Some dyn_len'}
|
|
| _ ->
|
|
exp_normalize tenv sub exp
|
|
|
|
|
|
let exp_normalize_noabs tenv sub exp =
|
|
Config.run_with_abs_val_equal_zero (exp_normalize tenv sub) exp
|
|
|
|
|
|
(** Turn an inequality expression into an atom *)
|
|
let mk_inequality tenv (e: Exp.t) : Sil.atom =
|
|
match e with
|
|
| BinOp (Le, base, Const Cint n)
|
|
-> (
|
|
(* base <= n case *)
|
|
let nbase = exp_normalize_noabs tenv Sil.sub_empty base in
|
|
match nbase with
|
|
| BinOp (PlusA, base', Const Cint n') ->
|
|
let new_offset = Exp.int (n -- n') in
|
|
let new_e : Exp.t = BinOp (Le, base', new_offset) in
|
|
Aeq (new_e, Exp.one)
|
|
| BinOp (PlusA, Const Cint n', base') ->
|
|
let new_offset = Exp.int (n -- n') in
|
|
let new_e : Exp.t = BinOp (Le, base', new_offset) in
|
|
Aeq (new_e, Exp.one)
|
|
| BinOp (MinusA, base', Const Cint n') ->
|
|
let new_offset = Exp.int (n ++ n') in
|
|
let new_e : Exp.t = BinOp (Le, base', new_offset) in
|
|
Aeq (new_e, Exp.one)
|
|
| BinOp (MinusA, Const Cint n', base') ->
|
|
let new_offset = Exp.int (n' -- n -- IntLit.one) in
|
|
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
|
|
Aeq (new_e, Exp.one)
|
|
| UnOp (Neg, new_base, _) ->
|
|
(* In this case, base = -new_base. Construct -n-1 < new_base. *)
|
|
let new_offset = Exp.int (IntLit.zero -- n -- IntLit.one) in
|
|
let new_e : Exp.t = BinOp (Lt, new_offset, new_base) in
|
|
Aeq (new_e, Exp.one)
|
|
| _ ->
|
|
Aeq (e, Exp.one) )
|
|
| BinOp (Lt, Const Cint n, base)
|
|
-> (
|
|
(* n < base case *)
|
|
let nbase = exp_normalize_noabs tenv Sil.sub_empty base in
|
|
match nbase with
|
|
| BinOp (PlusA, base', Const Cint n') ->
|
|
let new_offset = Exp.int (n -- n') in
|
|
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
|
|
Aeq (new_e, Exp.one)
|
|
| BinOp (PlusA, Const Const.Cint n', base') ->
|
|
let new_offset = Exp.int (n -- n') in
|
|
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
|
|
Aeq (new_e, Exp.one)
|
|
| BinOp (MinusA, base', Const Cint n') ->
|
|
let new_offset = Exp.int (n ++ n') in
|
|
let new_e : Exp.t = BinOp (Lt, new_offset, base') in
|
|
Aeq (new_e, Exp.one)
|
|
| BinOp (MinusA, Const Cint n', base') ->
|
|
let new_offset = Exp.int (n' -- n -- IntLit.one) in
|
|
let new_e : Exp.t = BinOp (Le, base', new_offset) in
|
|
Aeq (new_e, Exp.one)
|
|
| UnOp (Neg, new_base, _) ->
|
|
(* In this case, base = -new_base. Construct new_base <= -n-1 *)
|
|
let new_offset = Exp.int (IntLit.zero -- n -- IntLit.one) in
|
|
let new_e : Exp.t = BinOp (Le, new_base, new_offset) in
|
|
Aeq (new_e, Exp.one)
|
|
| _ ->
|
|
Aeq (e, Exp.one) )
|
|
| _ ->
|
|
Aeq (e, Exp.one)
|
|
|
|
|
|
(** Normalize an inequality *)
|
|
let inequality_normalize tenv (a: Sil.atom) =
|
|
(* turn an expression into a triple (pos,neg,off) of positive and negative occurrences, and
|
|
integer offset representing inequality [sum(pos) - sum(neg) + off <= 0] *)
|
|
let rec exp_to_posnegoff (e: Exp.t) =
|
|
match e with
|
|
| Const Cint n ->
|
|
([], [], n)
|
|
| BinOp (PlusA, e1, e2) | BinOp (PlusPI, e1, e2) ->
|
|
let pos1, neg1, n1 = exp_to_posnegoff e1 in
|
|
let pos2, neg2, n2 = exp_to_posnegoff e2 in
|
|
(pos1 @ pos2, neg1 @ neg2, n1 ++ n2)
|
|
| BinOp (MinusA, e1, e2) | BinOp (MinusPI, e1, e2) | BinOp (MinusPP, e1, e2) ->
|
|
let pos1, neg1, n1 = exp_to_posnegoff e1 in
|
|
let pos2, neg2, n2 = exp_to_posnegoff e2 in
|
|
(pos1 @ neg2, neg1 @ pos2, n1 -- n2)
|
|
| UnOp (Neg, e1, _) ->
|
|
let pos1, neg1, n1 = exp_to_posnegoff e1 in
|
|
(neg1, pos1, IntLit.zero -- n1)
|
|
| _ ->
|
|
([e], [], IntLit.zero)
|
|
in
|
|
(* sort and filter out expressions appearing in both the positive and negative part *)
|
|
let normalize_posnegoff (pos, neg, off) =
|
|
let pos' = List.sort ~cmp:Exp.compare pos in
|
|
let neg' = List.sort ~cmp:Exp.compare neg in
|
|
let rec combine pacc nacc = function
|
|
| x :: ps, y :: ng -> (
|
|
match Exp.compare x y with
|
|
| n when n < 0 ->
|
|
combine (x :: pacc) nacc (ps, y :: ng)
|
|
| 0 ->
|
|
combine pacc nacc (ps, ng)
|
|
| _ ->
|
|
combine pacc (y :: nacc) (x :: ps, ng) )
|
|
| ps, ng ->
|
|
(List.rev_append pacc ps, List.rev_append nacc ng)
|
|
in
|
|
let pos'', neg'' = combine [] [] (pos', neg') in
|
|
(pos'', neg'', off)
|
|
in
|
|
(* turn a non-empty list of expressions into a sum expression *)
|
|
let rec exp_list_to_sum : Exp.t list -> Exp.t = function
|
|
| [] ->
|
|
assert false
|
|
| [e] ->
|
|
e
|
|
| e :: el ->
|
|
BinOp (PlusA, e, exp_list_to_sum el)
|
|
in
|
|
let norm_from_exp e : Exp.t =
|
|
match normalize_posnegoff (exp_to_posnegoff e) with
|
|
| [], [], n ->
|
|
BinOp (Le, Exp.int n, Exp.zero)
|
|
| [], neg, n ->
|
|
BinOp (Lt, Exp.int (n -- IntLit.one), exp_list_to_sum neg)
|
|
| pos, [], n ->
|
|
BinOp (Le, exp_list_to_sum pos, Exp.int (IntLit.zero -- n))
|
|
| pos, neg, n ->
|
|
let lhs_e : Exp.t = BinOp (MinusA, exp_list_to_sum pos, exp_list_to_sum neg) in
|
|
BinOp (Le, lhs_e, Exp.int (IntLit.zero -- n))
|
|
in
|
|
let ineq =
|
|
match a with Aeq (ineq, Const Cint i) when IntLit.isone i -> ineq | _ -> assert false
|
|
in
|
|
match ineq with
|
|
| BinOp (Le, e1, e2) ->
|
|
let e : Exp.t = BinOp (MinusA, e1, e2) in
|
|
mk_inequality tenv (norm_from_exp e)
|
|
| BinOp (Lt, e1, e2) ->
|
|
let e : Exp.t = BinOp (MinusA, BinOp (MinusA, e1, e2), Exp.minus_one) in
|
|
mk_inequality tenv (norm_from_exp e)
|
|
| _ ->
|
|
a
|
|
|
|
|
|
(** Normalize an atom.
|
|
We keep the convention that inequalities with constants
|
|
are only of the form [e <= n] and [n < e]. *)
|
|
let atom_normalize tenv sub a0 =
|
|
let a = Sil.atom_sub sub a0 in
|
|
let rec normalize_eq (eq: Exp.t * Exp.t) =
|
|
match eq with
|
|
| BinOp (PlusA, e1, Const Cint n1), Const Cint n2
|
|
(* e1+n1==n2 ---> e1==n2-n1 *)
|
|
| BinOp (PlusPI, e1, Const Cint n1), Const Cint n2 ->
|
|
(e1, Exp.int (n2 -- n1))
|
|
| BinOp (MinusA, e1, Const Cint n1), Const Cint n2
|
|
(* e1-n1==n2 ---> e1==n1+n2 *)
|
|
| BinOp (MinusPI, e1, Const Cint n1), Const Cint n2 ->
|
|
(e1, Exp.int (n1 ++ n2))
|
|
| BinOp (MinusA, Const Cint n1, e1), Const Cint n2 ->
|
|
(* n1-e1 == n2 -> e1==n1-n2 *)
|
|
(e1, Exp.int (n1 -- n2))
|
|
| Lfield (e1', fld1, _), Lfield (e2', fld2, _) ->
|
|
if Typ.Fieldname.equal fld1 fld2 then normalize_eq (e1', e2') else eq
|
|
| Lindex (e1', idx1), Lindex (e2', idx2) ->
|
|
if Exp.equal idx1 idx2 then normalize_eq (e1', e2')
|
|
else if Exp.equal e1' e2' then normalize_eq (idx1, idx2)
|
|
else eq
|
|
| BinOp ((PlusA | PlusPI | MinusA | MinusPI), e1, e2), e1' when Exp.equal e1 e1' ->
|
|
(e2, Exp.int IntLit.zero)
|
|
| BinOp ((PlusA | PlusPI), e2, e1), e1' when Exp.equal e1 e1' ->
|
|
(e2, Exp.int IntLit.zero)
|
|
| e1', BinOp ((PlusA | PlusPI | MinusA | MinusPI), e1, e2) when Exp.equal e1 e1' ->
|
|
(e2, Exp.int IntLit.zero)
|
|
| e1', BinOp ((PlusA | PlusPI), e2, e1) when Exp.equal e1 e1' ->
|
|
(e2, Exp.int IntLit.zero)
|
|
| _ ->
|
|
eq
|
|
in
|
|
let handle_unary_negation (e1: Exp.t) (e2: Exp.t) =
|
|
match (e1, e2) with
|
|
| (UnOp (LNot, e1', _), Const Cint i | Const Cint i, UnOp (LNot, e1', _))
|
|
when IntLit.iszero i ->
|
|
(e1', Exp.zero, true)
|
|
| _ ->
|
|
(e1, e2, false)
|
|
in
|
|
let handle_boolean_operation orig_a from_equality e1 e2 : Sil.atom =
|
|
let ne1 = exp_normalize tenv sub e1 in
|
|
let ne2 = exp_normalize tenv sub e2 in
|
|
let ne1', ne2', op_negated = handle_unary_negation ne1 ne2 in
|
|
let e1', e2' = normalize_eq (ne1', ne2') in
|
|
let e1'', e2'' = exp_reorder e1' e2' in
|
|
let use_equality = if op_negated then not from_equality else from_equality in
|
|
if Bool.equal use_equality from_equality && phys_equal e1 e1'' && phys_equal e2 e2'' then
|
|
orig_a
|
|
else if use_equality then Aeq (e1'', e2'')
|
|
else Aneq (e1'', e2'')
|
|
in
|
|
let a' : Sil.atom =
|
|
match a with
|
|
| Aeq (e1, e2) ->
|
|
handle_boolean_operation a true e1 e2
|
|
| Aneq (e1, e2) ->
|
|
handle_boolean_operation a false e1 e2
|
|
| Apred (tag, es) ->
|
|
let es' = IList.map_changed es ~equal:Exp.equal ~f:(fun e -> exp_normalize tenv sub e) in
|
|
if phys_equal es es' then a else Apred (tag, es')
|
|
| Anpred (tag, es) ->
|
|
let es' = IList.map_changed es ~equal:Exp.equal ~f:(fun e -> exp_normalize tenv sub e) in
|
|
if phys_equal es es' then a else Anpred (tag, es')
|
|
in
|
|
if atom_is_inequality a' then inequality_normalize tenv a' else a'
|
|
|
|
|
|
let normalize_and_strengthen_atom tenv (p: normal t) (a: Sil.atom) : Sil.atom =
|
|
let a' = atom_normalize tenv (`Exp p.sub) a in
|
|
match a' with
|
|
| Aeq (BinOp (Le, Var id, Const Cint n), Const Cint i) when IntLit.isone i ->
|
|
let lower = Exp.int (n -- IntLit.one) in
|
|
let a_lower : Sil.atom = Aeq (BinOp (Lt, lower, Var id), Exp.one) in
|
|
if not (List.mem ~equal:Sil.equal_atom p.pi a_lower) then a' else Aeq (Var id, Exp.int n)
|
|
| Aeq (BinOp (Lt, Const Cint n, Var id), Const Cint i) when IntLit.isone i ->
|
|
let upper = Exp.int (n ++ IntLit.one) in
|
|
let a_upper : Sil.atom = Aeq (BinOp (Le, Var id, upper), Exp.one) in
|
|
if not (List.mem ~equal:Sil.equal_atom p.pi a_upper) then a' else Aeq (Var id, upper)
|
|
| Aeq (BinOp (Ne, e1, e2), Const Cint i) when IntLit.isone i ->
|
|
Aneq (e1, e2)
|
|
| _ ->
|
|
a'
|
|
|
|
|
|
let rec strexp_normalize tenv sub (se: Sil.strexp) : Sil.strexp =
|
|
match se with
|
|
| Eexp (e, inst) ->
|
|
let e' = exp_normalize tenv sub e in
|
|
if phys_equal e e' then se else Eexp (e', inst)
|
|
| Estruct (fld_cnts, inst) -> (
|
|
match fld_cnts with
|
|
| [] ->
|
|
se
|
|
| _ :: _ ->
|
|
let fld_cnts' =
|
|
IList.map_changed fld_cnts
|
|
~equal:[%compare.equal : Typ.Fieldname.t * Sil.strexp]
|
|
~f:(fun ((fld, cnt) as x) ->
|
|
let cnt' = strexp_normalize tenv sub cnt in
|
|
if phys_equal cnt cnt' then x else (fld, cnt') )
|
|
in
|
|
if phys_equal fld_cnts fld_cnts'
|
|
&& List.is_sorted ~compare:[%compare : Typ.Fieldname.t * Sil.strexp] fld_cnts
|
|
then se
|
|
else
|
|
let fld_cnts'' = List.sort ~cmp:[%compare : Typ.Fieldname.t * Sil.strexp] fld_cnts' in
|
|
Estruct (fld_cnts'', inst) )
|
|
| Earray (len, idx_cnts, inst) ->
|
|
let len' = exp_normalize_noabs tenv sub len in
|
|
match idx_cnts with
|
|
| [] ->
|
|
if Exp.equal len len' then se else Earray (len', idx_cnts, inst)
|
|
| _ :: _ ->
|
|
let idx_cnts' =
|
|
IList.map_changed idx_cnts
|
|
~equal:[%compare.equal : Exp.t * Sil.strexp]
|
|
~f:(fun ((idx, cnt) as x) ->
|
|
let idx' = exp_normalize tenv sub idx in
|
|
let cnt' = strexp_normalize tenv sub cnt in
|
|
if phys_equal idx idx' && phys_equal cnt cnt' then x else (idx', cnt') )
|
|
in
|
|
if phys_equal idx_cnts idx_cnts'
|
|
&& List.is_sorted ~compare:[%compare : Exp.t * Sil.strexp] idx_cnts
|
|
then se
|
|
else
|
|
let idx_cnts'' = List.sort ~cmp:[%compare : Exp.t * Sil.strexp] idx_cnts' in
|
|
Earray (len', idx_cnts'', inst)
|
|
|
|
|
|
(** Exp.Construct a pointsto. *)
|
|
let mk_ptsto tenv lexp sexp te : Sil.hpred =
|
|
let nsexp = strexp_normalize tenv Sil.sub_empty sexp in
|
|
Hpointsto (lexp, nsexp, te)
|
|
|
|
|
|
(** Construct a points-to predicate for an expression using either the provided expression [name]
|
|
as base for fresh identifiers. If [struct_init_mode] is [Fld_init], initialize the fields of
|
|
structs with fresh variables. *)
|
|
let mk_ptsto_exp tenv struct_init_mode (exp, (te: Exp.t), expo) inst : Sil.hpred =
|
|
let default_strexp () : Sil.strexp =
|
|
match te with
|
|
| Sizeof {typ; dynamic_length} ->
|
|
create_strexp_of_type tenv struct_init_mode typ dynamic_length inst
|
|
| Var _ ->
|
|
Estruct ([], inst)
|
|
| te ->
|
|
L.internal_error "trying to create ptsto with type: %a@." (Sil.pp_texp_full Pp.text) te ;
|
|
assert false
|
|
in
|
|
let strexp : Sil.strexp =
|
|
match expo with Some e -> Eexp (e, inst) | None -> default_strexp ()
|
|
in
|
|
mk_ptsto tenv exp strexp te
|
|
|
|
|
|
(** Captured variables in the closures consist of expressions and variables, with the implicit
|
|
assumption that these two values are in the relation &var -> id. However, after bi-abduction, etc.
|
|
the constraint may not hold anymore, so this function ensures that it is always kept.
|
|
In particular, we have &var -> id iff we also have the pair (id, var) as part of captured variables. *)
|
|
let make_captured_in_closures_consistent sigma =
|
|
let open Sil in
|
|
let find_correct_captured captured =
|
|
let find_captured_variable_in_the_heap captured' hpred =
|
|
match hpred with
|
|
| Hpointsto (Exp.Lvar var, Eexp (Exp.Var id, _), _) ->
|
|
List.map
|
|
~f:(fun ((e_captured, var_captured, t) as captured_item) ->
|
|
match e_captured with
|
|
| Exp.Var id_captured ->
|
|
if Ident.equal id id_captured && Pvar.equal var var_captured then captured_item
|
|
else if Ident.equal id id_captured then (e_captured, var, t)
|
|
else if Pvar.equal var var_captured then (Exp.Var id, var_captured, t)
|
|
else captured_item
|
|
| _ ->
|
|
captured_item )
|
|
captured'
|
|
| _ ->
|
|
captured'
|
|
in
|
|
List.fold_left ~f:find_captured_variable_in_the_heap ~init:captured sigma
|
|
in
|
|
let process_closures exp =
|
|
match exp with
|
|
| Exp.Closure {name; captured_vars} ->
|
|
let correct_captured = find_correct_captured captured_vars in
|
|
if phys_equal captured_vars correct_captured then exp
|
|
else Exp.Closure {name; captured_vars= correct_captured}
|
|
| _ ->
|
|
exp
|
|
in
|
|
let rec process_closures_in_se se =
|
|
match se with
|
|
| Eexp (exp, inst) ->
|
|
let new_exp = process_closures exp in
|
|
if phys_equal exp new_exp then se else Eexp (new_exp, inst)
|
|
| Estruct (fields, inst) ->
|
|
let new_fields =
|
|
List.map ~f:(fun (field, se) -> (field, process_closures_in_se se)) fields
|
|
in
|
|
if phys_equal fields new_fields then se else Estruct (new_fields, inst)
|
|
| _ ->
|
|
se
|
|
in
|
|
let process_closures_in_the_heap hpred =
|
|
match hpred with
|
|
| Hpointsto (e, se, inst) ->
|
|
let new_se = process_closures_in_se se in
|
|
if phys_equal new_se se then hpred else Hpointsto (e, new_se, inst)
|
|
| _ ->
|
|
hpred
|
|
in
|
|
List.map ~f:process_closures_in_the_heap sigma
|
|
|
|
|
|
let rec hpred_normalize tenv sub (hpred: Sil.hpred) : Sil.hpred =
|
|
let replace_hpred hpred' =
|
|
L.d_strln "found array with sizeof(..) size" ;
|
|
L.d_str "converting original hpred: " ;
|
|
Sil.d_hpred hpred ;
|
|
L.d_ln () ;
|
|
L.d_str "into the following: " ;
|
|
Sil.d_hpred hpred' ;
|
|
L.d_ln () ;
|
|
hpred'
|
|
in
|
|
match hpred with
|
|
| Hpointsto (root, cnt, te)
|
|
-> (
|
|
let normalized_root = exp_normalize tenv sub root in
|
|
let normalized_cnt = strexp_normalize tenv sub cnt in
|
|
let normalized_te = texp_normalize tenv sub te in
|
|
match (normalized_cnt, normalized_te) with
|
|
| Earray ((Exp.Sizeof _ as size), [], inst), Sizeof {typ= {desc= Tarray _}} ->
|
|
(* check for an empty array whose size expression is (Sizeof type), and turn the array
|
|
into a strexp of the given type *)
|
|
let hpred' = mk_ptsto_exp tenv Fld_init (root, size, None) inst in
|
|
replace_hpred hpred'
|
|
| ( Earray
|
|
(BinOp (Mult, Sizeof {typ= t; dynamic_length= None; subtype= st1}, x), esel, inst)
|
|
, Sizeof {typ= {desc= Tarray {elt}} as arr} )
|
|
when Typ.equal t elt ->
|
|
let dynamic_length = Some x in
|
|
let sizeof_data = {Exp.typ= arr; nbytes= None; dynamic_length; subtype= st1} in
|
|
let hpred' = mk_ptsto_exp tenv Fld_init (root, Sizeof sizeof_data, None) inst in
|
|
replace_hpred (replace_array_contents hpred' esel)
|
|
| ( Earray (BinOp (Mult, x, Sizeof {typ; dynamic_length= None; subtype}), esel, inst)
|
|
, Sizeof {typ= {desc= Tarray {elt}} as arr} )
|
|
when Typ.equal typ elt ->
|
|
let sizeof_data = {Exp.typ= arr; nbytes= None; dynamic_length= Some x; subtype} in
|
|
let hpred' = mk_ptsto_exp tenv Fld_init (root, Sizeof sizeof_data, None) inst in
|
|
replace_hpred (replace_array_contents hpred' esel)
|
|
| ( Earray (BinOp (Mult, Sizeof {typ; dynamic_length= Some len; subtype}, x), esel, inst)
|
|
, Sizeof {typ= {desc= Tarray {elt}} as arr} )
|
|
when Typ.equal typ elt ->
|
|
let sizeof_data =
|
|
{Exp.typ= arr; nbytes= None; dynamic_length= Some (Exp.BinOp (Mult, x, len)); subtype}
|
|
in
|
|
let hpred' = mk_ptsto_exp tenv Fld_init (root, Sizeof sizeof_data, None) inst in
|
|
replace_hpred (replace_array_contents hpred' esel)
|
|
| ( Earray (BinOp (Mult, x, Sizeof {typ; dynamic_length= Some len; subtype}), esel, inst)
|
|
, Sizeof {typ= {desc= Tarray {elt}} as arr} )
|
|
when Typ.equal typ elt ->
|
|
let sizeof_data =
|
|
{Exp.typ= arr; nbytes= None; dynamic_length= Some (Exp.BinOp (Mult, x, len)); subtype}
|
|
in
|
|
let hpred' = mk_ptsto_exp tenv Fld_init (root, Sizeof sizeof_data, None) inst in
|
|
replace_hpred (replace_array_contents hpred' esel)
|
|
| _ ->
|
|
Hpointsto (normalized_root, normalized_cnt, normalized_te) )
|
|
| Hlseg (k, para, e1, e2, elist) ->
|
|
let normalized_e1 = exp_normalize tenv sub e1 in
|
|
let normalized_e2 = exp_normalize tenv sub e2 in
|
|
let normalized_elist = List.map ~f:(exp_normalize tenv sub) elist in
|
|
let normalized_para = hpara_normalize tenv para in
|
|
Hlseg (k, normalized_para, normalized_e1, normalized_e2, normalized_elist)
|
|
| Hdllseg (k, para, e1, e2, e3, e4, elist) ->
|
|
let norm_e1 = exp_normalize tenv sub e1 in
|
|
let norm_e2 = exp_normalize tenv sub e2 in
|
|
let norm_e3 = exp_normalize tenv sub e3 in
|
|
let norm_e4 = exp_normalize tenv sub e4 in
|
|
let norm_elist = List.map ~f:(exp_normalize tenv sub) elist in
|
|
let norm_para = hpara_dll_normalize tenv para in
|
|
Hdllseg (k, norm_para, norm_e1, norm_e2, norm_e3, norm_e4, norm_elist)
|
|
|
|
|
|
and hpara_normalize tenv (para: Sil.hpara) =
|
|
let normalized_body = List.map ~f:(hpred_normalize tenv Sil.sub_empty) para.body in
|
|
let sorted_body = List.sort ~cmp:Sil.compare_hpred normalized_body in
|
|
{para with body= sorted_body}
|
|
|
|
|
|
and hpara_dll_normalize tenv (para: Sil.hpara_dll) =
|
|
let normalized_body = List.map ~f:(hpred_normalize tenv Sil.sub_empty) para.body_dll in
|
|
let sorted_body = List.sort ~cmp:Sil.compare_hpred normalized_body in
|
|
{para with body_dll= sorted_body}
|
|
|
|
|
|
let sigma_normalize tenv sub sigma =
|
|
let sigma' =
|
|
List.map ~f:(hpred_normalize tenv sub) sigma |> make_captured_in_closures_consistent
|
|
|> List.stable_sort ~cmp:Sil.compare_hpred
|
|
in
|
|
if equal_sigma sigma sigma' then sigma else sigma'
|
|
|
|
|
|
let pi_tighten_ineq tenv pi =
|
|
let ineq_list, nonineq_list = List.partition_tf ~f:atom_is_inequality pi in
|
|
let diseq_list =
|
|
let get_disequality_info acc (a: Sil.atom) =
|
|
match a with Aneq (Const Cint n, e) | Aneq (e, Const Cint n) -> (e, n) :: acc | _ -> acc
|
|
in
|
|
List.fold ~f:get_disequality_info ~init:[] nonineq_list
|
|
in
|
|
let is_neq e n =
|
|
List.exists ~f:(fun (e', n') -> Exp.equal e e' && IntLit.eq n n') diseq_list
|
|
in
|
|
let le_list_tightened =
|
|
let get_le_inequality_info acc a =
|
|
match atom_exp_le_const a with Some (e, n) -> (e, n) :: acc | _ -> acc
|
|
in
|
|
let rec le_tighten le_list_done = function
|
|
| [] ->
|
|
List.rev le_list_done
|
|
| (e, n) :: le_list_todo ->
|
|
(* e <= n *)
|
|
if is_neq e n then le_tighten le_list_done ((e, n -- IntLit.one) :: le_list_todo)
|
|
else le_tighten ((e, n) :: le_list_done) le_list_todo
|
|
in
|
|
let le_list = List.rev (List.fold ~f:get_le_inequality_info ~init:[] ineq_list) in
|
|
le_tighten [] le_list
|
|
in
|
|
let lt_list_tightened =
|
|
let get_lt_inequality_info acc a =
|
|
match atom_const_lt_exp a with Some (n, e) -> (n, e) :: acc | _ -> acc
|
|
in
|
|
let rec lt_tighten lt_list_done = function
|
|
| [] ->
|
|
List.rev lt_list_done
|
|
| (n, e) :: lt_list_todo ->
|
|
(* n < e *)
|
|
let n_plus_one = n ++ IntLit.one in
|
|
if is_neq e n_plus_one then
|
|
lt_tighten lt_list_done ((n ++ IntLit.one, e) :: lt_list_todo)
|
|
else lt_tighten ((n, e) :: lt_list_done) lt_list_todo
|
|
in
|
|
let lt_list = List.rev (List.fold ~f:get_lt_inequality_info ~init:[] ineq_list) in
|
|
lt_tighten [] lt_list
|
|
in
|
|
let ineq_list' =
|
|
let le_ineq_list =
|
|
List.map ~f:(fun (e, n) -> mk_inequality tenv (BinOp (Le, e, Exp.int n))) le_list_tightened
|
|
in
|
|
let lt_ineq_list =
|
|
List.map ~f:(fun (n, e) -> mk_inequality tenv (BinOp (Lt, Exp.int n, e))) lt_list_tightened
|
|
in
|
|
le_ineq_list @ lt_ineq_list
|
|
in
|
|
let nonineq_list' =
|
|
List.filter
|
|
~f:(fun (a: Sil.atom) ->
|
|
match a with
|
|
| Aneq (Const Cint n, e) | Aneq (e, Const Cint n) ->
|
|
not
|
|
(List.exists
|
|
~f:(fun (e', n') -> Exp.equal e e' && IntLit.lt n' n)
|
|
le_list_tightened)
|
|
&& not
|
|
(List.exists
|
|
~f:(fun (n', e') -> Exp.equal e e' && IntLit.leq n n')
|
|
lt_list_tightened)
|
|
| _ ->
|
|
true )
|
|
nonineq_list
|
|
in
|
|
(ineq_list', nonineq_list')
|
|
|
|
|
|
(** Normalization of pi.
|
|
The normalization filters out obviously - true disequalities, such as e <> e + 1. *)
|
|
let pi_normalize tenv sub sigma pi0 =
|
|
let pi = List.map ~f:(atom_normalize tenv sub) pi0 in
|
|
let ineq_list, nonineq_list = pi_tighten_ineq tenv pi in
|
|
let syntactically_different : Exp.t * Exp.t -> bool = function
|
|
| BinOp (op1, e1, Const c1), BinOp (op2, e2, Const c2) when Exp.equal e1 e2 ->
|
|
Binop.equal op1 op2 && Binop.injective op1 && not (Const.equal c1 c2)
|
|
| e1, BinOp (op2, e2, Const c2) when Exp.equal e1 e2 ->
|
|
Binop.injective op2 && Binop.is_zero_runit op2 && not (Const.equal (Cint IntLit.zero) c2)
|
|
| BinOp (op1, e1, Const c1), e2 when Exp.equal e1 e2 ->
|
|
Binop.injective op1 && Binop.is_zero_runit op1 && not (Const.equal (Cint IntLit.zero) c1)
|
|
| _ ->
|
|
false
|
|
in
|
|
let filter_useful_atom : Sil.atom -> bool =
|
|
let unsigned_exps = lazy (sigma_get_unsigned_exps sigma) in
|
|
function
|
|
| Aneq ((Var _ as e), Const Cint n) when IntLit.isnegative n ->
|
|
not (List.exists ~f:(Exp.equal e) (Lazy.force unsigned_exps))
|
|
| Aneq (e1, e2) ->
|
|
not (syntactically_different (e1, e2))
|
|
| Aeq (Const c1, Const c2) ->
|
|
not (Const.equal c1 c2)
|
|
| _ ->
|
|
true
|
|
in
|
|
let pi' =
|
|
List.stable_sort ~cmp:Sil.compare_atom
|
|
(List.filter ~f:filter_useful_atom nonineq_list @ ineq_list)
|
|
in
|
|
let pi'' = pi_sorted_remove_redundant pi' in
|
|
if equal_pi pi0 pi'' then pi0 else pi''
|
|
|
|
|
|
(** normalize the footprint part, and rename any primed vars
|
|
in the footprint with fresh footprint vars *)
|
|
let footprint_normalize tenv prop =
|
|
let nsigma = sigma_normalize tenv Sil.sub_empty prop.sigma_fp in
|
|
let npi = pi_normalize tenv Sil.sub_empty nsigma prop.pi_fp in
|
|
let ids_primed =
|
|
let fav =
|
|
pi_free_vars npi |> Sequence.filter ~f:Ident.is_primed |> Ident.hashqueue_of_sequence
|
|
in
|
|
sigma_free_vars nsigma |> Sequence.filter ~f:Ident.is_primed
|
|
|> Ident.hashqueue_of_sequence ~init:fav |> Ident.HashQueue.keys
|
|
in
|
|
(* only keep primed vars *)
|
|
let npi', nsigma' =
|
|
if List.is_empty ids_primed then (npi, nsigma)
|
|
else
|
|
(* replace primed vars by fresh footprint vars *)
|
|
let ids_footprint =
|
|
List.map ~f:(fun id -> (id, Ident.create_fresh Ident.kfootprint)) ids_primed
|
|
in
|
|
let ren_sub =
|
|
Sil.subst_of_list (List.map ~f:(fun (id1, id2) -> (id1, Exp.Var id2)) ids_footprint)
|
|
in
|
|
let nsigma' = sigma_normalize tenv Sil.sub_empty (sigma_sub ren_sub nsigma) in
|
|
let npi' = pi_normalize tenv Sil.sub_empty nsigma' (pi_sub ren_sub npi) in
|
|
(npi', nsigma')
|
|
in
|
|
set prop ~pi_fp:npi' ~sigma_fp:nsigma'
|
|
|
|
|
|
(** This function assumes that if (x,Exp.Var(y)) in sub, then compare x y = 1 *)
|
|
let sub_normalize sub =
|
|
let f (id, e) = not (Ident.is_primed id) && not (Exp.ident_mem e id) in
|
|
let sub' = Sil.sub_filter_pair ~f sub in
|
|
if Sil.equal_exp_subst sub sub' then sub else sub'
|
|
|
|
|
|
(** Conjoin a pure atomic predicate by normal conjunction. *)
|
|
let rec prop_atom_and tenv ?(footprint= false) (p: normal t) a : normal t =
|
|
let a' = normalize_and_strengthen_atom tenv p a in
|
|
if List.mem ~equal:Sil.equal_atom p.pi a' then p
|
|
else
|
|
let p' =
|
|
match a' with
|
|
| Aeq (Var i, e) when Exp.ident_mem e i ->
|
|
p
|
|
| Aeq (Var i, e) ->
|
|
let sub_list = [(i, e)] in
|
|
let mysub = Sil.exp_subst_of_list sub_list in
|
|
let p_sub = Sil.sub_filter (fun i' -> not (Ident.equal i i')) p.sub in
|
|
let exp_sub' =
|
|
Sil.sub_join mysub (Sil.sub_range_map (Sil.exp_sub (`Exp mysub)) p_sub)
|
|
in
|
|
let sub' = `Exp exp_sub' in
|
|
let nsub', npi', nsigma' =
|
|
let nsigma' = sigma_normalize tenv sub' p.sigma in
|
|
(sub_normalize exp_sub', pi_normalize tenv sub' nsigma' p.pi, nsigma')
|
|
in
|
|
let eqs_zero, nsigma'' = sigma_remove_emptylseg nsigma' in
|
|
let p' = unsafe_cast_to_normal (set p ~sub:nsub' ~pi:npi' ~sigma:nsigma'') in
|
|
List.fold ~f:(prop_atom_and tenv ~footprint) ~init:p' eqs_zero
|
|
| Aeq (e1, e2) when Exp.equal e1 e2 ->
|
|
p
|
|
| Aneq (e1, e2) ->
|
|
let sigma' = sigma_intro_nonemptylseg e1 e2 p.sigma in
|
|
let pi' = pi_normalize tenv (`Exp p.sub) sigma' (a' :: p.pi) in
|
|
unsafe_cast_to_normal (set p ~pi:pi' ~sigma:sigma')
|
|
| _ ->
|
|
let pi' = pi_normalize tenv (`Exp p.sub) p.sigma (a' :: p.pi) in
|
|
unsafe_cast_to_normal (set p ~pi:pi')
|
|
in
|
|
if not footprint then p'
|
|
else
|
|
let p'' =
|
|
match a' with
|
|
| Aeq (Exp.Var i, e) when not (Exp.ident_mem e i) ->
|
|
let mysub = Sil.subst_of_list [(i, e)] in
|
|
let sigma_fp' = sigma_normalize tenv mysub p'.sigma_fp in
|
|
let pi_fp' = a' :: pi_normalize tenv mysub sigma_fp' p'.pi_fp in
|
|
footprint_normalize tenv (set p' ~pi_fp:pi_fp' ~sigma_fp:sigma_fp')
|
|
| _ ->
|
|
footprint_normalize tenv (set p' ~pi_fp:(a' :: p'.pi_fp))
|
|
in
|
|
unsafe_cast_to_normal p''
|
|
|
|
|
|
(** normalize a prop *)
|
|
let normalize tenv (eprop: 'a t) : normal t =
|
|
let p0 =
|
|
unsafe_cast_to_normal (set prop_emp ~sigma:(sigma_normalize tenv Sil.sub_empty eprop.sigma))
|
|
in
|
|
let nprop = List.fold ~f:(prop_atom_and tenv) ~init:p0 (get_pure_extended eprop) in
|
|
unsafe_cast_to_normal
|
|
(footprint_normalize tenv (set nprop ~pi_fp:eprop.pi_fp ~sigma_fp:eprop.sigma_fp))
|
|
end
|
|
|
|
(* End of module Normalize *)
|
|
|
|
let exp_normalize_prop ?destructive tenv prop exp =
|
|
Config.run_with_abs_val_equal_zero
|
|
(Normalize.exp_normalize ?destructive tenv (`Exp prop.sub))
|
|
exp
|
|
|
|
|
|
let lexp_normalize_prop tenv p lexp =
|
|
let root = Exp.root_of_lexp lexp in
|
|
let offsets = Sil.exp_get_offsets lexp in
|
|
let nroot = exp_normalize_prop tenv p root in
|
|
let noffsets =
|
|
List.map
|
|
~f:(fun (n: Sil.offset) ->
|
|
match n with Off_fld _ -> n | Off_index e -> Sil.Off_index (exp_normalize_prop tenv p e) )
|
|
offsets
|
|
in
|
|
Sil.exp_add_offsets nroot noffsets
|
|
|
|
|
|
let atom_normalize_prop tenv prop atom =
|
|
Config.run_with_abs_val_equal_zero (Normalize.atom_normalize tenv (`Exp prop.sub)) atom
|
|
|
|
|
|
let sigma_normalize_prop tenv prop sigma =
|
|
Config.run_with_abs_val_equal_zero (Normalize.sigma_normalize tenv (`Exp prop.sub)) sigma
|
|
|
|
|
|
let sigma_replace_exp tenv epairs sigma =
|
|
let sigma' = List.map ~f:(Sil.hpred_replace_exp epairs) sigma in
|
|
Normalize.sigma_normalize tenv Sil.sub_empty sigma'
|
|
|
|
|
|
(** Construct an atom. *)
|
|
let mk_atom tenv atom =
|
|
Config.run_with_abs_val_equal_zero
|
|
(fun () -> Normalize.atom_normalize tenv Sil.sub_empty atom)
|
|
()
|
|
|
|
|
|
(** Exp.Construct a disequality. *)
|
|
let mk_neq tenv e1 e2 = mk_atom tenv (Aneq (e1, e2))
|
|
|
|
(** Exp.Construct an equality. *)
|
|
let mk_eq tenv e1 e2 = mk_atom tenv (Aeq (e1, e2))
|
|
|
|
(** Construct a pred. *)
|
|
let mk_pred tenv a es = mk_atom tenv (Apred (a, es))
|
|
|
|
(** Construct a negated pred. *)
|
|
let mk_npred tenv a es = mk_atom tenv (Anpred (a, es))
|
|
|
|
(** Exp.Construct a lseg predicate *)
|
|
let mk_lseg tenv k para e_start e_end es_shared : Sil.hpred =
|
|
let npara = Normalize.hpara_normalize tenv para in
|
|
Hlseg (k, npara, e_start, e_end, es_shared)
|
|
|
|
|
|
(** Exp.Construct a dllseg predicate *)
|
|
let mk_dllseg tenv k para exp_iF exp_oB exp_oF exp_iB exps_shared : Sil.hpred =
|
|
let npara = Normalize.hpara_dll_normalize tenv para in
|
|
Hdllseg (k, npara, exp_iF, exp_oB, exp_oF, exp_iB, exps_shared)
|
|
|
|
|
|
(** Construct a points-to predicate for a single program variable.
|
|
If [expand_structs] is [Fld_init], initialize the fields of structs with fresh variables. *)
|
|
let mk_ptsto_lvar tenv expand_structs inst ((pvar: Pvar.t), texp, expo) : Sil.hpred =
|
|
Normalize.mk_ptsto_exp tenv expand_structs (Lvar pvar, texp, expo) inst
|
|
|
|
|
|
(** Conjoin [exp1]=[exp2] with a symbolic heap [prop]. *)
|
|
let conjoin_eq tenv ?(footprint= false) exp1 exp2 prop =
|
|
Normalize.prop_atom_and tenv ~footprint prop (Aeq (exp1, exp2))
|
|
|
|
|
|
(** Conjoin [exp1!=exp2] with a symbolic heap [prop]. *)
|
|
let conjoin_neq tenv ?(footprint= false) exp1 exp2 prop =
|
|
Normalize.prop_atom_and tenv ~footprint prop (Aneq (exp1, exp2))
|
|
|
|
|
|
(** Reset every inst in the prop using the given map *)
|
|
let prop_reset_inst inst_map prop =
|
|
let sigma' = List.map ~f:(Sil.hpred_instmap inst_map) prop.sigma in
|
|
let sigma_fp' = List.map ~f:(Sil.hpred_instmap inst_map) prop.sigma_fp in
|
|
set prop ~sigma:sigma' ~sigma_fp:sigma_fp'
|
|
|
|
|
|
(** {1 Functions for transforming footprints into propositions.} *)
|
|
|
|
(** The ones used for abstraction add/remove local stacks in order to
|
|
stop the firing of some abstraction rules. The other usual
|
|
transforation functions do not use this hack. *)
|
|
|
|
(** Extract the footprint and return it as a prop *)
|
|
let extract_footprint p = set prop_emp ~pi:p.pi_fp ~sigma:p.sigma_fp
|
|
|
|
(** Extract the (footprint,current) pair *)
|
|
let extract_spec (p: normal t) : normal t * normal t =
|
|
let pre = extract_footprint p in
|
|
let post = set p ~pi_fp:[] ~sigma_fp:[] in
|
|
(unsafe_cast_to_normal pre, unsafe_cast_to_normal post)
|
|
|
|
|
|
(** {2 Functions for renaming primed variables by "canonical names"} *)
|
|
|
|
module ExpStack : sig
|
|
val init : Exp.t list -> unit
|
|
|
|
val final : unit -> unit
|
|
|
|
val is_empty : unit -> bool
|
|
|
|
val push : Exp.t -> unit
|
|
|
|
val pop : unit -> Exp.t
|
|
end = struct
|
|
let stack = Stack.create ()
|
|
|
|
let init es =
|
|
Stack.clear stack ;
|
|
List.iter ~f:(fun e -> Stack.push stack e) (List.rev es)
|
|
|
|
|
|
let final () = Stack.clear stack
|
|
|
|
let is_empty () = Stack.is_empty stack
|
|
|
|
let push e = Stack.push stack e
|
|
|
|
let pop () = Stack.pop_exn stack
|
|
end
|
|
|
|
let sigma_get_start_lexps_sort sigma =
|
|
let exp_compare_neg e1 e2 = -Exp.compare e1 e2 in
|
|
let filter e = Exp.free_vars e |> Sequence.for_all ~f:Ident.is_normal in
|
|
let lexps = Sil.hpred_list_get_lexps filter sigma in
|
|
List.sort ~cmp:exp_compare_neg lexps
|
|
|
|
|
|
let sigma_dfs_sort tenv sigma =
|
|
let init () =
|
|
let start_lexps = sigma_get_start_lexps_sort sigma in
|
|
ExpStack.init start_lexps
|
|
in
|
|
let final () = ExpStack.final () in
|
|
let rec handle_strexp (se: Sil.strexp) =
|
|
match se with
|
|
| Eexp (e, _) ->
|
|
ExpStack.push e
|
|
| Estruct (fld_se_list, _) ->
|
|
List.iter ~f:(fun (_, se) -> handle_strexp se) fld_se_list
|
|
| Earray (_, idx_se_list, _) ->
|
|
List.iter ~f:(fun (_, se) -> handle_strexp se) idx_se_list
|
|
in
|
|
let rec handle_e visited seen e (sigma: sigma) =
|
|
match sigma with
|
|
| [] ->
|
|
(visited, List.rev seen)
|
|
| hpred :: cur ->
|
|
match hpred with
|
|
| Hpointsto (e', se, _) when Exp.equal e e' ->
|
|
handle_strexp se ; (hpred :: visited, List.rev_append cur seen)
|
|
| Hlseg (_, _, root, next, shared) when Exp.equal e root ->
|
|
List.iter ~f:ExpStack.push (next :: shared) ;
|
|
(hpred :: visited, List.rev_append cur seen)
|
|
| Hdllseg (_, _, iF, oB, oF, iB, shared) when Exp.equal e iF || Exp.equal e iB ->
|
|
List.iter ~f:ExpStack.push (oB :: oF :: shared) ;
|
|
(hpred :: visited, List.rev_append cur seen)
|
|
| _ ->
|
|
handle_e visited (hpred :: seen) e cur
|
|
in
|
|
let rec handle_sigma visited = function
|
|
| [] ->
|
|
List.rev visited
|
|
| cur ->
|
|
if ExpStack.is_empty () then
|
|
let cur' = Normalize.sigma_normalize tenv Sil.sub_empty cur in
|
|
List.rev_append cur' visited
|
|
else
|
|
let e = ExpStack.pop () in
|
|
let visited', cur' = handle_e visited [] e cur in
|
|
handle_sigma visited' cur'
|
|
in
|
|
init () ;
|
|
let sigma' = handle_sigma [] sigma in
|
|
final () ; sigma'
|
|
|
|
|
|
let dfs_sort tenv p : sorted t =
|
|
let sigma = p.sigma in
|
|
let sigma' = sigma_dfs_sort tenv sigma in
|
|
let sigma_fp = p.sigma_fp in
|
|
let sigma_fp' = sigma_dfs_sort tenv sigma_fp in
|
|
let p' = set p ~sigma:sigma' ~sigma_fp:sigma_fp' in
|
|
(* L.out "@[<2>P SORTED:@\n%a@\n@." pp_prop p'; *)
|
|
unsafe_cast_to_sorted p'
|
|
|
|
|
|
let rec strexp_get_array_indices acc (se: Sil.strexp) =
|
|
match se with
|
|
| Eexp _ ->
|
|
acc
|
|
| Estruct (fsel, _) ->
|
|
let se_list = List.map ~f:snd fsel in
|
|
List.fold ~f:strexp_get_array_indices ~init:acc se_list
|
|
| Earray (_, isel, _) ->
|
|
let acc_new = List.fold ~f:(fun acc' (idx, _) -> idx :: acc') ~init:acc isel in
|
|
let se_list = List.map ~f:snd isel in
|
|
List.fold ~f:strexp_get_array_indices ~init:acc_new se_list
|
|
|
|
|
|
let hpred_get_array_indices acc (hpred: Sil.hpred) =
|
|
match hpred with
|
|
| Hpointsto (_, se, _) ->
|
|
strexp_get_array_indices acc se
|
|
| Hlseg _ | Hdllseg _ ->
|
|
acc
|
|
|
|
|
|
let sigma_get_array_indices sigma =
|
|
let indices = List.fold ~f:hpred_get_array_indices ~init:[] sigma in
|
|
List.rev indices
|
|
|
|
|
|
let compute_reindexing_from_indices list =
|
|
let get_id_offset (e: Exp.t) =
|
|
match e with
|
|
| BinOp (PlusA, Var id, Const Cint offset) ->
|
|
if Ident.is_primed id then Some (id, offset) else None
|
|
| _ ->
|
|
None
|
|
in
|
|
let rec select list_passed list_seen = function
|
|
| [] ->
|
|
list_passed
|
|
| x :: list_rest ->
|
|
let id_offset_opt = get_id_offset x in
|
|
let list_passed_new =
|
|
match id_offset_opt with
|
|
| None ->
|
|
list_passed
|
|
| Some (id, _) ->
|
|
let find_id_in_list l = List.exists l ~f:(fun e -> Exp.ident_mem e id) in
|
|
if find_id_in_list list_seen || find_id_in_list list_passed then list_passed
|
|
else x :: list_passed
|
|
in
|
|
let list_seen_new = x :: list_seen in
|
|
select list_passed_new list_seen_new list_rest
|
|
in
|
|
let list_passed = select [] [] list in
|
|
let transform x =
|
|
let id, offset = match get_id_offset x with None -> assert false | Some io -> io in
|
|
let base_new : Exp.t = Var (Ident.create_fresh Ident.kprimed) in
|
|
let offset_new = Exp.int (IntLit.neg offset) in
|
|
let exp_new : Exp.t = BinOp (PlusA, base_new, offset_new) in
|
|
(id, exp_new)
|
|
in
|
|
let reindexing = List.map ~f:transform list_passed in
|
|
Sil.exp_subst_of_list reindexing
|
|
|
|
|
|
let apply_reindexing tenv (exp_subst: Sil.exp_subst) prop =
|
|
let subst = `Exp exp_subst in
|
|
let nsigma = Normalize.sigma_normalize tenv subst prop.sigma in
|
|
let npi = Normalize.pi_normalize tenv subst nsigma prop.pi in
|
|
let nsub, atoms =
|
|
let dom_subst = List.map ~f:fst (Sil.sub_to_list exp_subst) in
|
|
let in_dom_subst id = List.exists ~f:(Ident.equal id) dom_subst in
|
|
let sub' = Sil.sub_filter (fun id -> not (in_dom_subst id)) prop.sub in
|
|
let contains_substituted_id e = Exp.free_vars e |> Sequence.exists ~f:in_dom_subst in
|
|
let sub_eqs, sub_keep = Sil.sub_range_partition contains_substituted_id sub' in
|
|
let eqs = Sil.sub_to_list sub_eqs in
|
|
let atoms =
|
|
List.map ~f:(fun (id, e) -> Sil.Aeq (Var id, Normalize.exp_normalize tenv subst e)) eqs
|
|
in
|
|
(sub_keep, atoms)
|
|
in
|
|
let p' = unsafe_cast_to_normal (set prop ~sub:nsub ~pi:npi ~sigma:nsigma) in
|
|
List.fold ~f:(Normalize.prop_atom_and tenv) ~init:p' atoms
|
|
|
|
|
|
let prop_rename_array_indices tenv prop =
|
|
if !Config.footprint then prop
|
|
else
|
|
let indices = sigma_get_array_indices prop.sigma in
|
|
let not_same_base_lt_offsets (e1: Exp.t) (e2: Exp.t) =
|
|
match (e1, e2) with
|
|
| BinOp (PlusA, e1', Const Cint n1'), BinOp (PlusA, e2', Const Cint n2') ->
|
|
not (Exp.equal e1' e2' && IntLit.lt n1' n2')
|
|
| _ ->
|
|
true
|
|
in
|
|
let rec select_minimal_indices indices_seen = function
|
|
| [] ->
|
|
List.rev indices_seen
|
|
| index :: indices_rest ->
|
|
let indices_seen' = List.filter ~f:(not_same_base_lt_offsets index) indices_seen in
|
|
let indices_seen_new = index :: indices_seen' in
|
|
let indices_rest_new = List.filter ~f:(not_same_base_lt_offsets index) indices_rest in
|
|
select_minimal_indices indices_seen_new indices_rest_new
|
|
in
|
|
let minimal_indices = select_minimal_indices [] indices in
|
|
let subst = compute_reindexing_from_indices minimal_indices in
|
|
apply_reindexing tenv subst prop
|
|
|
|
|
|
let compute_renaming free_vars =
|
|
let ids_primed, ids_nonprimed = List.partition_tf ~f:Ident.is_primed free_vars in
|
|
let ids_footprint = List.filter ~f:Ident.is_footprint ids_nonprimed in
|
|
let id_base_primed = Ident.create Ident.kprimed 0 in
|
|
let id_base_footprint = Ident.create Ident.kfootprint 0 in
|
|
let rec f id_base index ren_subst = function
|
|
| [] ->
|
|
ren_subst
|
|
| id :: ids ->
|
|
let new_id = Ident.set_stamp id_base index in
|
|
if Ident.equal id new_id then f id_base (index + 1) ren_subst ids
|
|
else f id_base (index + 1) ((id, new_id) :: ren_subst) ids
|
|
in
|
|
let ren_primed = f id_base_primed 0 [] ids_primed in
|
|
let ren_footprint = f id_base_footprint 0 [] ids_footprint in
|
|
ren_primed @ ren_footprint
|
|
|
|
|
|
let rec idlist_assoc id = function
|
|
| [] ->
|
|
raise Not_found
|
|
| (i, x) :: l ->
|
|
if Ident.equal i id then x else idlist_assoc id l
|
|
|
|
|
|
let ident_captured_ren ren id = try idlist_assoc id ren with Not_found -> id
|
|
|
|
(* If not defined in ren, id should be mapped to itself *)
|
|
|
|
let rec exp_captured_ren ren (e: Exp.t) : Exp.t =
|
|
match e with
|
|
| Var id ->
|
|
Var (ident_captured_ren ren id)
|
|
| Exn e ->
|
|
Exn (exp_captured_ren ren e)
|
|
| Closure {name; captured_vars} ->
|
|
let captured_vars' =
|
|
List.map ~f:(fun (e, v, t) -> (exp_captured_ren ren e, v, t)) captured_vars
|
|
in
|
|
Closure {name; captured_vars= captured_vars'}
|
|
| Const _ ->
|
|
e
|
|
| Sizeof ({dynamic_length} as sizeof_data) ->
|
|
Sizeof {sizeof_data with dynamic_length= Option.map ~f:(exp_captured_ren ren) dynamic_length}
|
|
| Cast (t, e) ->
|
|
Cast (t, exp_captured_ren ren e)
|
|
| UnOp (op, e, topt) ->
|
|
UnOp (op, exp_captured_ren ren e, topt)
|
|
| BinOp (op, e1, e2) ->
|
|
let e1' = exp_captured_ren ren e1 in
|
|
let e2' = exp_captured_ren ren e2 in
|
|
BinOp (op, e1', e2')
|
|
| Lvar id ->
|
|
Lvar id
|
|
| Lfield (e, fld, typ) ->
|
|
Lfield (exp_captured_ren ren e, fld, typ)
|
|
| Lindex (e1, e2) ->
|
|
let e1' = exp_captured_ren ren e1 in
|
|
let e2' = exp_captured_ren ren e2 in
|
|
Lindex (e1', e2')
|
|
|
|
|
|
let atom_captured_ren ren (a: Sil.atom) : Sil.atom =
|
|
match a with
|
|
| Aeq (e1, e2) ->
|
|
Aeq (exp_captured_ren ren e1, exp_captured_ren ren e2)
|
|
| Aneq (e1, e2) ->
|
|
Aneq (exp_captured_ren ren e1, exp_captured_ren ren e2)
|
|
| Apred (a, es) ->
|
|
Apred (a, List.map ~f:(fun e -> exp_captured_ren ren e) es)
|
|
| Anpred (a, es) ->
|
|
Anpred (a, List.map ~f:(fun e -> exp_captured_ren ren e) es)
|
|
|
|
|
|
let rec strexp_captured_ren ren (se: Sil.strexp) : Sil.strexp =
|
|
match se with
|
|
| Eexp (e, inst) ->
|
|
Eexp (exp_captured_ren ren e, inst)
|
|
| Estruct (fld_se_list, inst) ->
|
|
let f (fld, se) = (fld, strexp_captured_ren ren se) in
|
|
Estruct (List.map ~f fld_se_list, inst)
|
|
| Earray (len, idx_se_list, inst) ->
|
|
let f (idx, se) =
|
|
let idx' = exp_captured_ren ren idx in
|
|
(idx', strexp_captured_ren ren se)
|
|
in
|
|
let len' = exp_captured_ren ren len in
|
|
Earray (len', List.map ~f idx_se_list, inst)
|
|
|
|
|
|
and hpred_captured_ren ren (hpred: Sil.hpred) : Sil.hpred =
|
|
match hpred with
|
|
| Hpointsto (base, se, te) ->
|
|
let base' = exp_captured_ren ren base in
|
|
let se' = strexp_captured_ren ren se in
|
|
let te' = exp_captured_ren ren te in
|
|
Hpointsto (base', se', te')
|
|
| Hlseg (k, para, e1, e2, elist) ->
|
|
let para' = hpara_ren para in
|
|
let e1' = exp_captured_ren ren e1 in
|
|
let e2' = exp_captured_ren ren e2 in
|
|
let elist' = List.map ~f:(exp_captured_ren ren) elist in
|
|
Hlseg (k, para', e1', e2', elist')
|
|
| Hdllseg (k, para, e1, e2, e3, e4, elist) ->
|
|
let para' = hpara_dll_ren para in
|
|
let e1' = exp_captured_ren ren e1 in
|
|
let e2' = exp_captured_ren ren e2 in
|
|
let e3' = exp_captured_ren ren e3 in
|
|
let e4' = exp_captured_ren ren e4 in
|
|
let elist' = List.map ~f:(exp_captured_ren ren) elist in
|
|
Hdllseg (k, para', e1', e2', e3', e4', elist')
|
|
|
|
|
|
and hpara_ren (para: Sil.hpara) : Sil.hpara =
|
|
let av =
|
|
Sil.hpara_shallow_free_vars para |> Ident.hashqueue_of_sequence |> Ident.HashQueue.keys
|
|
in
|
|
let ren = compute_renaming av in
|
|
let root = ident_captured_ren ren para.root in
|
|
let next = ident_captured_ren ren para.next in
|
|
let svars = List.map ~f:(ident_captured_ren ren) para.svars in
|
|
let evars = List.map ~f:(ident_captured_ren ren) para.evars in
|
|
let body = List.map ~f:(hpred_captured_ren ren) para.body in
|
|
{root; next; svars; evars; body}
|
|
|
|
|
|
and hpara_dll_ren (para: Sil.hpara_dll) : Sil.hpara_dll =
|
|
let av =
|
|
Sil.hpara_dll_shallow_free_vars para |> Ident.hashqueue_of_sequence |> Ident.HashQueue.keys
|
|
in
|
|
let ren = compute_renaming av in
|
|
let iF = ident_captured_ren ren para.cell in
|
|
let oF = ident_captured_ren ren para.flink in
|
|
let oB = ident_captured_ren ren para.blink in
|
|
let svars' = List.map ~f:(ident_captured_ren ren) para.svars_dll in
|
|
let evars' = List.map ~f:(ident_captured_ren ren) para.evars_dll in
|
|
let body' = List.map ~f:(hpred_captured_ren ren) para.body_dll in
|
|
{cell= iF; flink= oF; blink= oB; svars_dll= svars'; evars_dll= evars'; body_dll= body'}
|
|
|
|
|
|
let pi_captured_ren ren pi = List.map ~f:(atom_captured_ren ren) pi
|
|
|
|
let sigma_captured_ren ren sigma = List.map ~f:(hpred_captured_ren ren) sigma
|
|
|
|
let sub_captured_ren ren sub = Sil.sub_map (ident_captured_ren ren) (exp_captured_ren ren) sub
|
|
|
|
(** Canonicalize the names of primed variables and footprint vars. *)
|
|
let prop_rename_primed_footprint_vars tenv (p: normal t) : normal t =
|
|
let p = prop_rename_array_indices tenv p in
|
|
let bound_vars =
|
|
let filter id = Ident.is_footprint id || Ident.is_primed id in
|
|
dfs_sort tenv p |> sorted_free_vars |> Sequence.filter ~f:filter |> Ident.hashqueue_of_sequence
|
|
|> Ident.HashQueue.keys
|
|
in
|
|
let ren = compute_renaming bound_vars in
|
|
let sub' = sub_captured_ren ren p.sub in
|
|
let pi' = pi_captured_ren ren p.pi in
|
|
let sigma' = sigma_captured_ren ren p.sigma in
|
|
let pi_fp' = pi_captured_ren ren p.pi_fp in
|
|
let sigma_fp' = sigma_captured_ren ren p.sigma_fp in
|
|
let sub_for_normalize = Sil.sub_empty in
|
|
(* It is fine to use the empty substituion during normalization
|
|
because the renaming maintains that a substitution is normalized *)
|
|
let nsub' = Normalize.sub_normalize sub' in
|
|
let nsigma' = Normalize.sigma_normalize tenv sub_for_normalize sigma' in
|
|
let npi' = Normalize.pi_normalize tenv sub_for_normalize nsigma' pi' in
|
|
let p' =
|
|
Normalize.footprint_normalize tenv
|
|
(set prop_emp ~sub:nsub' ~pi:npi' ~sigma:nsigma' ~pi_fp:pi_fp' ~sigma_fp:sigma_fp')
|
|
in
|
|
unsafe_cast_to_normal p'
|
|
|
|
|
|
(** Apply subsitution to prop. *)
|
|
let prop_sub subst (prop: 'a t) : exposed t =
|
|
let pi = pi_sub subst (prop.pi @ pi_of_subst prop.sub) in
|
|
let sigma = sigma_sub subst prop.sigma in
|
|
let pi_fp = pi_sub subst prop.pi_fp in
|
|
let sigma_fp = sigma_sub subst prop.sigma_fp in
|
|
set prop_emp ~pi ~sigma ~pi_fp ~sigma_fp
|
|
|
|
|
|
(** Apply renaming substitution to a proposition. *)
|
|
let prop_ren_sub tenv (ren_sub: Sil.exp_subst) (prop: normal t) : normal t =
|
|
Normalize.normalize tenv (prop_sub (`Exp ren_sub) prop)
|
|
|
|
|
|
(** Existentially quantify the [ids] in [prop]. [ids] should not contain any primed variables. If
|
|
[ids_queue] is passed then the function uses it instead of [ids] for membership tests. *)
|
|
let exist_quantify tenv ?ids_queue ids (prop: normal t) : normal t =
|
|
assert (not (List.exists ~f:Ident.is_primed ids)) ;
|
|
(* sanity check *)
|
|
if List.is_empty ids then prop
|
|
else
|
|
let gen_fresh_id_sub id = (id, Exp.Var (Ident.create_fresh Ident.kprimed)) in
|
|
let ren_sub = Sil.exp_subst_of_list (List.map ~f:gen_fresh_id_sub ids) in
|
|
let prop' =
|
|
(* throw away x=E if x becomes x_ *)
|
|
let filter =
|
|
match ids_queue with
|
|
| Some q ->
|
|
(* this is more efficient than a linear scan of [ids] *)
|
|
fun id -> not (Ident.HashQueue.mem q id)
|
|
| None ->
|
|
fun id -> not (List.mem ~equal:Ident.equal ids id)
|
|
in
|
|
let sub = Sil.sub_filter filter prop.sub in
|
|
if Sil.equal_exp_subst sub prop.sub then prop else unsafe_cast_to_normal (set prop ~sub)
|
|
in
|
|
(*
|
|
L.out "@[<2>.... Existential Quantification ....@\n";
|
|
L.out "SUB:%a@\n" pp_sub prop'.sub;
|
|
L.out "PI:%a@\n" pp_pi prop'.pi;
|
|
L.out "PROP:%a@\n@." pp_prop prop';
|
|
*)
|
|
prop_ren_sub tenv ren_sub prop'
|
|
|
|
|
|
(** Apply the substitution [fe] to all the expressions in the prop. *)
|
|
let prop_expmap (fe: Exp.t -> Exp.t) prop =
|
|
let f (e, sil_opt) = (fe e, sil_opt) in
|
|
let pi = List.map ~f:(Sil.atom_expmap fe) prop.pi in
|
|
let sigma = List.map ~f:(Sil.hpred_expmap f) prop.sigma in
|
|
let pi_fp = List.map ~f:(Sil.atom_expmap fe) prop.pi_fp in
|
|
let sigma_fp = List.map ~f:(Sil.hpred_expmap f) prop.sigma_fp in
|
|
set prop ~pi ~sigma ~pi_fp ~sigma_fp
|
|
|
|
|
|
(** convert the normal vars to primed vars *)
|
|
let prop_normal_vars_to_primed_vars tenv p =
|
|
let ids_queue =
|
|
free_vars p |> Sequence.filter ~f:Ident.is_normal |> Ident.hashqueue_of_sequence
|
|
in
|
|
exist_quantify tenv ~ids_queue (Ident.HashQueue.keys ids_queue) p
|
|
|
|
|
|
(** convert the primed vars to normal vars. *)
|
|
let prop_primed_vars_to_normal_vars tenv (prop: normal t) : normal t =
|
|
let ids =
|
|
free_vars prop |> Sequence.filter ~f:Ident.is_primed |> Ident.hashqueue_of_sequence
|
|
|> Ident.HashQueue.keys
|
|
in
|
|
let ren_sub =
|
|
Sil.exp_subst_of_list
|
|
(List.map ~f:(fun i -> (i, Exp.Var (Ident.create_fresh Ident.knormal))) ids)
|
|
in
|
|
prop_ren_sub tenv ren_sub prop
|
|
|
|
|
|
let from_pi pi = set prop_emp ~pi
|
|
|
|
let from_sigma sigma = set prop_emp ~sigma
|
|
|
|
(** {2 Prop iterators} *)
|
|
|
|
(** Iterator state over sigma. *)
|
|
type 'a prop_iter =
|
|
{ pit_sub: Sil.exp_subst (** substitution for equalities *)
|
|
; pit_pi: pi (** pure part *)
|
|
; pit_newpi: (bool * Sil.atom) list (** newly added atoms. *)
|
|
; (* The first records !Config.footprint. *)
|
|
pit_old: sigma (** sigma already visited *)
|
|
; pit_curr: Sil.hpred (** current element *)
|
|
; pit_state: 'a (** state of current element *)
|
|
; pit_new: sigma (** sigma not yet visited *)
|
|
; pit_pi_fp: pi (** pure part of the footprint *)
|
|
; pit_sigma_fp: sigma (** sigma part of the footprint *) }
|
|
|
|
let prop_iter_create prop =
|
|
match prop.sigma with
|
|
| hpred :: sigma' ->
|
|
Some
|
|
{ pit_sub= prop.sub
|
|
; pit_pi= prop.pi
|
|
; pit_newpi= []
|
|
; pit_old= []
|
|
; pit_curr= hpred
|
|
; pit_state= ()
|
|
; pit_new= sigma'
|
|
; pit_pi_fp= prop.pi_fp
|
|
; pit_sigma_fp= prop.sigma_fp }
|
|
| _ ->
|
|
None
|
|
|
|
|
|
(** Return the prop associated to the iterator. *)
|
|
let prop_iter_to_prop tenv iter =
|
|
let sigma = List.rev_append iter.pit_old (iter.pit_curr :: iter.pit_new) in
|
|
let prop =
|
|
Normalize.normalize tenv
|
|
(set prop_emp ~sub:iter.pit_sub ~pi:iter.pit_pi ~sigma ~pi_fp:iter.pit_pi_fp
|
|
~sigma_fp:iter.pit_sigma_fp)
|
|
in
|
|
List.fold
|
|
~f:(fun p (footprint, atom) -> Normalize.prop_atom_and tenv ~footprint p atom)
|
|
~init:prop iter.pit_newpi
|
|
|
|
|
|
(** Add an atom to the pi part of prop iter. The
|
|
first parameter records whether it is done
|
|
during footprint or during re - execution. *)
|
|
let prop_iter_add_atom footprint iter atom =
|
|
{iter with pit_newpi= (footprint, atom) :: iter.pit_newpi}
|
|
|
|
|
|
(** Remove the current element of the iterator, and return the prop
|
|
associated to the resulting iterator *)
|
|
let prop_iter_remove_curr_then_to_prop tenv iter : normal t =
|
|
let sigma = List.rev_append iter.pit_old iter.pit_new in
|
|
let normalized_sigma = Normalize.sigma_normalize tenv (`Exp iter.pit_sub) sigma in
|
|
let prop =
|
|
set prop_emp ~sub:iter.pit_sub ~pi:iter.pit_pi ~sigma:normalized_sigma ~pi_fp:iter.pit_pi_fp
|
|
~sigma_fp:iter.pit_sigma_fp
|
|
in
|
|
unsafe_cast_to_normal prop
|
|
|
|
|
|
(** Return the current hpred and state. *)
|
|
let prop_iter_current tenv iter =
|
|
let curr = Normalize.hpred_normalize tenv (`Exp iter.pit_sub) iter.pit_curr in
|
|
let prop = unsafe_cast_to_normal (set prop_emp ~sigma:[curr]) in
|
|
let prop' =
|
|
List.fold
|
|
~f:(fun p (footprint, atom) -> Normalize.prop_atom_and tenv ~footprint p atom)
|
|
~init:prop iter.pit_newpi
|
|
in
|
|
match prop'.sigma with [curr'] -> (curr', iter.pit_state) | _ -> assert false
|
|
|
|
|
|
(** Update the current element of the iterator. *)
|
|
let prop_iter_update_current iter hpred = {iter with pit_curr= hpred}
|
|
|
|
(** Update the current element of the iterator by a nonempty list of elements. *)
|
|
let prop_iter_update_current_by_list iter = function
|
|
| [] ->
|
|
assert false (* the list should be nonempty *)
|
|
| hpred :: hpred_list ->
|
|
let pit_new' = hpred_list @ iter.pit_new in
|
|
{iter with pit_curr= hpred; pit_state= (); pit_new= pit_new'}
|
|
|
|
|
|
let prop_iter_next iter =
|
|
match iter.pit_new with
|
|
| [] ->
|
|
None
|
|
| hpred' :: new' ->
|
|
Some
|
|
{ iter with
|
|
pit_old= iter.pit_curr :: iter.pit_old; pit_curr= hpred'; pit_state= (); pit_new= new' }
|
|
|
|
|
|
(** Insert before the current element of the iterator. *)
|
|
let prop_iter_prev_then_insert iter hpred =
|
|
{iter with pit_new= iter.pit_curr :: iter.pit_new; pit_curr= hpred}
|
|
|
|
|
|
(** Scan sigma to find an [hpred] satisfying the filter function. *)
|
|
let rec prop_iter_find iter filter =
|
|
match filter iter.pit_curr with
|
|
| Some st ->
|
|
Some {iter with pit_state= st}
|
|
| None ->
|
|
match prop_iter_next iter with None -> None | Some iter' -> prop_iter_find iter' filter
|
|
|
|
|
|
(** Set the state of the iterator *)
|
|
let prop_iter_set_state iter state = {iter with pit_state= state}
|
|
|
|
let prop_iter_make_id_primed tenv id iter =
|
|
let pid = Ident.create_fresh Ident.kprimed in
|
|
let sub_id = Sil.subst_of_list [(id, Exp.Var pid)] in
|
|
let normalize (id, e) =
|
|
let eq' : Sil.atom = Aeq (Sil.exp_sub sub_id (Var id), Sil.exp_sub sub_id e) in
|
|
Normalize.atom_normalize tenv Sil.sub_empty eq'
|
|
in
|
|
let rec split pairs_unpid pairs_pid = function
|
|
| [] ->
|
|
(List.rev pairs_unpid, List.rev pairs_pid)
|
|
| (eq :: eqs_cur: pi) ->
|
|
match eq with
|
|
| Aeq (Var id1, e1) when Exp.ident_mem e1 id1 ->
|
|
L.internal_error "@[<2>#### ERROR: an assumption of the analyzer broken ####@\n" ;
|
|
L.internal_error "Broken Assumption: id notin e for all (id,e) in sub@\n" ;
|
|
L.internal_error "(id,e) : (%a,%a)@\n" Ident.pp id1 Exp.pp e1 ;
|
|
L.internal_error "PROP : %a@\n@." (pp_prop Pp.text) (prop_iter_to_prop tenv iter) ;
|
|
assert false
|
|
| Aeq (Var id1, e1) when Ident.equal pid id1 ->
|
|
split pairs_unpid ((id1, e1) :: pairs_pid) eqs_cur
|
|
| Aeq (Var id1, e1) ->
|
|
split ((id1, e1) :: pairs_unpid) pairs_pid eqs_cur
|
|
| _ ->
|
|
assert false
|
|
in
|
|
let rec get_eqs acc = function
|
|
| [] | [_] ->
|
|
List.rev acc
|
|
| (_, e1) :: ((_, e2) :: _ as pairs) ->
|
|
get_eqs (Sil.Aeq (e1, e2) :: acc) pairs
|
|
in
|
|
let sub_new, sub_use, eqs_add =
|
|
let eqs = List.map ~f:normalize (Sil.sub_to_list iter.pit_sub) in
|
|
let pairs_unpid, pairs_pid = split [] [] eqs in
|
|
match pairs_pid with
|
|
| [] ->
|
|
let sub_unpid = Sil.exp_subst_of_list pairs_unpid in
|
|
let pairs = (id, Exp.Var pid) :: pairs_unpid in
|
|
(sub_unpid, Sil.subst_of_list pairs, [])
|
|
| (id1, e1) :: _ ->
|
|
let sub_id1 = Sil.subst_of_list [(id1, e1)] in
|
|
let pairs_unpid' =
|
|
List.map ~f:(fun (id', e') -> (id', Sil.exp_sub sub_id1 e')) pairs_unpid
|
|
in
|
|
let sub_unpid = Sil.exp_subst_of_list pairs_unpid' in
|
|
let pairs = (id, e1) :: pairs_unpid' in
|
|
(sub_unpid, Sil.subst_of_list pairs, get_eqs [] pairs_pid)
|
|
in
|
|
let nsub_new = Normalize.sub_normalize sub_new in
|
|
{ iter with
|
|
pit_sub= nsub_new
|
|
; pit_pi= pi_sub sub_use (iter.pit_pi @ eqs_add)
|
|
; pit_old= sigma_sub sub_use iter.pit_old
|
|
; pit_curr= Sil.hpred_sub sub_use iter.pit_curr
|
|
; pit_new= sigma_sub sub_use iter.pit_new }
|
|
|
|
|
|
(** Find fav of the footprint part of the iterator *)
|
|
let prop_iter_footprint_gen_free_vars {pit_sigma_fp; pit_pi_fp} =
|
|
Sequence.Generator.(sigma_gen_free_vars pit_sigma_fp >>= fun () -> pi_gen_free_vars pit_pi_fp)
|
|
|
|
|
|
let prop_iter_footprint_free_vars iter =
|
|
Sequence.Generator.run (prop_iter_footprint_gen_free_vars iter)
|
|
|
|
|
|
(** Find fav of the iterator *)
|
|
let prop_iter_gen_free_vars ({pit_sub; pit_pi; pit_newpi; pit_old; pit_new; pit_curr} as iter) =
|
|
let open Sequence.Generator in
|
|
Sil.exp_subst_gen_free_vars pit_sub
|
|
>>= fun () ->
|
|
pi_gen_free_vars pit_pi
|
|
>>= fun () ->
|
|
pi_gen_free_vars (List.map ~f:snd pit_newpi)
|
|
>>= fun () ->
|
|
sigma_gen_free_vars pit_old
|
|
>>= fun () ->
|
|
sigma_gen_free_vars pit_new
|
|
>>= fun () ->
|
|
Sil.hpred_gen_free_vars pit_curr >>= fun () -> prop_iter_footprint_gen_free_vars iter
|
|
|
|
|
|
let prop_iter_free_vars iter = Sequence.Generator.run (prop_iter_gen_free_vars iter)
|
|
|
|
(** Extract the sigma part of the footprint *)
|
|
let prop_iter_get_footprint_sigma iter = iter.pit_sigma_fp
|
|
|
|
(** Replace the sigma part of the footprint *)
|
|
let prop_iter_replace_footprint_sigma iter sigma = {iter with pit_sigma_fp= sigma}
|
|
|
|
let rec strexp_gc_fields (se: Sil.strexp) =
|
|
match se with
|
|
| Eexp _ ->
|
|
Some se
|
|
| Estruct (fsel, inst) ->
|
|
let fselo = List.map ~f:(fun (f, se) -> (f, strexp_gc_fields se)) fsel in
|
|
let fsel' =
|
|
let fselo' = List.filter ~f:(function _, Some _ -> true | _ -> false) fselo in
|
|
List.map ~f:(function f, seo -> (f, unSome seo)) fselo'
|
|
in
|
|
if [%compare.equal : (Typ.Fieldname.t * Sil.strexp) list] fsel fsel' then Some se
|
|
else Some (Sil.Estruct (fsel', inst))
|
|
| Earray _ ->
|
|
Some se
|
|
|
|
|
|
let hpred_gc_fields (hpred: Sil.hpred) : Sil.hpred =
|
|
match hpred with
|
|
| Hpointsto (e, se, te) -> (
|
|
match strexp_gc_fields se with
|
|
| None ->
|
|
hpred
|
|
| Some se' ->
|
|
if Sil.equal_strexp se se' then hpred else Hpointsto (e, se', te) )
|
|
| Hlseg _ | Hdllseg _ ->
|
|
hpred
|
|
|
|
|
|
let rec prop_iter_map f iter =
|
|
let hpred_curr = f iter in
|
|
let iter' = {iter with pit_curr= hpred_curr} in
|
|
match prop_iter_next iter' with None -> iter' | Some iter'' -> prop_iter_map f iter''
|
|
|
|
|
|
(** Collect garbage fields. *)
|
|
let prop_iter_gc_fields iter =
|
|
let f iter' = hpred_gc_fields iter'.pit_curr in
|
|
prop_iter_map f iter
|
|
|
|
|
|
let prop_case_split tenv prop =
|
|
let pi_sigma_list = Sil.sigma_to_sigma_ne prop.sigma in
|
|
let f props_acc (pi, sigma) =
|
|
let sigma' = sigma_normalize_prop tenv prop sigma in
|
|
let prop' = unsafe_cast_to_normal (set prop ~sigma:sigma') in
|
|
List.fold ~f:(Normalize.prop_atom_and tenv) ~init:prop' pi :: props_acc
|
|
in
|
|
List.fold ~f ~init:[] pi_sigma_list
|
|
|
|
|
|
let prop_expand prop =
|
|
(*
|
|
let _ = check_prop_normalized prop in
|
|
*)
|
|
prop_case_split prop
|
|
|
|
|
|
(*** START of module Metrics ***)
|
|
module Metrics : sig
|
|
val prop_size : 'a t -> int
|
|
end = struct
|
|
let ptsto_weight = 1
|
|
|
|
and lseg_weight = 3
|
|
|
|
let rec hpara_size hpara = sigma_size hpara.Sil.body
|
|
|
|
and hpara_dll_size hpara_dll = sigma_size hpara_dll.Sil.body_dll
|
|
|
|
and hpred_size (hpred: Sil.hpred) =
|
|
match hpred with
|
|
| Hpointsto _ ->
|
|
ptsto_weight
|
|
| Hlseg (_, hpara, _, _, _) ->
|
|
lseg_weight * hpara_size hpara
|
|
| Hdllseg (_, hpara_dll, _, _, _, _, _) ->
|
|
lseg_weight * hpara_dll_size hpara_dll
|
|
|
|
|
|
and sigma_size sigma =
|
|
let size = ref 0 in
|
|
List.iter ~f:(fun hpred -> size := hpred_size hpred + !size) sigma ;
|
|
!size
|
|
|
|
|
|
(** Compute a size value for the prop, which indicates its
|
|
complexity *)
|
|
let prop_size p =
|
|
let size_current = sigma_size p.sigma in
|
|
let size_footprint = sigma_size p.sigma_fp in
|
|
max size_current size_footprint
|
|
end
|
|
|
|
(*** END of module Metrics ***)
|
|
|
|
module CategorizePreconditions = struct
|
|
type pre_category =
|
|
(* no preconditions *)
|
|
| NoPres
|
|
(* the preconditions impose no restrictions *)
|
|
| Empty
|
|
(* the preconditions only demand that some pointers are allocated *)
|
|
| OnlyAllocation
|
|
(* the preconditions impose constraints on the values of variables and/or memory *)
|
|
| DataConstraints
|
|
|
|
(** categorize a list of preconditions *)
|
|
let categorize preconditions =
|
|
let lhs_is_lvar : Exp.t -> bool = function Lvar _ -> true | _ -> false in
|
|
let lhs_is_var_lvar : Exp.t -> bool = function Var _ -> true | Lvar _ -> true | _ -> false in
|
|
let rhs_is_var : Sil.strexp -> bool = function Eexp (Var _, _) -> true | _ -> false in
|
|
let rec rhs_only_vars : Sil.strexp -> bool = function
|
|
| Eexp (Var _, _) ->
|
|
true
|
|
| Estruct (fsel, _) ->
|
|
List.for_all ~f:(fun (_, se) -> rhs_only_vars se) fsel
|
|
| Earray _ ->
|
|
true
|
|
| _ ->
|
|
false
|
|
in
|
|
let hpred_is_var : Sil.hpred -> bool = function
|
|
(* stack variable with no constraints *)
|
|
| Hpointsto (e, se, _) ->
|
|
lhs_is_lvar e && rhs_is_var se
|
|
| _ ->
|
|
false
|
|
in
|
|
let hpred_only_allocation : Sil.hpred -> bool = function
|
|
(* only constraint is allocation *)
|
|
| Hpointsto (e, se, _) ->
|
|
lhs_is_var_lvar e && rhs_only_vars se
|
|
| _ ->
|
|
false
|
|
in
|
|
let check_pre hpred_filter pre =
|
|
let check_pi pi = List.is_empty pi in
|
|
let check_sigma sigma = List.for_all ~f:hpred_filter sigma in
|
|
check_pi pre.pi && check_sigma pre.sigma
|
|
in
|
|
let pres_no_constraints = List.filter ~f:(check_pre hpred_is_var) preconditions in
|
|
let pres_only_allocation = List.filter ~f:(check_pre hpred_only_allocation) preconditions in
|
|
match (preconditions, pres_no_constraints, pres_only_allocation) with
|
|
| [], _, _ ->
|
|
NoPres
|
|
| _ :: _, _ :: _, _ ->
|
|
Empty
|
|
| _ :: _, [], _ :: _ ->
|
|
OnlyAllocation
|
|
| _ :: _, [], [] ->
|
|
DataConstraints
|
|
end
|
|
|
|
(* Export for interface *)
|
|
let exp_normalize_noabs = Normalize.exp_normalize_noabs
|
|
|
|
let mk_inequality = Normalize.mk_inequality
|
|
|
|
let mk_ptsto_exp = Normalize.mk_ptsto_exp
|
|
|
|
let mk_ptsto = Normalize.mk_ptsto
|
|
|
|
let normalize = Normalize.normalize
|
|
|
|
let prop_atom_and = Normalize.prop_atom_and
|