You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

277 lines
5.7 KiB

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
// Testing the non-blocking queue described in
// "Simple, Fast, and Practical Non-Blocking and Blocking
// Concurrent Queue Algorithms"
// (https://www.cs.rochester.edu/~scott/papers/1996_PODC_queues.pdf)
#include <assert.h>
#include <stdatomic.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include "ref_queue.h"
#include "scheduler.h"
#define NUM_THREADS 2
#define CONTEXT_SWITCHES_BOUND 1
#define SCHEDULE_POINTS 13
#include "test_mains.h"
typedef int data_type;
#define EMPTY -1
typedef struct node_t {
data_type d;
struct node_t* n;
} node;
typedef struct queue_t {
node* head;
node* tail;
} queue;
typedef enum { ENQUEUE, DEQUEUE } frame_type;
typedef struct {
queue* q;
ref_queue* ref;
data_type v;
node* new_node;
node* tail;
node* next;
} enqueue_frame;
typedef struct {
queue* q;
ref_queue* ref;
data_type result;
node* head;
node* tail;
node* next;
} dequeue_frame;
void init_queue(queue* q) {
node* dummy = malloc(sizeof(node));
dummy->n = NULL;
q->head = dummy;
q->tail = dummy;
}
dequeue_frame* make_dequeue_frame(queue* q, ref_queue* ref) {
dequeue_frame* frame = malloc(sizeof(dequeue_frame));
frame->q = q;
frame->ref = ref;
return frame;
}
enqueue_frame* make_enqueue_frame(queue* q, ref_queue* ref, data_type v) {
enqueue_frame* frame = malloc(sizeof(enqueue_frame));
frame->q = q;
frame->ref = ref;
frame->v = v;
return frame;
}
int step_enqueue(enqueue_frame* frame, int pc) {
queue* q = frame->q;
bool cas_result;
switch (pc) {
case 0:
case 1:
frame->new_node = malloc(sizeof(node));
frame->new_node->d = frame->v;
frame->new_node->n = NULL;
pc = 4;
break;
case 4:
case 5:
frame->tail = q->tail;
pc = 6;
break;
case 6:
frame->next = frame->tail->n;
pc = 7;
break;
case 7:
if (frame->tail == q->tail) {
pc = 8;
} else {
pc = 4;
}
break;
case 8:
if (frame->next == NULL) {
pc = 9;
} else {
pc = 13;
}
break;
case 9:
if (frame->tail->n == frame->next) { // Fake CAS
frame->tail->n = frame->new_node;
cas_result = true;
} else {
cas_result = false;
}
if (cas_result) {
bool ref_result = ref_enqueue(frame->ref, frame->v);
assert(ref_result);
pc = 17;
} else {
pc = 4;
}
break;
case 13:
if (q->tail == frame->tail) { // Fake CAS
q->tail = frame->next;
}
pc = 4;
break;
case 17:
if (q->tail == frame->tail) { // Fake CAS
q->tail = frame->new_node;
}
pc = PC_DONE;
break;
default:
assert(false);
}
return pc;
}
int step_dequeue(dequeue_frame* frame, int pc) {
queue* q = frame->q;
bool cas_result;
switch (pc) {
case 0:
case 1:
case 2:
frame->head = q->head;
pc = 3;
break;
case 3:
frame->tail = q->tail;
pc = 4;
break;
case 4:
frame->next = frame->head->n;
pc = 5;
break;
case 5:
if (frame->head == q->head) {
pc = 6;
} else {
pc = 2;
}
break;
case 6:
if (frame->head == frame->tail) {
pc = 7;
} else {
pc = 13;
}
break;
case 7:
if (frame->next == NULL) {
bool dequeue_result = false;
data_type ref_result = ref_dequeue(frame->ref);
if (ref_result != EMPTY) {
printf("dequeue_result: %d, ref_result: %d\n", dequeue_result,
ref_result);
}
assert(ref_result == EMPTY);
pc = PC_DONE;
} else {
pc = 10;
}
break;
case 10:
if (q->tail == frame->tail) { // Fake CAS.
q->tail = frame->next;
}
pc = 2;
break;
case 13:
if (q->head == frame->head) {
q->head = frame->next;
cas_result = true;
} else {
cas_result = false;
}
if (cas_result) {
data_type result = frame->next->d;
data_type ref_result = ref_dequeue(frame->ref);
assert(result == ref_result);
pc = PC_DONE;
} else {
pc = 2;
}
break;
default:
assert(false);
}
return pc;
}
// Runs the operation associated with the given frame until reaching the next
// block. That is, the next statement accessing shared memory.
int step(base_frame* frame) {
assert(frame != NULL);
if (frame->derived_frame_type == DEQUEUE) {
dequeue_frame* derived_frame = (dequeue_frame*)frame->derived_frame;
assert(derived_frame != NULL);
return step_dequeue(derived_frame, frame->pc);
} else if (frame->derived_frame_type == ENQUEUE) {
enqueue_frame* derived_frame = (enqueue_frame*)frame->derived_frame;
assert(derived_frame != NULL);
return step_enqueue(derived_frame, frame->pc);
} else {
assert(false);
}
}
int test_with_schedule(uint8_t* schedule, size_t len) {
queue test_queue;
init_queue(&test_queue);
ref_queue* ref = new_ref_queue(len);
base_frame frames[NUM_THREADS];
for (int frame_idx = 0; frame_idx < NUM_THREADS; ++frame_idx) {
int derived_frame_type = (frame_idx % 2 == 0) ? ENQUEUE : DEQUEUE;
void* derived_frame = NULL;
if (derived_frame_type == DEQUEUE) {
// printf("idx: %d is dequeue\n", frame_idx);
derived_frame = make_dequeue_frame(&test_queue, ref);
} else {
// printf("idx: %d is enqueue\n", frame_idx);
int data_to_push = frame_idx + 1;
derived_frame = make_enqueue_frame(&test_queue, ref, data_to_push);
}
init_frame(&frames[frame_idx], derived_frame, derived_frame_type);
}
execute_schedule(schedule, len, frames, NUM_THREADS, CONTEXT_SWITCHES_BOUND);
return 0;
}