You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

297 lines
8.6 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(** Equality over uninterpreted functions and linear rational arithmetic *)
type 'a exp_map = 'a Map.M(Exp).t [@@deriving compare, equal, sexp]
let empty_map = Map.empty (module Exp)
type subst = Exp.t exp_map [@@deriving compare, equal, sexp]
(** see also [invariant] *)
type t =
{ sat: bool (** [false] only if constraints are inconsistent *)
; rep: subst
(** functional set of oriented equations: map [a] to [a'],
indicating that [a = a'] holds, and that [a'] is the
'rep(resentative)' of [a] *) }
[@@deriving compare, equal, sexp]
let classes r =
Map.fold r.rep ~init:empty_map ~f:(fun ~key ~data cls ->
if Exp.equal key data then cls
else Map.add_multi cls ~key:data ~data:key )
(** Pretty-printing *)
let pp fs {sat; rep} =
let pp_alist pp_k pp_v fs alist =
let pp_assoc fs (k, v) =
Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_k k pp_v (k, v)
in
Format.fprintf fs "[@[<hv>%a@]]" (List.pp ";@ " pp_assoc) alist
in
let pp_exp_v fs (k, v) = if not (Exp.equal k v) then Exp.pp fs v in
Format.fprintf fs "@[{@[<hv>sat= %b;@ rep= %a@]}@]" sat
(pp_alist Exp.pp pp_exp_v)
(Map.to_alist rep)
let pp_classes ?is_x fs r =
List.pp "@ @<2>∧ "
(fun fs (key, data) ->
Format.fprintf fs "@[%a@ = %a@]" (Exp.pp_full ?is_x) key
(List.pp "@ = " (Exp.pp_full ?is_x))
(List.sort ~compare:Exp.compare data) )
fs
(Map.to_alist (classes r))
let pp_diff fs (r, s) =
let pp_sdiff_map pp_elt_diff equal nam fs x y =
let sd = Sequence.to_list (Map.symmetric_diff ~data_equal:equal x y) in
if not (List.is_empty sd) then
Format.fprintf fs "%s= [@[<hv>%a@]];@ " nam
(List.pp ";@ " pp_elt_diff)
sd
in
let pp_sdiff_elt pp_key pp_val pp_sdiff_val fs = function
| k, `Left v ->
Format.fprintf fs "-- [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v
| k, `Right v ->
Format.fprintf fs "++ [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v
| k, `Unequal vv ->
Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_key k pp_sdiff_val vv
in
let pp_sdiff_exp_map =
let pp_sdiff_exp fs (u, v) =
Format.fprintf fs "-- %a ++ %a" Exp.pp u Exp.pp v
in
pp_sdiff_map (pp_sdiff_elt Exp.pp Exp.pp pp_sdiff_exp) Exp.equal
in
let pp_sat fs =
if not (Bool.equal r.sat s.sat) then
Format.fprintf fs "sat= @[-- %b@ ++ %b@];@ " r.sat s.sat
in
let pp_rep fs = pp_sdiff_exp_map "rep" fs r.rep s.rep in
Format.fprintf fs "@[{@[<hv>%t%t@]}@]" pp_sat pp_rep
(** Invariant *)
(** test membership in carrier *)
let in_car r e = Map.mem r.rep e
let rec iter_max_solvables e ~f =
match Exp.classify e with
| `Interpreted -> Exp.iter ~f:(iter_max_solvables ~f) e
| _ -> f e
let invariant r =
Invariant.invariant [%here] r [%sexp_of: t]
@@ fun () ->
Map.iteri r.rep ~f:(fun ~key:a ~data:_ ->
(* no interpreted exps in carrier *)
assert (Poly.(Exp.classify a <> `Interpreted)) ;
(* carrier is closed under sub-expressions *)
iter_max_solvables a ~f:(fun b ->
assert (
in_car r b
|| Trace.fail "@[subexp %a of %a not in carrier of@ %a@]" Exp.pp
b Exp.pp a pp r ) ) )
(** Core operations *)
let true_ = {sat= true; rep= empty_map} |> check invariant
(** apply a subst to an exp *)
let apply s a = try Map.find_exn s a with Caml.Not_found -> a
(** apply a subst to maximal non-interpreted subexps *)
let rec norm s a =
match Exp.classify a with
| `Interpreted -> Exp.map ~f:(norm s) a
| `Simplified -> apply s (Exp.map ~f:(norm s) a)
| `Atomic | `Uninterpreted -> apply s a
(** exps are congruent if equal after normalizing subexps *)
let congruent r a b =
Exp.equal (Exp.map ~f:(norm r.rep) a) (Exp.map ~f:(norm r.rep) b)
(** [lookup r a] is [b'] if [a ~ b = b'] for some equation [b = b'] in rep *)
let lookup r a =
With_return.with_return
@@ fun {return} ->
(* congruent specialized to assume [a] canonized and [b] non-interpreted *)
let semi_congruent r a b = Exp.equal a (Exp.map ~f:(apply r.rep) b) in
Map.iteri r.rep ~f:(fun ~key ~data ->
if semi_congruent r a key then return data ) ;
a
(** rewrite an exp into canonical form using rep and, for uninterpreted
exps, congruence composed with rep *)
let rec canon r a =
match Exp.classify a with
| `Interpreted -> Exp.map ~f:(canon r) a
| `Simplified | `Uninterpreted -> lookup r (Exp.map ~f:(canon r) a)
| `Atomic -> apply r.rep a
(** add an exp to the carrier *)
let rec extend a r =
match Exp.classify a with
| `Interpreted | `Simplified -> Exp.fold ~f:extend a ~init:r
| `Uninterpreted ->
Map.find_or_add r.rep a
~if_found:(fun _ -> r)
~default:a
~if_added:(fun rep -> Exp.fold ~f:extend a ~init:{r with rep})
| `Atomic -> r
let extend a r = extend a r |> check invariant
let compose r s =
let rep = Map.map ~f:(norm s) r.rep in
let rep =
Map.merge_skewed rep s ~combine:(fun ~key v1 v2 ->
if Exp.equal v1 v2 then v1
else fail "domains intersect: %a" Exp.pp key () )
in
{r with rep}
let merge a b r =
[%Trace.call fun {pf} -> pf "%a@ %a@ %a" Exp.pp a Exp.pp b pp r]
;
( match Exp.solve a b with
| Some s -> compose r s
| None -> {r with sat= false} )
|>
[%Trace.retn fun {pf} r' ->
pf "%a" pp_diff (r, r') ;
invariant r']
(** find an unproved equation between congruent exps *)
let find_missing r =
With_return.with_return
@@ fun {return} ->
Map.iteri r.rep ~f:(fun ~key:a ~data:a' ->
Map.iteri r.rep ~f:(fun ~key:b ~data:b' ->
if
Exp.compare a b < 0
&& (not (Exp.equal a' b'))
&& congruent r a b
then return (Some (a', b')) ) ) ;
None
let rec close r =
if not r.sat then r
else
match find_missing r with
| Some (a', b') -> close (merge a' b' r)
| None -> r
let close r =
[%Trace.call fun {pf} -> pf "%a" pp r]
;
close r
|>
[%Trace.retn fun {pf} r' ->
pf "%a" pp_diff (r, r') ;
invariant r']
let and_eq a b r =
if not r.sat then r
else
let a' = canon r a in
let b' = canon r b in
let r = extend a' r in
let r = extend b' r in
if Exp.equal a' b' then r else close (merge a' b' r)
(** Exposed interface *)
let is_true {sat; rep} =
sat && Map.for_alli rep ~f:(fun ~key:a ~data:a' -> Exp.equal a a')
let is_false {sat} = not sat
let entails_eq r d e = Exp.equal (canon r d) (canon r e)
let entails r s =
Map.for_alli s.rep ~f:(fun ~key:e ~data:e' -> entails_eq r e e')
let normalize = canon
let class_of r e =
let e' = normalize r e in
e' :: Map.find_multi (classes r) e'
let difference r a b =
[%Trace.call fun {pf} -> pf "%a@ %a@ %a" Exp.pp a Exp.pp b pp r]
;
let a = canon r a in
let b = canon r b in
( if Exp.equal a b then Some Z.zero
else
match (Exp.typ a, Exp.typ b) with
| Some typ, _ | _, Some typ -> (
match normalize r (Exp.sub typ a b) with
| Integer {data} -> Some data
| _ -> None )
| _ -> None )
|>
[%Trace.retn fun {pf} ->
function Some d -> pf "%a" Z.pp_print d | None -> pf ""]
let and_ r s =
if not r.sat then r
else if not s.sat then s
else
let s, r =
if Map.length s.rep <= Map.length r.rep then (s, r) else (r, s)
in
Map.fold s.rep ~init:r ~f:(fun ~key:e ~data:e' r -> and_eq e e' r)
let or_ r s =
if not s.sat then r
else if not r.sat then s
else
let merge_mems rs r s =
Map.fold s.rep ~init:rs ~f:(fun ~key:e ~data:e' rs ->
if entails_eq r e e' then and_eq e e' rs else rs )
in
let rs = true_ in
let rs = merge_mems rs r s in
let rs = merge_mems rs s r in
rs
(* assumes that f is injective and for any set of exps E, f[E] is disjoint
from E *)
let map_exps ({sat= _; rep} as r) ~f =
[%Trace.call fun {pf} -> pf "%a" pp r]
;
let map m =
Map.fold m ~init:m ~f:(fun ~key ~data m ->
let key' = f key in
let data' = f data in
if Exp.equal key' key then
if Exp.equal data' data then m else Map.set m ~key ~data:data'
else Map.remove m key |> Map.add_exn ~key:key' ~data:data' )
in
let rep' = map rep in
(if rep' == rep then r else {r with rep= rep'})
|>
[%Trace.retn fun {pf} r' ->
pf "%a" pp_diff (r, r') ;
invariant r']
let rename r sub = map_exps r ~f:(fun e -> Exp.rename e sub)
let fold_exps r ~init ~f =
Map.fold r.rep ~f:(fun ~key ~data z -> f (f z data) key) ~init
let fold_vars r ~init ~f =
fold_exps r ~init ~f:(fun init -> Exp.fold_vars ~f ~init)
let fv e = fold_vars e ~f:Set.add ~init:Var.Set.empty