You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
297 lines
8.6 KiB
297 lines
8.6 KiB
(*
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
*
|
|
* This source code is licensed under the MIT license found in the
|
|
* LICENSE file in the root directory of this source tree.
|
|
*)
|
|
|
|
(** Equality over uninterpreted functions and linear rational arithmetic *)
|
|
|
|
type 'a exp_map = 'a Map.M(Exp).t [@@deriving compare, equal, sexp]
|
|
|
|
let empty_map = Map.empty (module Exp)
|
|
|
|
type subst = Exp.t exp_map [@@deriving compare, equal, sexp]
|
|
|
|
(** see also [invariant] *)
|
|
type t =
|
|
{ sat: bool (** [false] only if constraints are inconsistent *)
|
|
; rep: subst
|
|
(** functional set of oriented equations: map [a] to [a'],
|
|
indicating that [a = a'] holds, and that [a'] is the
|
|
'rep(resentative)' of [a] *) }
|
|
[@@deriving compare, equal, sexp]
|
|
|
|
let classes r =
|
|
Map.fold r.rep ~init:empty_map ~f:(fun ~key ~data cls ->
|
|
if Exp.equal key data then cls
|
|
else Map.add_multi cls ~key:data ~data:key )
|
|
|
|
(** Pretty-printing *)
|
|
|
|
let pp fs {sat; rep} =
|
|
let pp_alist pp_k pp_v fs alist =
|
|
let pp_assoc fs (k, v) =
|
|
Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_k k pp_v (k, v)
|
|
in
|
|
Format.fprintf fs "[@[<hv>%a@]]" (List.pp ";@ " pp_assoc) alist
|
|
in
|
|
let pp_exp_v fs (k, v) = if not (Exp.equal k v) then Exp.pp fs v in
|
|
Format.fprintf fs "@[{@[<hv>sat= %b;@ rep= %a@]}@]" sat
|
|
(pp_alist Exp.pp pp_exp_v)
|
|
(Map.to_alist rep)
|
|
|
|
let pp_classes ?is_x fs r =
|
|
List.pp "@ @<2>∧ "
|
|
(fun fs (key, data) ->
|
|
Format.fprintf fs "@[%a@ = %a@]" (Exp.pp_full ?is_x) key
|
|
(List.pp "@ = " (Exp.pp_full ?is_x))
|
|
(List.sort ~compare:Exp.compare data) )
|
|
fs
|
|
(Map.to_alist (classes r))
|
|
|
|
let pp_diff fs (r, s) =
|
|
let pp_sdiff_map pp_elt_diff equal nam fs x y =
|
|
let sd = Sequence.to_list (Map.symmetric_diff ~data_equal:equal x y) in
|
|
if not (List.is_empty sd) then
|
|
Format.fprintf fs "%s= [@[<hv>%a@]];@ " nam
|
|
(List.pp ";@ " pp_elt_diff)
|
|
sd
|
|
in
|
|
let pp_sdiff_elt pp_key pp_val pp_sdiff_val fs = function
|
|
| k, `Left v ->
|
|
Format.fprintf fs "-- [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v
|
|
| k, `Right v ->
|
|
Format.fprintf fs "++ [@[%a@ @<2>↦ %a@]]" pp_key k pp_val v
|
|
| k, `Unequal vv ->
|
|
Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_key k pp_sdiff_val vv
|
|
in
|
|
let pp_sdiff_exp_map =
|
|
let pp_sdiff_exp fs (u, v) =
|
|
Format.fprintf fs "-- %a ++ %a" Exp.pp u Exp.pp v
|
|
in
|
|
pp_sdiff_map (pp_sdiff_elt Exp.pp Exp.pp pp_sdiff_exp) Exp.equal
|
|
in
|
|
let pp_sat fs =
|
|
if not (Bool.equal r.sat s.sat) then
|
|
Format.fprintf fs "sat= @[-- %b@ ++ %b@];@ " r.sat s.sat
|
|
in
|
|
let pp_rep fs = pp_sdiff_exp_map "rep" fs r.rep s.rep in
|
|
Format.fprintf fs "@[{@[<hv>%t%t@]}@]" pp_sat pp_rep
|
|
|
|
(** Invariant *)
|
|
|
|
(** test membership in carrier *)
|
|
let in_car r e = Map.mem r.rep e
|
|
|
|
let rec iter_max_solvables e ~f =
|
|
match Exp.classify e with
|
|
| `Interpreted -> Exp.iter ~f:(iter_max_solvables ~f) e
|
|
| _ -> f e
|
|
|
|
let invariant r =
|
|
Invariant.invariant [%here] r [%sexp_of: t]
|
|
@@ fun () ->
|
|
Map.iteri r.rep ~f:(fun ~key:a ~data:_ ->
|
|
(* no interpreted exps in carrier *)
|
|
assert (Poly.(Exp.classify a <> `Interpreted)) ;
|
|
(* carrier is closed under sub-expressions *)
|
|
iter_max_solvables a ~f:(fun b ->
|
|
assert (
|
|
in_car r b
|
|
|| Trace.fail "@[subexp %a of %a not in carrier of@ %a@]" Exp.pp
|
|
b Exp.pp a pp r ) ) )
|
|
|
|
(** Core operations *)
|
|
|
|
let true_ = {sat= true; rep= empty_map} |> check invariant
|
|
|
|
(** apply a subst to an exp *)
|
|
let apply s a = try Map.find_exn s a with Caml.Not_found -> a
|
|
|
|
(** apply a subst to maximal non-interpreted subexps *)
|
|
let rec norm s a =
|
|
match Exp.classify a with
|
|
| `Interpreted -> Exp.map ~f:(norm s) a
|
|
| `Simplified -> apply s (Exp.map ~f:(norm s) a)
|
|
| `Atomic | `Uninterpreted -> apply s a
|
|
|
|
(** exps are congruent if equal after normalizing subexps *)
|
|
let congruent r a b =
|
|
Exp.equal (Exp.map ~f:(norm r.rep) a) (Exp.map ~f:(norm r.rep) b)
|
|
|
|
(** [lookup r a] is [b'] if [a ~ b = b'] for some equation [b = b'] in rep *)
|
|
let lookup r a =
|
|
With_return.with_return
|
|
@@ fun {return} ->
|
|
(* congruent specialized to assume [a] canonized and [b] non-interpreted *)
|
|
let semi_congruent r a b = Exp.equal a (Exp.map ~f:(apply r.rep) b) in
|
|
Map.iteri r.rep ~f:(fun ~key ~data ->
|
|
if semi_congruent r a key then return data ) ;
|
|
a
|
|
|
|
(** rewrite an exp into canonical form using rep and, for uninterpreted
|
|
exps, congruence composed with rep *)
|
|
let rec canon r a =
|
|
match Exp.classify a with
|
|
| `Interpreted -> Exp.map ~f:(canon r) a
|
|
| `Simplified | `Uninterpreted -> lookup r (Exp.map ~f:(canon r) a)
|
|
| `Atomic -> apply r.rep a
|
|
|
|
(** add an exp to the carrier *)
|
|
let rec extend a r =
|
|
match Exp.classify a with
|
|
| `Interpreted | `Simplified -> Exp.fold ~f:extend a ~init:r
|
|
| `Uninterpreted ->
|
|
Map.find_or_add r.rep a
|
|
~if_found:(fun _ -> r)
|
|
~default:a
|
|
~if_added:(fun rep -> Exp.fold ~f:extend a ~init:{r with rep})
|
|
| `Atomic -> r
|
|
|
|
let extend a r = extend a r |> check invariant
|
|
|
|
let compose r s =
|
|
let rep = Map.map ~f:(norm s) r.rep in
|
|
let rep =
|
|
Map.merge_skewed rep s ~combine:(fun ~key v1 v2 ->
|
|
if Exp.equal v1 v2 then v1
|
|
else fail "domains intersect: %a" Exp.pp key () )
|
|
in
|
|
{r with rep}
|
|
|
|
let merge a b r =
|
|
[%Trace.call fun {pf} -> pf "%a@ %a@ %a" Exp.pp a Exp.pp b pp r]
|
|
;
|
|
( match Exp.solve a b with
|
|
| Some s -> compose r s
|
|
| None -> {r with sat= false} )
|
|
|>
|
|
[%Trace.retn fun {pf} r' ->
|
|
pf "%a" pp_diff (r, r') ;
|
|
invariant r']
|
|
|
|
(** find an unproved equation between congruent exps *)
|
|
let find_missing r =
|
|
With_return.with_return
|
|
@@ fun {return} ->
|
|
Map.iteri r.rep ~f:(fun ~key:a ~data:a' ->
|
|
Map.iteri r.rep ~f:(fun ~key:b ~data:b' ->
|
|
if
|
|
Exp.compare a b < 0
|
|
&& (not (Exp.equal a' b'))
|
|
&& congruent r a b
|
|
then return (Some (a', b')) ) ) ;
|
|
None
|
|
|
|
let rec close r =
|
|
if not r.sat then r
|
|
else
|
|
match find_missing r with
|
|
| Some (a', b') -> close (merge a' b' r)
|
|
| None -> r
|
|
|
|
let close r =
|
|
[%Trace.call fun {pf} -> pf "%a" pp r]
|
|
;
|
|
close r
|
|
|>
|
|
[%Trace.retn fun {pf} r' ->
|
|
pf "%a" pp_diff (r, r') ;
|
|
invariant r']
|
|
|
|
let and_eq a b r =
|
|
if not r.sat then r
|
|
else
|
|
let a' = canon r a in
|
|
let b' = canon r b in
|
|
let r = extend a' r in
|
|
let r = extend b' r in
|
|
if Exp.equal a' b' then r else close (merge a' b' r)
|
|
|
|
(** Exposed interface *)
|
|
|
|
let is_true {sat; rep} =
|
|
sat && Map.for_alli rep ~f:(fun ~key:a ~data:a' -> Exp.equal a a')
|
|
|
|
let is_false {sat} = not sat
|
|
let entails_eq r d e = Exp.equal (canon r d) (canon r e)
|
|
|
|
let entails r s =
|
|
Map.for_alli s.rep ~f:(fun ~key:e ~data:e' -> entails_eq r e e')
|
|
|
|
let normalize = canon
|
|
|
|
let class_of r e =
|
|
let e' = normalize r e in
|
|
e' :: Map.find_multi (classes r) e'
|
|
|
|
let difference r a b =
|
|
[%Trace.call fun {pf} -> pf "%a@ %a@ %a" Exp.pp a Exp.pp b pp r]
|
|
;
|
|
let a = canon r a in
|
|
let b = canon r b in
|
|
( if Exp.equal a b then Some Z.zero
|
|
else
|
|
match (Exp.typ a, Exp.typ b) with
|
|
| Some typ, _ | _, Some typ -> (
|
|
match normalize r (Exp.sub typ a b) with
|
|
| Integer {data} -> Some data
|
|
| _ -> None )
|
|
| _ -> None )
|
|
|>
|
|
[%Trace.retn fun {pf} ->
|
|
function Some d -> pf "%a" Z.pp_print d | None -> pf ""]
|
|
|
|
let and_ r s =
|
|
if not r.sat then r
|
|
else if not s.sat then s
|
|
else
|
|
let s, r =
|
|
if Map.length s.rep <= Map.length r.rep then (s, r) else (r, s)
|
|
in
|
|
Map.fold s.rep ~init:r ~f:(fun ~key:e ~data:e' r -> and_eq e e' r)
|
|
|
|
let or_ r s =
|
|
if not s.sat then r
|
|
else if not r.sat then s
|
|
else
|
|
let merge_mems rs r s =
|
|
Map.fold s.rep ~init:rs ~f:(fun ~key:e ~data:e' rs ->
|
|
if entails_eq r e e' then and_eq e e' rs else rs )
|
|
in
|
|
let rs = true_ in
|
|
let rs = merge_mems rs r s in
|
|
let rs = merge_mems rs s r in
|
|
rs
|
|
|
|
(* assumes that f is injective and for any set of exps E, f[E] is disjoint
|
|
from E *)
|
|
let map_exps ({sat= _; rep} as r) ~f =
|
|
[%Trace.call fun {pf} -> pf "%a" pp r]
|
|
;
|
|
let map m =
|
|
Map.fold m ~init:m ~f:(fun ~key ~data m ->
|
|
let key' = f key in
|
|
let data' = f data in
|
|
if Exp.equal key' key then
|
|
if Exp.equal data' data then m else Map.set m ~key ~data:data'
|
|
else Map.remove m key |> Map.add_exn ~key:key' ~data:data' )
|
|
in
|
|
let rep' = map rep in
|
|
(if rep' == rep then r else {r with rep= rep'})
|
|
|>
|
|
[%Trace.retn fun {pf} r' ->
|
|
pf "%a" pp_diff (r, r') ;
|
|
invariant r']
|
|
|
|
let rename r sub = map_exps r ~f:(fun e -> Exp.rename e sub)
|
|
|
|
let fold_exps r ~init ~f =
|
|
Map.fold r.rep ~f:(fun ~key ~data z -> f (f z data) key) ~init
|
|
|
|
let fold_vars r ~init ~f =
|
|
fold_exps r ~init ~f:(fun init -> Exp.fold_vars ~f ~init)
|
|
|
|
let fv e = fold_vars e ~f:Set.add ~init:Var.Set.empty
|