|
|
(*
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
*
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
*)
|
|
|
|
|
|
(* [@@@warning "-32"] *)
|
|
|
|
|
|
let%test_module _ =
|
|
|
( module struct
|
|
|
let () = Trace.init ~margin:68 ()
|
|
|
|
|
|
(* let () = Trace.init ~margin:68 ~config:Trace.all () *)
|
|
|
|
|
|
open Term
|
|
|
|
|
|
let pp = Format.printf "@\n%a@." pp
|
|
|
let ( ! ) i = integer (Z.of_int i)
|
|
|
let ( + ) = add
|
|
|
let ( - ) = sub
|
|
|
let ( * ) = mul
|
|
|
let ( = ) = eq
|
|
|
let ( != ) = dq
|
|
|
let ( < ) = lt
|
|
|
let ( <= ) = le
|
|
|
let ( && ) = and_
|
|
|
let ( || ) = or_
|
|
|
let ( ~~ ) = not_
|
|
|
let wrt = Var.Set.empty
|
|
|
let y_, wrt = Var.fresh "y" ~wrt
|
|
|
let z_, _ = Var.fresh "z" ~wrt
|
|
|
let y = var y_
|
|
|
let z = var z_
|
|
|
|
|
|
let%test "booleans distinct" = is_false (true_ = false_)
|
|
|
let%test "u1 values distinct" = is_false (one = zero)
|
|
|
let%test "boolean overflow" = is_true (minus_one = signed 1 one)
|
|
|
let%test _ = is_true (one = unsigned 1 minus_one)
|
|
|
|
|
|
let%test "unsigned boolean overflow" =
|
|
|
is_true
|
|
|
(Exp.uge
|
|
|
(Exp.integer Typ.bool Z.minus_one)
|
|
|
(Exp.signed 1 (Exp.integer Typ.siz Z.one) ~to_:Typ.bool))
|
|
|
.term
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!42 + !13) ;
|
|
|
[%expect {| 55 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!(-128) && !127) ;
|
|
|
[%expect {| 0 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!(-128) || !127) ;
|
|
|
[%expect {| -1 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (z + !42 + !13) ;
|
|
|
[%expect {| (%z_2 + 55) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (z + !42 + !(-42)) ;
|
|
|
[%expect {| %z_2 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (z * y) ;
|
|
|
[%expect {| (%y_1 × %z_2) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (y * z * y) ;
|
|
|
[%expect {| (%y_1^2 × %z_2) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!2 * z * z) + (!3 * z) + !4) ;
|
|
|
[%expect {| (3 × %z_2 + 2 × (%z_2^2) + 4) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp
|
|
|
( !1 + (!2 * z) + (!3 * y)
|
|
|
+ (!4 * z * z)
|
|
|
+ (!5 * y * y)
|
|
|
+ (!6 * z * y)
|
|
|
+ (!7 * y * z * y)
|
|
|
+ (!8 * z * y * z)
|
|
|
+ (!9 * z * z * z) ) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
(3 × %y_1 + 2 × %z_2 + 6 × (%y_1 × %z_2) + 8 × (%y_1 × %z_2^2)
|
|
|
+ 5 × (%y_1^2) + 7 × (%y_1^2 × %z_2) + 4 × (%z_2^2) + 9 × (%z_2^3)
|
|
|
+ 1) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!0 * z * y) ;
|
|
|
[%expect {| 0 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!1 * z * y) ;
|
|
|
[%expect {| (%y_1 × %z_2) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!7 * z * (!2 * y)) ;
|
|
|
[%expect {| (14 × (%y_1 × %z_2)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!13 + (!42 * z)) ;
|
|
|
[%expect {| (42 × %z_2 + 13) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !42) ;
|
|
|
[%expect {| (13 × %z_2 + 42) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!2 * z) - !3 + ((!(-2) * z) + !3)) ;
|
|
|
[%expect {| 0 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!3 * y) + (!13 * z) + !42) ;
|
|
|
[%expect {| (3 × %y_1 + 13 × %z_2 + 42) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !42 + (!3 * y)) ;
|
|
|
[%expect {| (3 × %y_1 + 13 × %z_2 + 42) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !42 + (!3 * y) + (!2 * z)) ;
|
|
|
[%expect {| (3 × %y_1 + 15 × %z_2 + 42) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !42 + (!3 * y) + (!(-13) * z)) ;
|
|
|
[%expect {| (3 × %y_1 + 42) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (z + !42 + ((!3 * y) + (!(-1) * z))) ;
|
|
|
[%expect {| (3 × %y_1 + 42) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!(-1) * (z + (!(-1) * y))) ;
|
|
|
[%expect {| (%y_1 + -1 × %z_2) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (((!3 * y) + !2) * (!4 + (!5 * z))) ;
|
|
|
[%expect {| (12 × %y_1 + 10 × %z_2 + 15 × (%y_1 × %z_2) + 8) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (((!2 * z) - !3 + ((!(-2) * z) + !3)) * (!4 + (!5 * z))) ;
|
|
|
[%expect {| 0 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !42 - ((!3 * y) + (!13 * z))) ;
|
|
|
[%expect {| (-3 × %y_1 + 42) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (z = y) ;
|
|
|
[%expect {| (%y_1 = %z_2) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (z = z) ;
|
|
|
[%expect {| -1 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (z != z) ;
|
|
|
[%expect {| 0 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!1 = !0) ;
|
|
|
[%expect {| 0 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!3 * y = z = true_) ;
|
|
|
[%expect {| (%z_2 = (3 × %y_1)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (true_ = (!3 * y = z)) ;
|
|
|
[%expect {| (%z_2 = (3 × %y_1)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (!3 * y = z = false_) ;
|
|
|
[%expect {| (%z_2 ≠ (3 × %y_1)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (false_ = (!3 * y = z)) ;
|
|
|
[%expect {| (%z_2 ≠ (3 × %y_1)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (y - (!(-3) * y) + !4) ;
|
|
|
[%expect {| (4 × %y_1 + 4) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!(-3) * y) + !4 - y) ;
|
|
|
[%expect {| (-4 × %y_1 + 4) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (y = (!(-3) * y) + !4) ;
|
|
|
[%expect {| (%y_1 = (-3 × %y_1 + 4)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!(-3) * y) + !4 = y) ;
|
|
|
[%expect {| (%y_1 = (-3 × %y_1 + 4)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (sub true_ (z = !4)) ;
|
|
|
[%expect {| (-1 × (%z_2 = 4) + -1) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (add true_ (z = !4) = (z = !4)) ;
|
|
|
[%expect {| ((%z_2 = 4) = ((%z_2 = 4) + -1)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !42 = (!3 * y) + (!13 * z)) ;
|
|
|
[%expect {| ((3 × %y_1 + 13 × %z_2) = (13 × %z_2 + 42)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !(-42) = (!3 * y) + (!13 * z)) ;
|
|
|
[%expect {| ((3 × %y_1 + 13 × %z_2) = (13 × %z_2 + -42)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!13 * z) + !42 = (!(-3) * y) + (!13 * z)) ;
|
|
|
[%expect {| ((-3 × %y_1 + 13 × %z_2) = (13 × %z_2 + 42)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ((!10 * z) + !42 = (!(-3) * y) + (!13 * z)) ;
|
|
|
[%expect {| ((-3 × %y_1 + 13 × %z_2) = (10 × %z_2 + 42)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ~~((!13 * z) + !(-42) != (!3 * y) + (!13 * z)) ;
|
|
|
[%expect {| ((3 × %y_1 + 13 × %z_2) = (13 × %z_2 + -42)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ~~(!2 < y && z <= !3) ;
|
|
|
[%expect {| ((%y_1 ≤ 2) || (3 < %z_2)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp ~~(!2 <= y || z < !3) ;
|
|
|
[%expect {| ((%y_1 < 2) && (3 ≤ %z_2)) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp (eq z null) ;
|
|
|
pp (eq null z) ;
|
|
|
pp (dq (eq null z) false_) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
(%z_2 = 0)
|
|
|
|
|
|
(%z_2 = 0)
|
|
|
|
|
|
(%z_2 = 0) |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
let z1 = z + !1 in
|
|
|
let z1_2 = z1 * z1 in
|
|
|
pp z1_2 ;
|
|
|
pp (z1_2 * z1_2) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
(2 × %z_2 + (%z_2^2) + 1)
|
|
|
|
|
|
(4 × %z_2 + 6 × (%z_2^2) + 4 × (%z_2^3) + (%z_2^4) + 1) |}]
|
|
|
end )
|