You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

459 lines
17 KiB

(*
* Copyright (c) 2016-present, Programming Research Laboratory (ROPAS)
* Seoul National University, Korea
* Copyright (c) 2017-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
open AbsLoc
open! AbstractDomain.Types
module BoUtils = BufferOverrunUtils
module CFG = BufferOverrunAnalysis.CFG
module Dom = BufferOverrunDomain
module L = Logging
module Models = BufferOverrunModels
module PO = BufferOverrunProofObligations
module Relation = BufferOverrunDomainRelation
module Sem = BufferOverrunSemantics
module Trace = BufferOverrunTrace
module Payload = SummaryPayload.Make (struct
type t = BufferOverrunCheckerSummary.t
let update_payloads astate (payloads : Payloads.t) =
{payloads with buffer_overrun_checker= Some astate}
let of_payloads (payloads : Payloads.t) = payloads.buffer_overrun_checker
end)
module UnusedBranch = struct
type t = {node: CFG.Node.t; location: Location.t; condition: Exp.t; true_branch: bool}
let report tenv summary {node; location; condition; true_branch} =
let desc =
let err_desc =
let i = match condition with Exp.Const (Const.Cint i) -> i | _ -> IntLit.zero in
Errdesc.explain_condition_always_true_false tenv i condition
(CFG.Node.underlying_node node) location
in
F.asprintf "%a" Localise.pp_error_desc err_desc
in
let issue_type =
if true_branch then IssueType.condition_always_false else IssueType.condition_always_true
in
let ltr = [Errlog.make_trace_element 0 location "Here" []] in
Reporting.log_warning summary ~loc:location ~ltr issue_type desc
end
module UnusedBranches = struct
type t = UnusedBranch.t list
let empty = []
let report tenv summary unused_branches =
List.iter unused_branches ~f:(UnusedBranch.report tenv summary)
end
module UnreachableStatement = struct
type t = {location: Location.t}
let report summary {location} =
let ltr = [Errlog.make_trace_element 0 location "Here" []] in
Reporting.log_error summary ~loc:location ~ltr IssueType.unreachable_code_after
"Unreachable code after statement"
end
module UnreachableStatements = struct
type t = UnreachableStatement.t list
let empty = []
let report summary unreachable_statements =
List.iter unreachable_statements ~f:(UnreachableStatement.report summary)
end
module Checks = struct
type t =
{ cond_set: PO.ConditionSet.checked_t
; unused_branches: UnusedBranches.t
; unreachable_statements: UnreachableStatements.t }
let empty =
{ cond_set= PO.ConditionSet.empty
; unused_branches= UnusedBranches.empty
; unreachable_statements= UnreachableStatements.empty }
end
module ExitStatement = struct
(* check that we are the last significant instruction
* of a procedure (no more significant instruction)
* or of a block (goes directly to a node with multiple predecessors)
*)
let rec is_end_of_block_or_procedure (cfg : CFG.t) node rem_instrs =
Instrs.for_all rem_instrs ~f:Sil.instr_is_auxiliary
&&
match IContainer.singleton_or_more node ~fold:(CFG.fold_succs cfg) with
| IContainer.Empty ->
true
| Singleton succ ->
(* [succ] is a join, i.e. [node] is the end of a block *)
IContainer.mem_nth succ 1 ~fold:(CFG.fold_preds cfg)
|| is_end_of_block_or_procedure cfg succ (CFG.instrs succ)
| More ->
false
end
let add_unreachable_code (cfg : CFG.t) (node : CFG.Node.t) instr rem_instrs (checks : Checks.t) =
match instr with
| Sil.Prune (_, _, _, (Ik_land_lor | Ik_bexp)) ->
checks
| Sil.Prune (condition, location, true_branch, _) ->
let unused_branch = UnusedBranch.{node; location; condition; true_branch} in
{checks with unused_branches= unused_branch :: checks.unused_branches}
(* special case for `exit` when we're at the end of a block / procedure *)
| Sil.Call (_, Const (Cfun pname), _, _, _)
when String.equal (Typ.Procname.get_method pname) "exit"
&& ExitStatement.is_end_of_block_or_procedure cfg node rem_instrs ->
checks
| _ ->
let location = Sil.location_of_instr instr in
let unreachable_statement = UnreachableStatement.{location} in
{checks with unreachable_statements= unreachable_statement :: checks.unreachable_statements}
let check_binop_array_access :
Typ.IntegerWidths.t
-> is_plus:bool
-> e1:Exp.t
-> e2:Exp.t
-> Location.t
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun integer_type_widths ~is_plus ~e1 ~e2 location mem cond_set ->
let arr = Sem.eval integer_type_widths e1 mem in
let idx = Sem.eval integer_type_widths e2 mem in
let idx_sym_exp = Relation.SymExp.of_exp ~get_sym_f:(Sem.get_sym_f integer_type_widths mem) e2 in
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp ~relation ~is_plus ~last_included:false
~latest_prune location cond_set
let check_binop :
Typ.IntegerWidths.t
-> bop:Binop.t
-> e1:Exp.t
-> e2:Exp.t
-> Location.t
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun integer_type_widths ~bop ~e1 ~e2 location mem cond_set ->
match bop with
| Binop.PlusPI ->
check_binop_array_access integer_type_widths ~is_plus:true ~e1 ~e2 location mem cond_set
| Binop.MinusPI ->
check_binop_array_access integer_type_widths ~is_plus:false ~e1 ~e2 location mem cond_set
| _ ->
cond_set
let check_expr_for_array_access :
Typ.IntegerWidths.t
-> Exp.t
-> Location.t
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun integer_type_widths exp location mem cond_set ->
let rec check_sub_expr exp cond_set =
match exp with
| Exp.Lindex (array_exp, index_exp) ->
cond_set |> check_sub_expr array_exp |> check_sub_expr index_exp
|> BoUtils.Check.lindex integer_type_widths ~array_exp ~index_exp ~last_included:false mem
location
| Exp.BinOp (_, e1, e2) ->
cond_set |> check_sub_expr e1 |> check_sub_expr e2
| Exp.Lfield (e, _, _) | Exp.UnOp (_, e, _) | Exp.Exn e ->
check_sub_expr e cond_set
| Exp.Cast (_, e) ->
check_sub_expr e cond_set
| Exp.Closure {captured_vars} ->
List.fold captured_vars ~init:cond_set ~f:(fun cond_set (e, _, _) ->
check_sub_expr e cond_set )
| Exp.Var _ | Exp.Lvar _ | Exp.Const _ | Exp.Sizeof _ ->
cond_set
in
let cond_set = check_sub_expr exp cond_set in
match exp with
| Exp.Var _ ->
let arr = Sem.eval integer_type_widths exp mem in
let idx, idx_sym_exp = (Dom.Val.Itv.zero, Some Relation.SymExp.zero) in
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp ~relation ~is_plus:true
~last_included:false ~latest_prune location cond_set
| Exp.BinOp (bop, e1, e2) ->
check_binop integer_type_widths ~bop ~e1 ~e2 location mem cond_set
| _ ->
cond_set
let check_binop_for_integer_overflow integer_type_widths bop ~lhs ~rhs location mem cond_set =
match bop with
| Binop.PlusA (Some _) | Binop.MinusA (Some _) | Binop.Mult (Some _) ->
let lhs_v = Sem.eval integer_type_widths lhs mem in
let rhs_v = Sem.eval integer_type_widths rhs mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.binary_operation integer_type_widths bop ~lhs:lhs_v ~rhs:rhs_v ~latest_prune
location cond_set
| _ ->
cond_set
let rec check_expr_for_integer_overflow integer_type_widths exp location mem cond_set =
match exp with
| Exp.UnOp (_, e, _)
| Exp.Exn e
| Exp.Lfield (e, _, _)
| Exp.Cast (_, e)
| Exp.Sizeof {dynamic_length= Some e} ->
check_expr_for_integer_overflow integer_type_widths e location mem cond_set
| Exp.BinOp (bop, lhs, rhs) ->
cond_set
|> check_binop_for_integer_overflow integer_type_widths bop ~lhs ~rhs location mem
|> check_expr_for_integer_overflow integer_type_widths lhs location mem
|> check_expr_for_integer_overflow integer_type_widths rhs location mem
| Exp.Lindex (e1, e2) ->
cond_set
|> check_expr_for_integer_overflow integer_type_widths e1 location mem
|> check_expr_for_integer_overflow integer_type_widths e2 location mem
| Exp.Closure {captured_vars} ->
List.fold captured_vars ~init:cond_set ~f:(fun cond_set (e, _, _) ->
check_expr_for_integer_overflow integer_type_widths e location mem cond_set )
| Exp.Var _ | Exp.Const _ | Exp.Lvar _ | Exp.Sizeof {dynamic_length= None} ->
cond_set
let instantiate_cond :
Tenv.t
-> Typ.IntegerWidths.t
-> Typ.Procname.t
-> (Pvar.t * Typ.t) list
-> (Exp.t * Typ.t) list
-> Dom.Mem.t
-> BufferOverrunAnalysisSummary.t
-> BufferOverrunCheckerSummary.t
-> Location.t
-> PO.ConditionSet.checked_t =
fun tenv integer_type_widths callee_pname callee_formals params caller_mem callee_exit_mem
callee_cond location ->
let rel_subst_map =
Sem.get_subst_map tenv integer_type_widths callee_formals params caller_mem callee_exit_mem
in
let caller_rel = Dom.Mem.get_relation caller_mem in
let eval_sym_trace =
Sem.mk_eval_sym_trace integer_type_widths callee_formals params caller_mem
in
let latest_prune = Dom.Mem.get_latest_prune caller_mem in
PO.ConditionSet.subst callee_cond eval_sym_trace rel_subst_map caller_rel callee_pname location
latest_prune
type checks_summary = BufferOverrunCheckerSummary.t
type get_proc_summary =
Typ.Procname.t
-> (BufferOverrunAnalysisSummary.t * (Pvar.t * Typ.t) list * checks_summary) option
let check_instr :
get_proc_summary
-> Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.Node.t
-> Sil.instr
-> Dom.Mem.t
-> PO.ConditionSet.checked_t
-> PO.ConditionSet.checked_t =
fun get_proc_summary pdesc tenv integer_type_widths node instr mem cond_set ->
match instr with
| Sil.Load (_, exp, _, location) ->
cond_set
|> check_expr_for_array_access integer_type_widths exp location mem
|> check_expr_for_integer_overflow integer_type_widths exp location mem
| Sil.Store (lexp, _, rexp, location) ->
cond_set
|> check_expr_for_array_access integer_type_widths lexp location mem
|> check_expr_for_integer_overflow integer_type_widths lexp location mem
|> check_expr_for_integer_overflow integer_type_widths rexp location mem
| Sil.Call (_, Const (Cfun callee_pname), params, location, _) -> (
let cond_set =
List.fold params ~init:cond_set ~f:(fun cond_set (exp, _) ->
check_expr_for_integer_overflow integer_type_widths exp location mem cond_set )
in
match Models.Call.dispatch tenv callee_pname params with
| Some {Models.check} ->
let model_env =
let node_hash = CFG.Node.hash node in
let pname = Procdesc.get_proc_name pdesc in
BoUtils.ModelEnv.mk_model_env pname ~node_hash location tenv integer_type_widths
in
check model_env mem cond_set
| None -> (
match get_proc_summary callee_pname with
| Some (callee_mem, callee_formals, callee_condset) ->
instantiate_cond tenv integer_type_widths callee_pname callee_formals params mem
callee_mem callee_condset location
|> PO.ConditionSet.join cond_set
| None ->
(* unknown call / no inferbo payload *) cond_set ) )
| Sil.Prune (exp, location, _, _) ->
check_expr_for_integer_overflow integer_type_widths exp location mem cond_set
| _ ->
cond_set
let print_debug_info : Sil.instr -> Dom.Mem.t -> PO.ConditionSet.checked_t -> unit =
fun instr pre cond_set ->
L.(debug BufferOverrun Verbose) "@\n@\n================================@\n" ;
L.(debug BufferOverrun Verbose) "@[<v 2>Pre-state : @,%a" Dom.Mem.pp pre ;
L.(debug BufferOverrun Verbose) "@]@\n@\n%a" (Sil.pp_instr ~print_types:true Pp.text) instr ;
L.(debug BufferOverrun Verbose) "@\n@\n@[<v 2>%a" PO.ConditionSet.pp cond_set ;
L.(debug BufferOverrun Verbose) "@]@\n" ;
L.(debug BufferOverrun Verbose) "================================@\n@."
let check_instrs :
get_proc_summary
-> Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.t
-> CFG.Node.t
-> Instrs.not_reversed_t
-> Dom.Mem.t AbstractInterpreter.State.t
-> Checks.t
-> Checks.t =
fun get_proc_summary pdesc tenv integer_type_widths cfg node instrs state checks ->
match state with
| _ when Instrs.is_empty instrs ->
checks
| {AbstractInterpreter.State.pre= Bottom} ->
checks
| {AbstractInterpreter.State.pre= NonBottom _ as pre; post} ->
if Instrs.nth_exists instrs 1 then
L.(die InternalError) "Did not expect several instructions" ;
let instr = Instrs.nth_exn instrs 0 in
let checks =
match post with
| Bottom ->
add_unreachable_code cfg node instr Instrs.empty checks
| NonBottom _ ->
checks
in
let cond_set =
check_instr get_proc_summary pdesc tenv integer_type_widths node instr pre checks.cond_set
in
print_debug_info instr pre cond_set ;
{checks with cond_set}
let check_node :
get_proc_summary
-> Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.t
-> BufferOverrunAnalysis.invariant_map
-> Checks.t
-> CFG.Node.t
-> Checks.t =
fun get_proc_summary pdesc tenv integer_type_widths cfg inv_map checks node ->
match BufferOverrunAnalysis.extract_state (CFG.Node.id node) inv_map with
| Some state ->
let instrs = CFG.instrs node in
check_instrs get_proc_summary pdesc tenv integer_type_widths cfg node instrs state checks
| _ ->
checks
type checks = Checks.t
let compute_checks :
get_proc_summary
-> Procdesc.t
-> Tenv.t
-> Typ.IntegerWidths.t
-> CFG.t
-> BufferOverrunAnalysis.invariant_map
-> checks =
fun get_proc_summary pdesc tenv integer_type_widths cfg inv_map ->
CFG.fold_nodes cfg
~f:(check_node get_proc_summary pdesc tenv integer_type_widths cfg inv_map)
~init:Checks.empty
let report_errors : Tenv.t -> checks -> Summary.t -> unit =
fun tenv {cond_set; unused_branches; unreachable_statements} summary ->
UnusedBranches.report tenv summary unused_branches ;
UnreachableStatements.report summary unreachable_statements ;
let report cond trace issue_type =
let location = PO.ConditionTrace.get_report_location trace in
let description ~markup = PO.description ~markup cond trace in
let trace =
let description = description ~markup:false in
Trace.Issue.make_err_trace ~description (PO.ConditionTrace.get_val_traces trace)
|> Errlog.concat_traces
in
Reporting.log_error summary ~loc:location ~ltr:trace issue_type (description ~markup:true)
in
PO.ConditionSet.report_errors ~report cond_set
let get_checks_summary : BufferOverrunAnalysis.local_decls -> checks -> checks_summary =
fun locals
Checks.
{ cond_set
; unused_branches= _ (* intra-procedural *)
; unreachable_statements= _ (* intra-procedural *) } ->
PO.ConditionSet.for_summary ~forget_locs:locals cond_set
let checker : Callbacks.proc_callback_args -> Summary.t =
fun {proc_desc; tenv; integer_type_widths; summary} ->
let inv_map =
BufferOverrunAnalysis.cached_compute_invariant_map proc_desc tenv integer_type_widths
in
let underlying_exit_node = Procdesc.get_exit_node proc_desc in
let pp_name f = F.pp_print_string f "bufferoverrun check" in
NodePrinter.start_session ~pp_name underlying_exit_node ;
let summary =
let cfg = CFG.from_pdesc proc_desc in
let checks =
let get_proc_summary callee_pname =
Ondemand.analyze_proc_name ~caller_pdesc:proc_desc callee_pname
|> Option.bind ~f:(fun summary ->
let analysis_payload = BufferOverrunAnalysis.Payload.of_summary summary in
let checker_payload = Payload.of_summary summary in
Option.map2 analysis_payload checker_payload
~f:(fun analysis_payload checker_payload ->
( analysis_payload
, Summary.get_proc_desc summary |> Procdesc.get_pvar_formals
, checker_payload ) ) )
in
compute_checks get_proc_summary proc_desc tenv integer_type_widths cfg inv_map
in
report_errors tenv checks summary ;
let locals = BufferOverrunAnalysis.get_local_decls proc_desc in
let cond_set = get_checks_summary locals checks in
Payload.update_summary cond_set summary
in
NodePrinter.finish_session underlying_exit_node ;
summary