You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

883 lines
30 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
module F = Format
module L = Logging
module MF = MarkupFormatter
let describe_pname = MF.wrap_monospaced Procname.pp
module ThreadDomain = struct
type t = UnknownThread | UIThread | BGThread | AnyThread [@@deriving compare, equal]
let bottom = UnknownThread
let is_bottom = function UnknownThread -> true | _ -> false
let join lhs rhs =
match (lhs, rhs) with
| UnknownThread, other | other, UnknownThread ->
other
| UIThread, UIThread | BGThread, BGThread ->
lhs
| _, _ ->
AnyThread
(* type is just an int, so use [join] to define [leq] *)
let leq ~lhs ~rhs = equal (join lhs rhs) rhs
let widen ~prev ~next ~num_iters:_ = join prev next
let pp fmt st =
( match st with
| UnknownThread ->
"UnknownThread"
| UIThread ->
"UIThread"
| BGThread ->
"BGThread"
| AnyThread ->
"AnyThread" )
|> F.pp_print_string fmt
(** Can two thread statuses occur in parallel? Only [UIThread, UIThread] is forbidden. In
addition, this is monotonic wrt the lattice (increasing either argument cannot transition from
true to false). *)
let can_run_in_parallel st1 st2 =
match (st1, st2) with UIThread, UIThread -> false | _, _ -> true
let is_uithread = function UIThread -> true | _ -> false
(* If we know that either the caller is a UI/BG thread or both, keep it that way.
Otherwise, we have no info on caller, so use callee's info. *)
let integrate_summary ~caller ~callee = if is_bottom caller then callee else caller
(** given the current thread state [caller_thread] and the thread state under which a critical
pair occurred, [pair_thread], decide whether to throw away the pair (returning [None]) because
it cannot occur within a call from the current state, or adapt its thread state appropriately. *)
let apply_to_pair caller_thread pair_thread =
match (caller_thread, pair_thread) with
| UnknownThread, _ ->
(* callee pair knows more than us *)
Some pair_thread
| AnyThread, UnknownThread ->
(* callee pair knows nothing and caller has abstracted away info *)
Some AnyThread
| AnyThread, _ ->
(* callee pair is UI / BG / Any and caller has abstracted away info so use callee's knowledge *)
Some pair_thread
| UIThread, BGThread | BGThread, UIThread ->
(* annotations or assertions are incorrectly used in code, or callee is path-sensitive on
thread-identity, just drop the callee pair *)
None
| _, _ ->
(* caller is UI or BG and callee does not disagree, so use that *)
Some caller_thread
end
module Lock = struct
include AbstractAddress
let pp_locks fmt lock = F.fprintf fmt " locks %a" describe lock
let make_java_synchronized formals procname =
match procname with
| Procname.Java java_pname when Procname.Java.is_static java_pname ->
(* this is crafted so as to match synchronized(CLASSNAME.class) constructs *)
let typename_str = Procname.Java.get_class_type_name java_pname |> Typ.Name.name in
let hilexp = HilExp.(Constant (Cclass (Ident.string_to_name typename_str))) in
make formals hilexp
| Procname.Java _ ->
FormalMap.get_formal_base 0 formals
|> Option.bind ~f:(fun base ->
let hilexp = HilExp.(AccessExpression (AccessExpression.base base)) in
make formals hilexp )
| _ ->
L.die InternalError "Non-Java methods cannot be synchronized.@\n"
let compare_wrt_reporting t1 t2 =
let mk_str t = root_class t |> Option.value_map ~default:"" ~f:Typ.Name.to_string in
(* use string comparison on types as a stable order to decide whether to report a deadlock *)
String.compare (mk_str t1) (mk_str t2)
let apply_subst_to_list subst l =
let rec apply_subst_to_list_inner l =
match l with
| [] ->
([], false)
| lock :: locks -> (
let locks', modified = apply_subst_to_list_inner locks in
match apply_subst subst lock with
| None ->
(locks', true)
| Some lock' when (not modified) && phys_equal lock lock' ->
(l, false)
| Some lock' ->
(lock' :: locks', true) )
in
apply_subst_to_list_inner l |> fst
end
module AccessExpressionDomain = struct
open AbstractDomain.Types
type t = HilExp.AccessExpression.t top_lifted [@@deriving equal]
let pp fmt = function
| Top ->
F.pp_print_string fmt "AccExpTop"
| NonTop lock ->
HilExp.AccessExpression.pp fmt lock
let top = Top
let is_top = function Top -> true | NonTop _ -> false
let join lhs rhs = if equal lhs rhs then lhs else top
let leq ~lhs ~rhs = equal (join lhs rhs) rhs
let widen ~prev ~next ~num_iters:_ = join prev next
end
module VarDomain = struct
include AbstractDomain.SafeInvertedMap (Var) (AccessExpressionDomain)
let exit_scope init deadvars =
List.fold deadvars ~init ~f:(fun acc deadvar ->
filter
(fun _key acc_exp_opt ->
match acc_exp_opt with
| Top ->
(* should never happen in a safe inverted map *)
false
| NonTop acc_exp ->
let var, _ = HilExp.AccessExpression.get_base acc_exp in
not (Var.equal var deadvar) )
acc
|> remove deadvar )
let get var astate =
match find_opt var astate with None | Some Top -> None | Some (NonTop x) -> Some x
let set var acc_exp astate = add var (NonTop acc_exp) astate
end
module Event = struct
type t =
| LockAcquire of Lock.t list
| MayBlock of (Procname.t * StarvationModels.severity)
| StrictModeCall of Procname.t
| MonitorWait of Lock.t
[@@deriving compare]
let pp fmt = function
| LockAcquire locks ->
F.fprintf fmt "LockAcquire(%a)" (PrettyPrintable.pp_collection ~pp_item:Lock.pp) locks
| MayBlock (pname, sev) ->
F.fprintf fmt "MayBlock(%a, %a)" Procname.pp pname StarvationModels.pp_severity sev
| StrictModeCall pname ->
F.fprintf fmt "StrictModeCall(%a)" Procname.pp pname
| MonitorWait lock ->
F.fprintf fmt "MonitorWait(%a)" Lock.pp lock
let describe fmt elem =
match elem with
| LockAcquire locks ->
Pp.comma_seq Lock.pp_locks fmt locks
| MayBlock (pname, _) | StrictModeCall pname ->
F.fprintf fmt "calls %a" describe_pname pname
| MonitorWait lock ->
F.fprintf fmt "calls `wait` on %a" Lock.describe lock
let make_acquire lock = LockAcquire lock
let make_blocking_call callee sev = MayBlock (callee, sev)
let make_strict_mode_call callee = StrictModeCall callee
let make_object_wait lock = MonitorWait lock
let apply_subst subst event =
match event with
| MayBlock _ | StrictModeCall _ ->
Some event
| MonitorWait lock ->
Lock.apply_subst subst lock
|> Option.map ~f:(fun lock' -> if phys_equal lock lock' then event else MonitorWait lock')
| LockAcquire locks -> (
match Lock.apply_subst_to_list subst locks with
| [] ->
None
| locks' when phys_equal locks locks' ->
Some event
| locks' ->
Some (LockAcquire locks') )
end
(** A lock acquisition with source location and procname in which it occurs. The location & procname
are *ignored* for comparisons, and are only for reporting. *)
module Acquisition = struct
type t = {lock: Lock.t; loc: Location.t [@compare.ignore]; procname: Procname.t [@compare.ignore]}
[@@deriving compare]
let pp fmt {lock} = Lock.pp fmt lock
let describe fmt {lock} = Lock.pp_locks fmt lock
let make ~procname ~loc lock = {lock; loc; procname}
let compare_loc {loc= loc1} {loc= loc2} = Location.compare loc1 loc2
let make_trace_step acquisition =
let description = F.asprintf "%a" describe acquisition in
Errlog.make_trace_element 0 acquisition.loc description []
let make_dummy lock = {lock; loc= Location.dummy; procname= Procname.Linters_dummy_method}
let apply_subst subst acquisition =
match Lock.apply_subst subst acquisition.lock with
| None ->
None
| Some lock when phys_equal acquisition.lock lock ->
Some acquisition
| Some lock ->
Some {acquisition with lock}
end
(** Set of acquisitions; due to order over acquisitions, each lock appears at most once. *)
module Acquisitions = struct
include PrettyPrintable.MakePPSet (Acquisition)
(* use the fact that location/procname are ignored in comparisons *)
let lock_is_held lock acquisitions = mem (Acquisition.make_dummy lock) acquisitions
let lock_is_held_in_other_thread tenv lock acquisitions =
exists (fun acq -> Lock.equal_across_threads tenv lock acq.lock) acquisitions
let no_locks_common_across_threads tenv acqs1 acqs2 =
for_all (fun acq1 -> not (lock_is_held_in_other_thread tenv acq1.lock acqs2)) acqs1
let apply_subst subst acqs =
fold
(fun acq acc ->
match Acquisition.apply_subst subst acq with None -> acc | Some acq' -> add acq' acc )
acqs empty
end
module LockState : sig
include AbstractDomain.WithTop
val acquire : procname:Procname.t -> loc:Location.t -> Lock.t -> t -> t
val release : Lock.t -> t -> t
val get_acquisitions : t -> Acquisitions.t
end = struct
(* abstraction limit for lock counts *)
let max_lock_depth_allowed = 5
module LockCount = AbstractDomain.DownwardIntDomain (struct
let max = max_lock_depth_allowed
end)
module Map = AbstractDomain.InvertedMap (Lock) (LockCount)
(* [acquisitions] has the currently held locks, so as to avoid a linear fold in [get_acquisitions].
This should also increase sharing across returned values from [get_acquisitions]. *)
type t = {map: Map.t; acquisitions: Acquisitions.t}
let get_acquisitions {acquisitions} = acquisitions
let pp fmt {map; acquisitions} =
F.fprintf fmt "{map= %a; acquisitions= %a}" Map.pp map Acquisitions.pp acquisitions
let join lhs rhs =
let map = Map.join lhs.map rhs.map in
let acquisitions = Acquisitions.inter lhs.acquisitions rhs.acquisitions in
{map; acquisitions}
let widen ~prev ~next ~num_iters =
let map = Map.widen ~prev:prev.map ~next:next.map ~num_iters in
let acquisitions = Acquisitions.inter prev.acquisitions next.acquisitions in
{map; acquisitions}
let leq ~lhs ~rhs = Map.leq ~lhs:lhs.map ~rhs:rhs.map
let top = {map= Map.top; acquisitions= Acquisitions.empty}
let is_top {map} = Map.is_top map
let acquire ~procname ~loc lock {map; acquisitions} =
let should_add_acquisition = ref false in
let map =
Map.update lock
(function
| None ->
(* lock was not already held, so add it to [acquisitions] *)
should_add_acquisition := true ;
Some LockCount.(increment top)
| Some count ->
Some (LockCount.increment count) )
map
in
let acquisitions =
if !should_add_acquisition then
let acquisition = Acquisition.make ~procname ~loc lock in
Acquisitions.add acquisition acquisitions
else acquisitions
in
{map; acquisitions}
let release lock {map; acquisitions} =
let should_remove_acquisition = ref false in
let map =
Map.update lock
(function
| None ->
None
| Some count ->
let new_count = LockCount.decrement count in
if LockCount.is_top new_count then (
(* lock was held, but now it is not, so remove from [aqcuisitions] *)
should_remove_acquisition := true ;
None )
else Some new_count )
map
in
let acquisitions =
if !should_remove_acquisition then
let acquisition = Acquisition.make_dummy lock in
Acquisitions.remove acquisition acquisitions
else acquisitions
in
{map; acquisitions}
end
module CriticalPairElement = struct
type t = {acquisitions: Acquisitions.t; event: Event.t; thread: ThreadDomain.t}
[@@deriving compare]
let pp fmt {acquisitions; event} =
F.fprintf fmt "{acquisitions= %a; event= %a}" Acquisitions.pp acquisitions Event.pp event
let describe = pp
let apply_subst subst elem =
match Event.apply_subst subst elem.event with
| None ->
None
| Some event' ->
let acquisitions' = Acquisitions.apply_subst subst elem.acquisitions in
Some {elem with acquisitions= acquisitions'; event= event'}
end
let is_recursive_lock event tenv =
let is_class_and_recursive_lock = function
| {Typ.desc= Tptr ({desc= Tstruct name}, _)} | {desc= Tstruct name} ->
ConcurrencyModels.is_recursive_lock_type name
| typ ->
L.debug Analysis Verbose "Asked if non-struct type %a is a recursive lock type.@."
(Typ.pp_full Pp.text) typ ;
true
in
match (event : Event.t) with
| LockAcquire locks ->
List.exists locks ~f:(fun lock_path ->
Lock.get_typ tenv lock_path |> Option.exists ~f:is_class_and_recursive_lock )
| _ ->
false
module CriticalPair = struct
include ExplicitTrace.MakeTraceElem (CriticalPairElement) (ExplicitTrace.DefaultCallPrinter)
let make ~loc acquisitions event thread = make {acquisitions; event; thread} loc
let is_blocking_call {elem= {event}} = match event with LockAcquire _ -> true | _ -> false
let may_deadlock tenv ~(lhs : t) ~lhs_lock ~(rhs : t) =
let get_acquired_locks {elem= {event}} =
match event with LockAcquire locks -> locks | _ -> []
in
if ThreadDomain.can_run_in_parallel lhs.elem.thread rhs.elem.thread then
get_acquired_locks rhs
|> List.find ~f:(fun rhs_lock ->
(not (Lock.equal_across_threads tenv lhs_lock rhs_lock))
&& Acquisitions.lock_is_held_in_other_thread tenv rhs_lock lhs.elem.acquisitions
&& Acquisitions.lock_is_held_in_other_thread tenv lhs_lock rhs.elem.acquisitions
&& Acquisitions.no_locks_common_across_threads tenv lhs.elem.acquisitions
rhs.elem.acquisitions )
else None
let apply_subst subst pair =
match CriticalPairElement.apply_subst subst pair.elem with
| None ->
None
| Some elem' ->
Some (map ~f:(fun _elem -> elem') pair)
(** if given [Some tenv], transform a pair so as to remove reentrant locks that are already in
[held_locks] *)
let filter_out_reentrant_relocks tenv_opt held_locks pair =
match (tenv_opt, pair.elem.event) with
| Some tenv, LockAcquire locks -> (
let filtered_locks =
IList.filter_changed locks ~f:(fun lock ->
(not (Acquisitions.lock_is_held lock held_locks))
|| not (is_recursive_lock pair.elem.event tenv) )
in
match filtered_locks with
| [] ->
None
| _ when phys_equal filtered_locks locks ->
Some pair
| _ ->
Some (map pair ~f:(fun elem -> {elem with event= LockAcquire filtered_locks})) )
| _, _ ->
Some pair
let integrate_summary_opt ?subst ?tenv existing_acquisitions call_site
(caller_thread : ThreadDomain.t) (callee_pair : t) =
let substitute_pair subst callee_pair =
match subst with None -> Some callee_pair | Some subst -> apply_subst subst callee_pair
in
substitute_pair subst callee_pair
|> Option.bind ~f:(filter_out_reentrant_relocks tenv existing_acquisitions)
|> Option.bind ~f:(fun callee_pair ->
ThreadDomain.apply_to_pair caller_thread callee_pair.elem.thread
|> Option.map ~f:(fun thread ->
let f (elem : CriticalPairElement.t) =
let acquisitions = Acquisitions.union existing_acquisitions elem.acquisitions in
({elem with acquisitions; thread} : elem_t)
in
with_callsite (map ~f callee_pair) call_site ) )
let get_earliest_lock_or_call_loc ~procname ({elem= {acquisitions}} as t) =
let initial_loc = get_loc t in
Acquisitions.fold
(fun {procname= acq_procname; loc= acq_loc} acc ->
if Procname.equal procname acq_procname && Int.is_negative (Location.compare acq_loc acc)
then acq_loc
else acc )
acquisitions initial_loc
let make_trace ?(header = "") ?(include_acquisitions = true) top_pname
({elem= {acquisitions; event}; trace; loc} as pair) =
let acquisitions_map =
if include_acquisitions then
Acquisitions.fold
(fun ({procname} as acq : Acquisition.t) acc ->
Procname.Map.update procname
(function None -> Some [acq] | Some acqs -> Some (acq :: acqs))
acc )
acquisitions Procname.Map.empty
else Procname.Map.empty
in
let header_step =
let description = F.asprintf "%s%a" header describe_pname top_pname in
let loc = get_loc pair in
Errlog.make_trace_element 0 loc description []
in
(* construct the trace segment starting at [call_site] and ending at next call *)
let make_call_stack_step fake_first_call call_site =
let procname = CallSite.pname call_site in
let trace =
Procname.Map.find_opt procname acquisitions_map
|> Option.value ~default:[]
(* many acquisitions can be on same line (eg, std::lock) so use stable sort
to produce a deterministic trace *)
|> List.stable_sort ~compare:Acquisition.compare_loc
|> List.map ~f:Acquisition.make_trace_step
in
if CallSite.equal call_site fake_first_call then trace
else
let descr = F.asprintf "%a" ExplicitTrace.DefaultCallPrinter.pp call_site in
let call_step = Errlog.make_trace_element 0 (CallSite.loc call_site) descr [] in
call_step :: trace
in
(* construct a call stack trace with the lock acquisitions interleaved *)
let call_stack =
(* fake outermost call so as to include acquisitions in the top level caller *)
let fake_first_call = CallSite.make top_pname Location.dummy in
List.map (fake_first_call :: trace) ~f:(make_call_stack_step fake_first_call)
in
let endpoint_step =
let endpoint_descr = F.asprintf "%a" Event.describe event in
Errlog.make_trace_element 0 loc endpoint_descr []
in
List.concat (([header_step] :: call_stack) @ [[endpoint_step]])
let is_uithread t = ThreadDomain.is_uithread t.elem.thread
let can_run_in_parallel t1 t2 = ThreadDomain.can_run_in_parallel t1.elem.thread t2.elem.thread
end
module CriticalPairs = struct
include CriticalPair.FiniteSet
let with_callsite astate ?tenv ?subst lock_state call_site thread =
let existing_acquisitions = LockState.get_acquisitions lock_state in
fold
(fun critical_pair acc ->
CriticalPair.integrate_summary_opt ?subst ?tenv existing_acquisitions call_site thread
critical_pair
|> Option.bind ~f:(CriticalPair.filter_out_reentrant_relocks tenv existing_acquisitions)
|> Option.value_map ~default:acc ~f:(fun new_pair -> add new_pair acc) )
astate empty
end
module FlatLock = AbstractDomain.Flat (Lock)
module GuardToLockMap = struct
include AbstractDomain.InvertedMap (HilExp) (FlatLock)
let remove_guard astate guard = remove guard astate
let add_guard astate ~guard ~lock = add guard (FlatLock.v lock) astate
end
module Attribute = struct
type t =
| Nothing
| ThreadGuard
| FutureDoneGuard of HilExp.AccessExpression.t
| FutureDoneState of bool
| Runnable of Procname.t
| WorkScheduler of StarvationModels.scheduler_thread_constraint
| Looper of StarvationModels.scheduler_thread_constraint
[@@deriving equal]
let top = Nothing
let is_top = function Nothing -> true | _ -> false
let pp fmt t =
let pp_constr fmt c =
StarvationModels.(
match c with ForUIThread -> "UI" | ForNonUIThread -> "BG" | ForUnknownThread -> "Unknown")
|> F.pp_print_string fmt
in
match t with
| Nothing ->
F.pp_print_string fmt "Nothing"
| ThreadGuard ->
F.pp_print_string fmt "ThreadGuard"
| FutureDoneGuard exp ->
F.fprintf fmt "FutureDoneGuard(%a)" HilExp.AccessExpression.pp exp
| FutureDoneState state ->
F.fprintf fmt "FutureDoneState(%b)" state
| Runnable runproc ->
F.fprintf fmt "Runnable(%a)" Procname.pp runproc
| WorkScheduler c ->
F.fprintf fmt "WorkScheduler(%a)" pp_constr c
| Looper c ->
F.fprintf fmt "Looper(%a)" pp_constr c
let join lhs rhs = if equal lhs rhs then lhs else Nothing
let leq ~lhs ~rhs = equal (join lhs rhs) rhs
let widen ~prev ~next ~num_iters:_ = join prev next
end
module AttributeDomain = struct
include AbstractDomain.SafeInvertedMap (HilExp.AccessExpression) (Attribute)
let is_thread_guard acc_exp t =
find_opt acc_exp t |> Option.exists ~f:(function Attribute.ThreadGuard -> true | _ -> false)
let is_future_done_guard acc_exp t =
find_opt acc_exp t
|> Option.exists ~f:(function Attribute.FutureDoneGuard _ -> true | _ -> false)
let exit_scope vars t =
let pred key _value =
HilExp.AccessExpression.get_base key
|> fst
|> fun v -> Var.is_this v || not (List.exists vars ~f:(Var.equal v))
in
filter pred t
end
module ScheduledWorkItem = struct
type t = {procname: Procname.t; loc: Location.t; thread: ThreadDomain.t} [@@deriving compare]
let pp fmt {procname; loc; thread} =
F.fprintf fmt "{procname= %a; loc= %a; thread= %a}" Procname.pp procname Location.pp loc
ThreadDomain.pp thread
end
module ScheduledWorkDomain = AbstractDomain.FiniteSet (ScheduledWorkItem)
type t =
{ guard_map: GuardToLockMap.t
; lock_state: LockState.t
; critical_pairs: CriticalPairs.t
; attributes: AttributeDomain.t
; thread: ThreadDomain.t
; scheduled_work: ScheduledWorkDomain.t
; var_state: VarDomain.t }
let initial =
{ guard_map= GuardToLockMap.empty
; lock_state= LockState.top
; critical_pairs= CriticalPairs.empty
; attributes= AttributeDomain.empty
; thread= ThreadDomain.bottom
; scheduled_work= ScheduledWorkDomain.bottom
; var_state= VarDomain.top }
let pp fmt astate =
F.fprintf fmt
"{guard_map= %a; lock_state= %a; critical_pairs= %a; attributes= %a; thread= %a; \
scheduled_work= %a; var_state= %a}"
GuardToLockMap.pp astate.guard_map LockState.pp astate.lock_state CriticalPairs.pp
astate.critical_pairs AttributeDomain.pp astate.attributes ThreadDomain.pp astate.thread
ScheduledWorkDomain.pp astate.scheduled_work VarDomain.pp astate.var_state
let join lhs rhs =
{ guard_map= GuardToLockMap.join lhs.guard_map rhs.guard_map
; lock_state= LockState.join lhs.lock_state rhs.lock_state
; critical_pairs= CriticalPairs.join lhs.critical_pairs rhs.critical_pairs
; attributes= AttributeDomain.join lhs.attributes rhs.attributes
; thread= ThreadDomain.join lhs.thread rhs.thread
; scheduled_work= ScheduledWorkDomain.join lhs.scheduled_work rhs.scheduled_work
; var_state= VarDomain.join lhs.var_state rhs.var_state }
let widen ~prev ~next ~num_iters:_ = join prev next
let leq ~lhs ~rhs =
GuardToLockMap.leq ~lhs:lhs.guard_map ~rhs:rhs.guard_map
&& LockState.leq ~lhs:lhs.lock_state ~rhs:rhs.lock_state
&& CriticalPairs.leq ~lhs:lhs.critical_pairs ~rhs:rhs.critical_pairs
&& AttributeDomain.leq ~lhs:lhs.attributes ~rhs:rhs.attributes
&& ThreadDomain.leq ~lhs:lhs.thread ~rhs:rhs.thread
&& ScheduledWorkDomain.leq ~lhs:lhs.scheduled_work ~rhs:rhs.scheduled_work
&& VarDomain.leq ~lhs:lhs.var_state ~rhs:rhs.var_state
let add_critical_pair ?tenv lock_state event thread ~loc acc =
let acquisitions = LockState.get_acquisitions lock_state in
let critical_pair = CriticalPair.make ~loc acquisitions event thread in
CriticalPair.filter_out_reentrant_relocks tenv acquisitions critical_pair
|> Option.value_map ~default:acc ~f:(fun pair -> CriticalPairs.add pair acc)
let acquire ?tenv ({lock_state; critical_pairs} as astate) ~procname ~loc locks =
{ astate with
critical_pairs=
(let event = Event.make_acquire locks in
add_critical_pair ?tenv lock_state event astate.thread ~loc critical_pairs )
; lock_state=
List.fold locks ~init:lock_state ~f:(fun acc lock ->
LockState.acquire ~procname ~loc lock acc ) }
let make_call_with_event new_event ~loc astate =
{ astate with
critical_pairs=
add_critical_pair astate.lock_state new_event astate.thread ~loc astate.critical_pairs }
let blocking_call ~callee sev ~loc astate =
let new_event = Event.make_blocking_call callee sev in
make_call_with_event new_event ~loc astate
let wait_on_monitor ~loc formals actuals astate =
match actuals with
| exp :: _ ->
Lock.make formals exp
|> Option.value_map ~default:astate ~f:(fun lock ->
let new_event = Event.make_object_wait lock in
make_call_with_event new_event ~loc astate )
| _ ->
astate
let future_get ~callee ~loc actuals astate =
match actuals with
| HilExp.AccessExpression exp :: _
when AttributeDomain.find_opt exp astate.attributes
|> Option.exists ~f:(function Attribute.FutureDoneState x -> x | _ -> false) ->
astate
| HilExp.AccessExpression _ :: _ ->
let new_event = Event.make_blocking_call callee Low in
make_call_with_event new_event ~loc astate
| _ ->
astate
let strict_mode_call ~callee ~loc astate =
let new_event = Event.make_strict_mode_call callee in
make_call_with_event new_event ~loc astate
let release ({lock_state} as astate) locks =
{ astate with
lock_state= List.fold locks ~init:lock_state ~f:(fun acc l -> LockState.release l acc) }
let add_guard ~acquire_now ~procname ~loc tenv astate guard lock =
let astate = {astate with guard_map= GuardToLockMap.add_guard ~guard ~lock astate.guard_map} in
if acquire_now then acquire ~tenv astate ~procname ~loc [lock] else astate
let remove_guard astate guard =
GuardToLockMap.find_opt guard astate.guard_map
|> Option.value_map ~default:astate ~f:(fun lock_opt ->
let locks = FlatLock.get lock_opt |> Option.to_list in
let astate = release astate locks in
{astate with guard_map= GuardToLockMap.remove_guard astate.guard_map guard} )
let unlock_guard astate guard =
GuardToLockMap.find_opt guard astate.guard_map
|> Option.value_map ~default:astate ~f:(fun lock_opt ->
FlatLock.get lock_opt |> Option.to_list |> release astate )
let lock_guard ~procname ~loc tenv astate guard =
GuardToLockMap.find_opt guard astate.guard_map
|> Option.value_map ~default:astate ~f:(fun lock_opt ->
FlatLock.get lock_opt |> Option.to_list |> acquire ~tenv astate ~procname ~loc )
let filter_blocking_calls ({critical_pairs} as astate) =
{astate with critical_pairs= CriticalPairs.filter CriticalPair.is_blocking_call critical_pairs}
let schedule_work loc thread_constraint astate procname =
let thread : ThreadDomain.t =
match (thread_constraint : StarvationModels.scheduler_thread_constraint) with
| ForUIThread ->
UIThread
| ForNonUIThread ->
BGThread
| ForUnknownThread ->
UnknownThread
in
let work_item = ScheduledWorkItem.{procname; loc; thread} in
{astate with scheduled_work= ScheduledWorkDomain.add work_item astate.scheduled_work}
type summary =
{ critical_pairs: CriticalPairs.t
; thread: ThreadDomain.t
; scheduled_work: ScheduledWorkDomain.t
; attributes: AttributeDomain.t
; return_attribute: Attribute.t }
let empty_summary : summary =
{ critical_pairs= CriticalPairs.bottom
; thread= ThreadDomain.bottom
; scheduled_work= ScheduledWorkDomain.bottom
; attributes= AttributeDomain.top
; return_attribute= Attribute.top }
let pp_summary fmt (summary : summary) =
F.fprintf fmt
"{@[<v>thread= %a; return_attributes= %a;@;\
critical_pairs=%a;@;\
scheduled_work= %a;@;\
attributes= %a@]}" ThreadDomain.pp summary.thread Attribute.pp summary.return_attribute
CriticalPairs.pp summary.critical_pairs ScheduledWorkDomain.pp summary.scheduled_work
AttributeDomain.pp summary.attributes
let integrate_summary ?tenv ?lhs ?subst callsite (astate : t) (summary : summary) =
let critical_pairs' =
CriticalPairs.with_callsite summary.critical_pairs ?tenv ?subst astate.lock_state callsite
astate.thread
in
{ astate with
critical_pairs= CriticalPairs.join astate.critical_pairs critical_pairs'
; thread= ThreadDomain.integrate_summary ~caller:astate.thread ~callee:summary.thread
; attributes=
Option.value_map lhs ~default:astate.attributes ~f:(fun lhs_exp ->
AttributeDomain.add lhs_exp summary.return_attribute astate.attributes ) }
let summary_of_astate : Procdesc.t -> t -> summary =
fun proc_desc astate ->
let proc_name = Procdesc.get_proc_name proc_desc in
let attributes =
let var_predicate =
match proc_name with
| Procname.Java jname when Procname.Java.is_class_initializer jname ->
(* only keep static attributes for the class initializer *)
fun v -> Var.is_global v
| Procname.Java jname when Procname.Java.is_constructor jname ->
(* only keep static attributes or ones that have [this] as their root *)
fun v -> Var.is_this v || Var.is_global v
| _ ->
(* non-constructor/class initializer or non-java, don't keep any attributes *)
Fn.const false
in
AttributeDomain.filter
(fun exp _ -> HilExp.AccessExpression.get_base exp |> fst |> var_predicate)
astate.attributes
in
let return_attribute =
let return_var_exp =
HilExp.AccessExpression.base
(Var.of_pvar (Pvar.get_ret_pvar proc_name), Procdesc.get_ret_type proc_desc)
in
AttributeDomain.find_opt return_var_exp astate.attributes
|> Option.value ~default:Attribute.Nothing
in
{ critical_pairs= astate.critical_pairs
; thread= astate.thread
; scheduled_work= astate.scheduled_work
; attributes
; return_attribute }
let remove_dead_vars (astate : t) deadvars =
let deadvars =
(* The liveness analysis will kill any variable (such as [this]) immediately after its
last use. This is bad for attributes that need to live until the end of the method,
so we restrict to SSA variables. *)
List.rev_filter deadvars ~f:(fun (v : Var.t) ->
match v with LogicalVar _ -> true | ProgramVar pvar -> Pvar.is_ssa_frontend_tmp pvar )
in
let var_state = VarDomain.exit_scope astate.var_state deadvars in
let attributes = AttributeDomain.exit_scope deadvars astate.attributes in
{astate with var_state; attributes}