You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

369 lines
6.3 KiB

/*
* Copyright (c) 2016-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
package codetoanalyze.java.checkers;
import javax.annotation.concurrent.ThreadSafe;
import java.util.concurrent.locks.Lock;
import java.util.concurrent.locks.ReadWriteLock;
import java.util.concurrent.locks.ReentrantLock;
import java.util.concurrent.locks.ReentrantReadWriteLock;
@ThreadSafe
public class Locks {
Integer f;
Lock mLock;
ReadWriteLock mReadWriteLock;
ReentrantLock mReentrantLock;
ReentrantReadWriteLock mReentrantReadWriteLock;
// we allow this for now
public void FN_lockInOneBranchBad(boolean b) {
if (b) {
mLock.lock();
}
f = 24;
if (b) {
mLock.unlock();
}
}
public void afterUnlockBad() {
mLock.lock();
mLock.unlock();
f = 42;
}
public void afterReentrantLockUnlockBad() {
mReentrantLock.lock();
mReentrantLock.unlock();
f = 42;
}
public void afterWriteLockUnlockBad() {
mReentrantReadWriteLock.writeLock().lock();
mReentrantReadWriteLock.writeLock().unlock();
f = 42;
}
public void lockOk() {
mLock.lock();
f = 42;
mLock.unlock();
}
public void lockBothBranchesOk(boolean b) {
if (b) {
mLock.lock();
} else {
mLock.lock();
}
f = 42;
mLock.unlock();
}
public void reentrantLockOk() {
mReentrantLock.lock();
f = 42;
mReentrantLock.unlock();
}
public void normalLockTryLockOk() {
if (mLock.tryLock()) {
f = 42;
mLock.unlock();
}
}
public void reentrantLockTryLockOk() {
if (mReentrantLock.tryLock()) {
f = 42;
mReentrantLock.unlock();
}
}
public void tryLockNoCheckBad() {
mReentrantLock.tryLock(); // might return false
f = 42;
}
public void tryLockWrongBranchBad() {
if (mReentrantLock.tryLock()) {
} else {
f = 42;
}
}
public void tryLockPropagateOk() {
boolean result = mReentrantLock.tryLock();
boolean copy = result;
if (copy) {
f = 42;
}
}
public void negatedReentrantLockTryLockBad() {
if (!mReentrantLock.tryLock()) {
f = 42;
}
}
public void negatedReentrantLockTryLockOk() {
if (!mReentrantLock.tryLock()) {
} else {
f = 42;
}
}
// we could catch this by invalidating the choice predicates whenever we update the lock domain
public void FN_tryLockStaleBad() {
boolean result = mReentrantLock.tryLock();
mReentrantLock.unlock();
if (result) {
f = 42; // oops, actually not safe
}
}
public void reentrantLockInterruptiblyOk() throws InterruptedException {
mReentrantLock.lockInterruptibly();
f = 42;
mReentrantLock.unlock();
}
private void acquireLock() {
mLock.lock();
}
public void acquireLockInCalleeOk() {
acquireLock();
f = 42;
mLock.unlock();
}
public void writeLockOk() {
mReadWriteLock.writeLock().lock();
f = 42;
mReadWriteLock.writeLock().unlock();
}
public void reentrantWriteLockOk() {
mReentrantReadWriteLock.writeLock().lock();
f = 42;
mReentrantReadWriteLock.writeLock().unlock();
}
private void releaseLock() {
mLock.unlock();
}
void nested1Ok() {
synchronized (this) {
synchronized (this) {
}
// a bad abstraction of locks will treat this as unlocked...
f = 32;
}
}
void nested2Ok() {
synchronized (this) {
synchronized (this) {
f = 32;
}
}
}
void nested3Ok() {
synchronized (this) {
f = 32;
synchronized (this) {
}
}
}
void nested1Bad() {
synchronized (this) {
synchronized (this) {
}
}
f = 32;
}
void nested2Bad() {
synchronized (this) {
}
f = 32;
synchronized (this) {
}
}
void nested3Bad() {
synchronized (this) {
}
synchronized (this) {
}
f = 32;
}
void useLock() {
synchronized (this) {
}
}
void useLockInCalleeBad() {
useLock();
f = 32;
}
void lockInLoopOk(int i) {
while (i > 0) {
i++;
mLock.lock();
}
f = 32;
}
void unlockInLoopOk(int i) {
mLock.lock();
while (i > 0) {
i++;
mLock.unlock();
}
f = 32;
}
void lockInLoopLexicalBad(int i) {
while (i > 0) {
i++;
synchronized(this) {
}
}
f = 32;
}
void lockInLoopLexicalOk(int i) {
while (i > 0) {
i++;
synchronized(this) {
f = 32;
}
}
}
void loopInLockLexicalBad(int i) {
synchronized(this) {
while (i > 0) {
i++;
}
f = 32;
}
}
public void unlockOneLockOk() {
mLock.lock();
mReentrantLock.lock();
mReentrantLock.unlock();
f = 42;
mLock.unlock();
}
// ... or here
public void FN_releaseLockInCalleeBad() {
mLock.lock();
releaseLock();
f = 42;
}
// we shouldn't be able to write when holding a readLock
public void FN_readLockOk() {
mReentrantReadWriteLock.readLock().lock();
f = 42;
mReentrantReadWriteLock.readLock().unlock();
}
boolean mField;
boolean readUnderLockOk() {
synchronized (this) {
return mField;
}
}
void writeUnderLockOk() {
synchronized (this) {
mField = true;
}
}
boolean readOutsideLock1Bad() {
synchronized (this) {
}
return mField;
}
boolean readOutsideLock2Bad() {
boolean tmp = mField;
synchronized (this) {
}
return tmp;
}
public boolean readInTryCatchWithLockOk() {
mLock.lock();
try {
return mField;
} finally {
mLock.unlock();
}
}
public void writeInsideTryCatchWithLockOk() {
mLock.lock();
try {
mField = true;
} finally {
mLock.unlock();
}
}
Object mField2;
private synchronized void lockedWriteInCallee() {
this.mField2 = null;
}
public static void ownedLockedReadOk() {
Locks owned = new Locks();
owned.lockedWriteInCallee();
}
public Object unownedReadOk() {
// safe because the only other access to mField is owned
return this.mField2;
}
Object mField3;
private synchronized void lockedWriteInCallee2() {
this.mField3 = null;
}
public void unownedLockedWriteOk() {
lockedWriteInCallee2();
}
public Object unownedReadBad() {
return this.mField3;
}
}