You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

628 lines
26 KiB

(*
* Copyright (c) 2009 -2013 Monoidics ltd.
* Copyright (c) 2013 - Facebook.
* All rights reserved.
*)
(** Abstraction for Arrays *)
module L = Logging
module F = Format
open Utils
type sigma = Sil.hpred list
(** Matcher for the sigma part specialized to strexps *)
module StrexpMatch : sig
(** path through a strexp *)
type path
(** convert a path into a list of expressions *)
val path_to_exps : path -> Sil.exp list
(** create a path from a root and a list of offsets *)
val path_from_exp_offsets : Sil.exp -> Sil.offset list -> path
(** path to the root, size, elements and type of a new_array *)
type strexp_data = path * Sil.strexp * Sil.typ
(** sigma with info about a current array *)
type t
(** Find a strexp at the given path. Can raise [Not_found] *)
val find_path : sigma -> path -> t
(** Find a strexp with the given property. *)
val find : sigma -> (sigma -> strexp_data -> bool) -> t list
(** Get the array *)
val get_data : t -> strexp_data
(** Get the partition of the sigma: the unmatched part of the sigma and the matched hpred *)
val get_sigma_partition : t -> sigma * Sil.hpred
(** Replace the strexp at a given position by a new strexp *)
val replace_strexp : bool -> t -> Sil.strexp -> sigma
(** Replace the strexp and the unmatched part of the sigma by the givn inputs *)
val replace_strexp_sigma : bool -> t -> Sil.strexp -> sigma -> sigma
(** Replace the index in the array at a given position with the new index *)
val replace_index : bool -> t -> Sil.exp -> Sil.exp -> sigma
end = struct
(** syntactic offset *)
type syn_offset = Field of Ident.fieldname * Sil.typ | Index of Sil.exp
(** path through an Estruct *)
type path = Sil.exp * (syn_offset list)
(** Find a strexp and a type at the given syntactic offset list *)
let rec get_strexp_at_syn_offsets se t syn_offs =
match se, t, syn_offs with
| _, _, [] -> (se, t)
| Sil.Estruct (fsel, _), Sil.Tstruct (ftal, sftal, _, _, _, _, _), Field (fld, _) :: syn_offs' ->
let se' = snd (list_find (fun (f', se') -> Sil.fld_equal f' fld) fsel) in
let t' = (fun (x,y,z) -> y) (list_find (fun (f', t', a') -> Sil.fld_equal f' fld) ftal) in
get_strexp_at_syn_offsets se' t' syn_offs'
| Sil.Earray (size, esel, _), Sil.Tarray(t', _), Index ind :: syn_offs' ->
let se' = snd (list_find (fun (i', se') -> Sil.exp_equal i' ind) esel) in
get_strexp_at_syn_offsets se' t' syn_offs'
| _ ->
L.d_strln "Failure of get_strexp_at_syn_offsets";
L.d_str "se: "; Sil.d_sexp se; L.d_ln ();
L.d_str "t: "; Sil.d_typ_full t; L.d_ln ();
assert false
(** Replace a strexp at the given syntactic offset list *)
let rec replace_strexp_at_syn_offsets se t syn_offs update =
match se, t, syn_offs with
| _, _, [] ->
update se t
| Sil.Estruct (fsel, inst), Sil.Tstruct (ftal, sftal, _, _, _, _, _), Field (fld, _) :: syn_offs' ->
let se' = snd (list_find (fun (f', _) -> Sil.fld_equal f' fld) fsel) in
let t' = (fun (x,y,z) -> y) (list_find (fun (f', _, _) -> Sil.fld_equal f' fld) ftal) in
let se_mod = replace_strexp_at_syn_offsets se' t' syn_offs' update in
let fsel' = list_map (fun (f'', se'') -> if Sil.fld_equal f'' fld then (fld, se_mod) else (f'', se'')) fsel in
Sil.Estruct (fsel', inst)
| Sil.Earray (size, esel, inst), Sil.Tarray (t', _), Index idx :: syn_offs' ->
let se' = snd (list_find (fun (i', _) -> Sil.exp_equal i' idx) esel) in
let se_mod = replace_strexp_at_syn_offsets se' t' syn_offs' update in
let esel' = list_map (fun ese -> if Sil.exp_equal (fst ese) idx then (idx, se_mod) else ese) esel in
Sil.Earray (size, esel', inst)
| _ -> assert false
(** convert a path into an expression *)
let path_to_exps (root, syn_offs_in) =
let rec convert acc = function
| [] -> acc
| Field (f, t) :: syn_offs' ->
let acc' = list_map (fun e -> Sil.Lfield (e, f, t)) acc in
convert acc' syn_offs'
| Index idx :: syn_offs' ->
let acc' = list_map (fun e -> Sil.Lindex (e, idx)) acc in
convert acc' syn_offs' in
begin
convert [root] syn_offs_in
end
(** create a path from a root and a list of offsets *)
let path_from_exp_offsets root offs =
let offset_to_syn_offset = function
| Sil.Off_fld (fld, typ) -> Field (fld, typ)
| Sil.Off_index idx -> Index idx in
let syn_offs = list_map offset_to_syn_offset offs in
(root, syn_offs)
(** path to the root, size, elements and type of a new_array *)
type strexp_data = path * Sil.strexp * Sil.typ
(** Store hpred using physical equality, and offset list for an array *)
type t = sigma * Sil.hpred * (syn_offset list)
(** Find an array at the given path. Can raise [Not_found] *)
let find_path sigma (root, syn_offs) : t =
let filter = function
| Sil.Hpointsto (e, _, _) -> Sil.exp_equal root e
| _ -> false in
let hpred = list_find filter sigma in
(sigma, hpred, syn_offs)
(** Find a sub strexp with the given property. Can raise [Not_found] *)
let find (sigma : sigma) (pred : sigma -> strexp_data -> bool) : t list =
let found = ref [] in
let rec find_offset_sexp sigma_other hpred root offs se typ =
let offs' = list_rev offs in
let path = (root, offs') in
if pred sigma_other (path, se, typ) then found := (sigma, hpred, offs') :: !found
else begin
match se, typ with
| Sil.Estruct (fsel, _), Sil.Tstruct (ftal, sftal, _, _, _, _, _) ->
find_offset_fsel sigma_other hpred root offs fsel ftal typ
| Sil.Earray (size, esel, _), Sil.Tarray (t, _) ->
find_offset_esel sigma_other hpred root offs esel t
| _ -> ()
end
and find_offset_fsel sigma_other hpred root offs fsel ftal typ = match fsel with
| [] -> ()
| (f, se) :: fsel' ->
begin
try
let t = (fun (x,y,z) -> y) (list_find (fun (f', t, a) -> Sil.fld_equal f' f) ftal) in
find_offset_sexp sigma_other hpred root ((Field (f, typ)) :: offs) se t
with Not_found ->
L.d_strln ("Can't find field " ^ (Ident.fieldname_to_string f) ^ " in StrexpMatch.find")
end;
find_offset_fsel sigma_other hpred root offs fsel' ftal typ
and find_offset_esel sigma_other hpred root offs esel t = match esel with
| [] -> ()
| (ind, se) :: esel' ->
begin
find_offset_sexp sigma_other hpred root ((Index ind):: offs) se t;
find_offset_esel sigma_other hpred root offs esel' t
end in
let rec iterate sigma_seen = function
| [] -> ()
| hpred :: sigma_rest ->
begin
match hpred with
| Sil.Hpointsto (root, se, te) ->
let sigma_other = sigma_seen @ sigma_rest in
find_offset_sexp sigma_other hpred root [] se (Sil.texp_to_typ None te)
| _ -> ()
end;
iterate (hpred:: sigma_seen) sigma_rest in
begin
iterate [] sigma;
!found
end
(** Get the matched strexp *)
let get_data ((_ , hpred, syn_offs) : t) = match hpred with
| Sil.Hpointsto (root, se, te) ->
let t = Sil.texp_to_typ None te in
let se', t' = get_strexp_at_syn_offsets se t syn_offs in
let path' = (root, syn_offs) in
(path', se', t')
| _ -> assert false
(** Get the partition of the sigma: the unmatched part of the sigma and the matched hpred *)
let get_sigma_partition (sigma, hpred, _) =
let sigma_unmatched = list_filter (fun hpred' -> not (hpred' == hpred)) sigma in
(sigma_unmatched, hpred)
(** Replace the current hpred *)
let replace_hpred ((sigma, hpred, syn_offs) : t) hpred' =
list_map (fun hpred'' -> if hpred''== hpred then hpred' else hpred'') sigma
(** Replace the strexp at the given offset in the given hpred *)
let hpred_replace_strexp footprint_part hpred syn_offs update =
let update se' t' =
let se_in = update se' t' in
match se', se_in with
| Sil.Earray (size, esel, inst1), Sil.Earray (_, esel_in, inst2) ->
let orig_indices = list_map fst esel in
let index_is_not_new idx = list_exists (Sil.exp_equal idx) orig_indices in
let process_index idx =
if index_is_not_new idx then idx else (Sil.array_clean_new_index footprint_part idx) in
let esel_in' = list_map (fun (idx, se) -> process_index idx, se) esel_in in
Sil.Earray (size, esel_in', inst2)
| _, _ -> se_in in
begin
match hpred with
| Sil.Hpointsto (root, se, te) ->
let t = Sil.texp_to_typ None te in
let se' = replace_strexp_at_syn_offsets se t syn_offs update in
Sil.Hpointsto (root, se', te)
| _ -> assert false
end
(** Replace the strexp at a given position by a new strexp *)
let replace_strexp footprint_part ((sigma, hpred, syn_offs) : t) se_in =
let update se' t' = se_in in
let hpred' = hpred_replace_strexp footprint_part hpred syn_offs update in
replace_hpred (sigma, hpred, syn_offs) hpred'
(** Replace the strexp and the unmatched part of the sigma by the given inputs *)
let replace_strexp_sigma footprint_part ((_, hpred, syn_offs) : t) se_in sigma_in =
let new_sigma = hpred :: sigma_in in
let sigma' = replace_strexp footprint_part (new_sigma, hpred, syn_offs) se_in in
list_sort Sil.hpred_compare sigma'
(** Replace the index in the array at a given position with the new index *)
let replace_index footprint_part ((sigma, hpred, syn_offs) : t) (index: Sil.exp) (index': Sil.exp) =
let update se' t' =
match se' with
| Sil.Earray (size, esel, inst) ->
let esel' = list_map (fun (e', se') -> if Sil.exp_equal e' index then (index', se') else (e', se')) esel in
Sil.Earray (size, esel', inst)
| _ -> assert false in
let hpred' = hpred_replace_strexp footprint_part hpred syn_offs update in
replace_hpred (sigma, hpred, syn_offs) hpred'
end
(** This function renames expressions in [p]. The renaming is, roughly
speaking, to replace [path.i] by [path.i'] for all (i, i') in [map]. *)
let prop_replace_path_index
(p: Prop.exposed Prop.t)
(path: StrexpMatch.path)
(map : (Sil.exp * Sil.exp) list) : Prop.exposed Prop.t
=
let elist_path = StrexpMatch.path_to_exps path in
let expmap_list =
list_fold_left (fun acc_outer e_path ->
list_fold_left (fun acc_inner (old_index, new_index) ->
let old_e_path_index = Prop.exp_normalize_prop p (Sil.Lindex(e_path, old_index)) in
let new_e_path_index = Prop.exp_normalize_prop p (Sil.Lindex(e_path, new_index)) in
(old_e_path_index, new_e_path_index) :: acc_inner
) acc_outer map
) [] elist_path in
let expmap_fun e' =
try
let _, fresh_e = list_find (fun (e, _) -> Sil.exp_equal e e') expmap_list in
fresh_e
with Not_found -> e' in
Prop.prop_expmap expmap_fun p
(** This function uses [update] and transforms the two sigma parts of [p],
the sigma of the current SH of [p] and that of the footprint of [p]. *)
let prop_update_sigma_and_fp_sigma
(p : Prop.normal Prop.t)
(update : bool -> sigma -> sigma * bool) : Prop.normal Prop.t * bool
=
let sigma', changed = update false (Prop.get_sigma p) in
let ep1 = Prop.replace_sigma sigma' p in
let ep2, changed2 =
if !Config.footprint then
let sigma_fp', changed' = update true (Prop.get_sigma_footprint ep1) in
(Prop.replace_sigma_footprint sigma_fp' ep1, changed')
else (ep1, false) in
(Prop.normalize ep2, changed || changed2)
(** This function uses [update] and transforms the sigma of the
current SH of [p] or that of the footprint of [p], depending on
[footprint_part]. *)
let prop_update_sigma_or_fp_sigma
(footprint_part : bool)
(p : Prop.normal Prop.t)
(update : bool -> sigma -> sigma * bool) : Prop.normal Prop.t * bool
=
let ep1, changed1 =
if footprint_part then (Prop.expose p, false)
else
let sigma', changed = update false (Prop.get_sigma p) in
(Prop.replace_sigma sigma' p, changed) in
let ep2, changed2 =
if not footprint_part then (ep1, false)
else
begin
(if not !Config.footprint then assert false); (* always run in the footprint mode *)
let sigma_fp', changed = update true (Prop.get_sigma_footprint ep1) in
(Prop.replace_sigma_footprint sigma_fp' ep1, changed)
end in
(Prop.normalize ep2, changed1 || changed2)
(** Remember whether array abstraction was performed (to be reset before calling Abs.abstract) *)
let array_abstraction_performed = ref false
(** This function abstracts strexps. The parameter [can_abstract] spots strexps
where the abstraction might be applicable, and the parameter [do_abstract] does
the abstraction to those spotted strexps. *)
let generic_strexp_abstract
(abstraction_name : string)
(p_in : Prop.normal Prop.t)
(_can_abstract : sigma -> StrexpMatch.strexp_data -> bool)
(do_abstract : bool -> Prop.normal Prop.t -> StrexpMatch.strexp_data -> Prop.normal Prop.t * bool)
: Prop.normal Prop.t
=
let can_abstract s data =
let r = _can_abstract s data in
if r then array_abstraction_performed := true;
r in
let find_strexp_to_abstract p0 =
let find sigma = StrexpMatch.find sigma can_abstract in
let matchings_cur = find (Prop.get_sigma p0) in
let matchings_fp = find (Prop.get_sigma_footprint p0) in
matchings_cur, matchings_fp in
let match_select_next (matchings_cur, matchings_fp) =
match matchings_cur, matchings_fp with
| [], [] -> raise Not_found
| matched :: cur', fp' -> matched, false, (cur', fp')
| [], matched :: fp' -> matched, true, ([], fp') in
let rec match_abstract p0 matchings_cur_fp =
try
let matched, footprint_part, matchings_cur_fp' = match_select_next matchings_cur_fp in
let n = list_length (snd matchings_cur_fp') + 1 in
if !Config.trace_absarray then (L.d_strln ("Num of fp candidates " ^ (string_of_int n)));
let strexp_data = StrexpMatch.get_data matched in
let p1, changed = do_abstract footprint_part p0 strexp_data in
if changed then (p1, true)
else match_abstract p0 matchings_cur_fp'
with
| Not_found -> (p0, false) in
let rec find_then_abstract bound p0 =
if bound = 0 then p0
else begin
if !Config.trace_absarray then (L.d_strln ("Applying " ^ abstraction_name ^ " to"); Prop.d_prop p0; L.d_ln (); L.d_ln ());
let matchings_cur_fp = find_strexp_to_abstract p0 in
let p1, changed = match_abstract p0 matchings_cur_fp in
if changed then find_then_abstract (bound - 1) p1 else p0
end in
let matchings_cur, matchings_fp = find_strexp_to_abstract p_in in
let num_matches = (list_length matchings_cur) + (list_length matchings_fp) in
begin
find_then_abstract num_matches p_in
end
(** Return [true] if there's a pointer to the index *)
let index_is_pointed_to (p: Prop.normal Prop.t) (path: StrexpMatch.path) (index: Sil.exp) : bool =
let indices =
let index_plus_one = Sil.BinOp(Sil.PlusA, index, Sil.exp_one) in
[index; index_plus_one] in
let add_index_to_paths =
let elist_path = StrexpMatch.path_to_exps path in
let add_index i e = Prop.exp_normalize_prop p (Sil.Lindex(e, i)) in
fun i -> list_map (add_index i) elist_path in
let pointers = list_flatten (list_map add_index_to_paths indices) in
let filter = function
| Sil.Hpointsto (_, Sil.Eexp (e, inst), _) -> list_exists (Sil.exp_equal e) pointers
| _ -> false in
list_exists filter (Prop.get_sigma p)
(** Given [p] containing an array at [path], blur [index] in it *)
let blur_array_index
(footprint_part: bool)
(p: Prop.normal Prop.t)
(path: StrexpMatch.path)
(index: Sil.exp) : Prop.normal Prop.t
=
try
let fresh_index = Sil.Var (Ident.create_fresh (if !Config.footprint then Ident.kfootprint else Ident.kprimed)) in
let p2 =
try
if !Config.footprint then
begin
let sigma_fp = Prop.get_sigma_footprint p in
let matched_fp = StrexpMatch.find_path sigma_fp path in
let sigma_fp' = StrexpMatch.replace_index true matched_fp index fresh_index in
Prop.replace_sigma_footprint sigma_fp' p
end
else Prop.expose p
with Not_found -> Prop.expose p in
let p3 =
let matched = StrexpMatch.find_path (Prop.get_sigma p) path in
let sigma' = StrexpMatch.replace_index false matched index fresh_index in
Prop.replace_sigma sigma' p2 in
let p4 =
let index_next = Sil.BinOp(Sil.PlusA, index, Sil.exp_one) in
let fresh_index_next = Sil.BinOp (Sil.PlusA, fresh_index, Sil.exp_one) in
let map = [(index, fresh_index); (index_next, fresh_index_next)] in
prop_replace_path_index p3 path map in
Prop.normalize p4
with Not_found -> p
(** Given [p] containing an array at [root], blur [indices] in it *)
let blur_array_indices
(footprint_part : bool)
(p: Prop.normal Prop.t)
(root: StrexpMatch.path)
(indices: Sil.exp list) : Prop.normal Prop.t * bool
=
let f prop index = blur_array_index footprint_part prop root index in
(list_fold_left f p indices, list_length indices > 0)
(** Given [p] containing an array at [root], only keep [indices] in it *)
let keep_only_indices
(footprint_part : bool)
(p: Prop.normal Prop.t)
(path: StrexpMatch.path)
(indices: Sil.exp list) : Prop.normal Prop.t * bool
=
let prune_sigma footprint_part sigma =
try
let matched = StrexpMatch.find_path sigma path in
let (_, se, _) = StrexpMatch.get_data matched in
match se with
| Sil.Earray (size, esel, inst) ->
let esel', esel_leftover' = list_partition (fun (e, _) -> list_exists (Sil.exp_equal e) indices) esel in
if esel_leftover' == [] then (sigma, false)
else begin
let se' = Sil.Earray (size, esel', inst) in
let sigma' = StrexpMatch.replace_strexp footprint_part matched se' in
(sigma', true)
end
| _ -> (sigma, false)
with Not_found -> (sigma, false) in
prop_update_sigma_and_fp_sigma p prune_sigma
(** If the type is array, check whether we should do abstraction *)
let array_typ_can_abstract = function
| Sil.Tarray (Sil.Tptr (Sil.Tfun _, _), _) -> false (* don't abstract arrays of pointers *)
| _ -> true
(** This function checks whether we can apply an abstraction to a strexp *)
let strexp_can_abstract sigma_rest ((_, se, typ) : StrexpMatch.strexp_data) : bool =
let can_abstract_se = match se with
| Sil.Earray (size, esel, _) ->
let len = list_length esel in
len > 1
| _ -> false in
can_abstract_se && array_typ_can_abstract typ
(** This function abstracts a strexp *)
let strexp_do_abstract footprint_part p ((path, se_in, typ_in) : StrexpMatch.strexp_data) : Prop.normal Prop.t * bool =
if !Config.trace_absarray && footprint_part then (L.d_str "strexp_do_abstract (footprint)"; L.d_ln ());
if !Config.trace_absarray && not footprint_part then (L.d_str "strexp_do_abstract (nonfootprint)"; L.d_ln ());
let prune_and_blur d_keys keep blur path keep_keys blur_keys =
let p2, changed2 =
if !Config.trace_absarray then (L.d_str "keep "; d_keys keep_keys; L.d_ln ());
keep p path keep_keys in
let p3, changed3 =
if blur_keys == [] then (p2, false)
else begin
if !Config.trace_absarray then (L.d_str "blur "; d_keys blur_keys; L.d_ln ());
blur p2 path blur_keys
end in
if !Config.trace_absarray then (L.d_strln "Returns"; Prop.d_prop p3; L.d_ln (); L.d_ln ());
(p3, changed2 || changed3) in
let prune_and_blur_indices =
prune_and_blur Sil.d_exp_list
(keep_only_indices footprint_part)
(blur_array_indices footprint_part) in
let partition_abstract should_keep abstract ksel default_keys =
let keep_ksel, remove_ksel = list_partition should_keep ksel in
let keep_keys, remove_keys, keys =
list_map fst keep_ksel, list_map fst remove_ksel, list_map fst ksel in
let keep_keys' = if keep_keys == [] then default_keys else keep_keys in
abstract keep_keys' keep_keys' in
let do_array_footprint esel =
(* array case footprint: keep only the last index, and blur it *)
let should_keep (i0, _) = index_is_pointed_to p path i0 in
let abstract = prune_and_blur_indices path in
let default_indices =
match list_map fst esel with
| [] -> []
| indices -> [list_hd (list_rev indices)] (* keep last key at least *) in
partition_abstract should_keep abstract esel default_indices in
let do_footprint () =
match se_in with
| Sil.Earray (_, esel, _) -> do_array_footprint esel
| _ -> assert false in
let filter_abstract d_keys should_keep abstract ksel default_keys =
let keep_ksel = list_filter should_keep ksel in
let keep_keys = list_map fst keep_ksel in
let keep_keys' = if keep_keys == [] then default_keys else keep_keys in
if !Config.trace_absarray then (L.d_str "keep "; d_keys keep_keys'; L.d_ln ());
abstract keep_keys' [] in
let do_array_reexecution esel =
(* array case re-execution: remove and blur constant and primed indices *)
let is_pointed index = index_is_pointed_to p path index in
let should_keep (index, _) = match index with
| Sil.Const _ -> is_pointed index
| Sil.Var id -> Ident.is_normal id || is_pointed index
| _ -> false in
let abstract = prune_and_blur_indices path in
filter_abstract Sil.d_exp_list should_keep abstract esel [] in
let do_reexecution () =
match se_in with
| Sil.Earray (_, esel, _) -> do_array_reexecution esel
| _ -> assert false in
if !Config.footprint then do_footprint ()
else do_reexecution ()
let strexp_abstract (p : Prop.normal Prop.t) : Prop.normal Prop.t =
generic_strexp_abstract "strexp_abstract" p strexp_can_abstract strexp_do_abstract
let report_error prop =
L.d_strln "Check after array abstraction: FAIL";
Prop.d_prop prop; L.d_ln ();
assert false
let check_footprint_pure prop =
let fav_pure = Sil.fav_new () in
Prop.pi_fav_add fav_pure (Prop.get_pure prop @ Prop.get_pi_footprint prop);
let fav_sigma = Sil.fav_new () in
Prop.sigma_fav_add fav_sigma (Prop.get_sigma prop @ Prop.get_sigma_footprint prop);
Sil.fav_filter_ident fav_pure Ident.is_footprint;
Sil.fav_filter_ident fav_sigma Ident.is_footprint;
if not (Sil.fav_subset_ident fav_pure fav_sigma)
then (L.d_strln "footprint vars in pure and not in sigma"; report_error prop)
(** Check performed after the array abstraction to see whether it was successful. Raise assert false in case of failure *)
let check_after_array_abstraction prop =
let check_index root offs (ind, _) =
if !Config.footprint then
let path = StrexpMatch.path_from_exp_offsets root offs in
index_is_pointed_to prop path ind
else not (Sil.fav_exists (Sil.exp_fav ind) Ident.is_primed) in
let rec check_se root offs typ = function
| Sil.Eexp _ -> ()
| Sil.Earray (_, esel, _) -> (* check that no more than 2 elements are in the array *)
let typ_elem = Sil.array_typ_elem (Some Sil.Tvoid) typ in
if list_length esel > 2 && array_typ_can_abstract typ then
if list_for_all (check_index root offs) esel then ()
else report_error prop
else list_iter (fun (ind, se) -> check_se root (offs @ [Sil.Off_index ind]) typ_elem se) esel
| Sil.Estruct (fsel, _) ->
list_iter (fun (f, se) ->
let typ_f = Sil.struct_typ_fld (Some Sil.Tvoid) f typ in
check_se root (offs @ [Sil.Off_fld (f, typ)]) typ_f se) fsel in
let check_hpred = function
| Sil.Hpointsto (root, se, texp) ->
let typ = Sil.texp_to_typ (Some Sil.Tvoid) texp in
check_se root [] typ se
| Sil.Hlseg _ | Sil.Hdllseg _ -> () in
let check_sigma sigma = list_iter check_hpred sigma in
(* check_footprint_pure prop; *)
check_sigma (Prop.get_sigma prop);
check_sigma (Prop.get_sigma_footprint prop)
(** Apply array abstraction and check the result *)
let abstract_array_check p =
let p_res = strexp_abstract p in
check_after_array_abstraction p_res;
p_res
(** remove redundant elements in an array *)
let remove_redundant_elements prop =
Prop.d_prop prop; L.d_ln ();
let occurs_at_most_once : Ident.t -> bool = (* the variable occurs at most once in the footprint or current part *)
let fav_curr = Sil.fav_new () in
let fav_foot = Sil.fav_new () in
Sil.fav_duplicates := true;
Sil.sub_fav_add fav_curr (Prop.get_sub prop);
Prop.pi_fav_add fav_curr (Prop.get_pi prop);
Prop.sigma_fav_add fav_curr (Prop.get_sigma prop);
Prop.pi_fav_add fav_foot (Prop.get_pi_footprint prop);
Prop.sigma_fav_add fav_foot (Prop.get_sigma_footprint prop);
let favl_curr = Sil.fav_to_list fav_curr in
let favl_foot = Sil.fav_to_list fav_foot in
Sil.fav_duplicates := false;
(* L.d_str "favl_curr "; list_iter (fun id -> Sil.d_exp (Sil.Var id)) favl_curr; L.d_ln();
L.d_str "favl_foot "; list_iter (fun id -> Sil.d_exp (Sil.Var id)) favl_foot; L.d_ln(); *)
let num_occur l id = list_length (list_filter (fun id' -> Ident.equal id id') l) in
let at_most_once v =
num_occur favl_curr v <= 1 && num_occur favl_foot v <= 1 in
at_most_once in
let modified = ref false in
let filter_redundant_e_se fp_part (e, se) =
let remove () =
L.d_strln "kill_redundant: removing "; Sil.d_exp e; L.d_str " "; Sil.d_sexp se; L.d_ln();
array_abstraction_performed := true;
modified := true;
false in
match e, se with
| Sil.Const (Sil.Cint i), Sil.Eexp (Sil.Var id, _) when (not fp_part || Sil.Int.iszero i) && Ident.is_normal id = false && occurs_at_most_once id ->
remove () (* unknown value can be removed in re-execution mode or if the index is zero *)
| Sil.Var id, Sil.Eexp _ when Ident.is_normal id = false && occurs_at_most_once id ->
remove () (* index unknown can be removed *)
| _ -> true in
let remove_redundant_se fp_part = function
| Sil.Earray (size, esel, inst) ->
let esel' = list_filter (filter_redundant_e_se fp_part) esel in
Sil.Earray (size, esel', inst)
| se -> se in
let remove_redundant_hpred fp_part = function
| Sil.Hpointsto (e, se, te) ->
let se' = remove_redundant_se fp_part se in
Sil.Hpointsto (e, se', te)
| hpred -> hpred in
let remove_redundant_sigma fp_part sigma = list_map (remove_redundant_hpred fp_part) sigma in
let sigma' = remove_redundant_sigma false (Prop.get_sigma prop) in
let foot_sigma' = remove_redundant_sigma true (Prop.get_sigma_footprint prop) in
if !modified then
let prop' = Prop.replace_sigma sigma' (Prop.replace_sigma_footprint foot_sigma' prop) in
Prop.normalize prop'
else prop