|
|
(*
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
*
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
*)
|
|
|
|
|
|
let%test_module _ =
|
|
|
( module struct
|
|
|
open Equality
|
|
|
|
|
|
let () = Trace.init ~margin:68 ()
|
|
|
|
|
|
(* let () =
|
|
|
* Trace.init ~margin:160
|
|
|
* ~config:(Result.ok_exn (Trace.parse "+Equality"))
|
|
|
* ()
|
|
|
*
|
|
|
* [@@@warning "-32"] *)
|
|
|
|
|
|
let printf pp = Format.printf "@\n%a@." pp
|
|
|
let pp = printf pp
|
|
|
let pp_classes = Format.printf "@\n@[<hv> %a@]@." pp_classes
|
|
|
let ( ! ) i = Term.integer (Z.of_int i)
|
|
|
let ( + ) = Term.add
|
|
|
let ( - ) = Term.sub
|
|
|
let ( * ) = Term.mul
|
|
|
let f = Term.unsigned 8
|
|
|
let g = Term.rem
|
|
|
let wrt = Var.Set.empty
|
|
|
let t_, wrt = Var.fresh "t" ~wrt
|
|
|
let u_, wrt = Var.fresh "u" ~wrt
|
|
|
let v_, wrt = Var.fresh "v" ~wrt
|
|
|
let w_, wrt = Var.fresh "w" ~wrt
|
|
|
let x_, wrt = Var.fresh "x" ~wrt
|
|
|
let y_, wrt = Var.fresh "y" ~wrt
|
|
|
let z_, wrt = Var.fresh "z" ~wrt
|
|
|
let t = Term.var t_
|
|
|
let u = Term.var u_
|
|
|
let v = Term.var v_
|
|
|
let w = Term.var w_
|
|
|
let x = Term.var x_
|
|
|
let y = Term.var y_
|
|
|
let z = Term.var z_
|
|
|
|
|
|
let of_eqs l =
|
|
|
List.fold ~init:(wrt, true_)
|
|
|
~f:(fun (us, r) (a, b) -> and_eq us a b r)
|
|
|
l
|
|
|
|> snd
|
|
|
|
|
|
let and_eq a b r = and_eq wrt a b r |> snd
|
|
|
let and_ r s = and_ wrt r s |> snd
|
|
|
let or_ r s = or_ wrt r s |> snd
|
|
|
|
|
|
(* tests *)
|
|
|
|
|
|
let f1 = of_eqs [(!0, !1)]
|
|
|
|
|
|
let%test _ = is_false f1
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp f1 ;
|
|
|
[%expect {| {sat= false; rep= [[-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = is_false (and_eq !1 !1 f1)
|
|
|
|
|
|
let f2 = of_eqs [(x, x + !1)]
|
|
|
|
|
|
let%test _ = is_false f2
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp f2 ;
|
|
|
[%expect {| {sat= false; rep= [[%x_5 ↦ ]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let f3 = of_eqs [(x + !0, x + !1)]
|
|
|
|
|
|
let%test _ = is_false f3
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp f3 ;
|
|
|
[%expect {| {sat= false; rep= [[%x_5 ↦ ]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let f4 = of_eqs [(x, y); (x + !0, y + !1)]
|
|
|
|
|
|
let%test _ = is_false f4
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp f4 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= false; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let t1 = of_eqs [(!1, !1)]
|
|
|
|
|
|
let%test _ = is_true t1
|
|
|
|
|
|
let t2 = of_eqs [(x, x)]
|
|
|
|
|
|
let%test _ = is_true t2
|
|
|
let%test _ = is_false (and_ f3 t2)
|
|
|
let%test _ = is_false (and_ t2 f3)
|
|
|
|
|
|
let r0 = true_
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r0 ;
|
|
|
[%expect {| {sat= true; rep= [[-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r0 ;
|
|
|
[%expect {||}]
|
|
|
|
|
|
let%test _ = difference r0 (f x) (f x) |> Poly.equal (Some (Z.of_int 0))
|
|
|
let%test _ = difference r0 !4 !3 |> Poly.equal (Some (Z.of_int 1))
|
|
|
|
|
|
let r1 = of_eqs [(x, y)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r1 ;
|
|
|
pp r1 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
%x_5 = %y_6
|
|
|
|
|
|
{sat= true; rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r1 x y
|
|
|
|
|
|
let r2 = of_eqs [(x, y); (f x, y); (f y, z)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r2 ;
|
|
|
pp r2 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
%x_5 = %y_6 = %z_7 = ((u8) %x_5)
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ ];
|
|
|
[%y_6 ↦ %x_5];
|
|
|
[%z_7 ↦ %x_5];
|
|
|
[((u8) %x_5) ↦ %x_5];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r2 x z
|
|
|
let%test _ = entails_eq (or_ r1 r2) x y
|
|
|
let%test _ = not (entails_eq (or_ r1 r2) x z)
|
|
|
let%test _ = entails_eq (or_ f1 r2) x z
|
|
|
let%test _ = entails_eq (or_ r2 f3) x z
|
|
|
let%test _ = entails_eq r2 (f y) y
|
|
|
let%test _ = entails_eq r2 (f x) (f z)
|
|
|
let%test _ = entails_eq r2 (g x y) (g z y)
|
|
|
let%test _ = difference (or_ r1 r2) x z |> Poly.equal None
|
|
|
|
|
|
let%expect_test _ =
|
|
|
let r = of_eqs [(w, y); (y, z)] in
|
|
|
let s = of_eqs [(x, y); (y, z)] in
|
|
|
let rs = or_ r s in
|
|
|
pp r ;
|
|
|
pp s ;
|
|
|
pp rs ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= true;
|
|
|
rep= [[%w_4 ↦ ]; [%y_6 ↦ %w_4]; [%z_7 ↦ %w_4]; [-1 ↦ ]; [0 ↦ ]]}
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ ]; [%y_6 ↦ %x_5]; [%z_7 ↦ %x_5]; [-1 ↦ ]; [0 ↦ ]]}
|
|
|
|
|
|
{sat= true; rep= [[%y_6 ↦ ]; [%z_7 ↦ %y_6]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ =
|
|
|
let r = of_eqs [(w, y); (y, z)] in
|
|
|
let s = of_eqs [(x, y); (y, z)] in
|
|
|
let rs = or_ r s in
|
|
|
entails_eq rs y z
|
|
|
|
|
|
let r3 = of_eqs [(g y z, w); (v, w); (g y w, t); (x, v); (x, u); (u, z)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r3 ;
|
|
|
pp r3 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
%t_1 = %u_2 = %v_3 = %w_4 = %x_5 = %z_7 = (%y_6 rem %t_1)
|
|
|
= (%y_6 rem %t_1)
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%t_1 ↦ ];
|
|
|
[%u_2 ↦ %t_1];
|
|
|
[%v_3 ↦ %t_1];
|
|
|
[%w_4 ↦ %t_1];
|
|
|
[%x_5 ↦ %t_1];
|
|
|
[%y_6 ↦ ];
|
|
|
[%z_7 ↦ %t_1];
|
|
|
[(%y_6 rem %v_3) ↦ %t_1];
|
|
|
[(%y_6 rem %z_7) ↦ %t_1];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r3 t z
|
|
|
let%test _ = entails_eq r3 x z
|
|
|
let%test _ = entails_eq (and_ r2 r3) x z
|
|
|
|
|
|
let r4 = of_eqs [(w + !2, x - !3); (x - !5, y + !7); (y, z - !4)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r4 ;
|
|
|
pp r4 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
(%z_7 + -4) = %y_6 ∧ (%z_7 + 3) = %w_4 ∧ (%z_7 + 8) = %x_5
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%w_4 ↦ (%z_7 + 3)];
|
|
|
[%x_5 ↦ (%z_7 + 8)];
|
|
|
[%y_6 ↦ (%z_7 + -4)];
|
|
|
[%z_7 ↦ ];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r4 x (w + !5)
|
|
|
let%test _ = difference r4 x w |> Poly.equal (Some (Z.of_int 5))
|
|
|
|
|
|
let r5 = of_eqs [(x, y); (g w x, y); (g w y, f z)]
|
|
|
|
|
|
let%test _ = Var.Set.equal (fv r5) (Var.Set.of_list [w_; x_; y_; z_])
|
|
|
|
|
|
let r6 = of_eqs [(x, !1); (!1, y)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r6 ;
|
|
|
pp r6 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
1 = %x_5 = %y_6
|
|
|
|
|
|
{sat= true; rep= [[%x_5 ↦ 1]; [%y_6 ↦ 1]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r6 x y
|
|
|
|
|
|
let r7 = of_eqs [(v, x); (w, z); (y, z)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r7 ;
|
|
|
pp r7 ;
|
|
|
pp (and_eq x z r7) ;
|
|
|
pp_classes (and_eq x z r7) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
%v_3 = %x_5 ∧ %w_4 = %y_6 = %z_7
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%v_3 ↦ ];
|
|
|
[%w_4 ↦ ];
|
|
|
[%x_5 ↦ %v_3];
|
|
|
[%y_6 ↦ %w_4];
|
|
|
[%z_7 ↦ %w_4];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]}
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%v_3 ↦ ];
|
|
|
[%w_4 ↦ %v_3];
|
|
|
[%x_5 ↦ %v_3];
|
|
|
[%y_6 ↦ %v_3];
|
|
|
[%z_7 ↦ %v_3];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]}
|
|
|
|
|
|
%v_3 = %w_4 = %x_5 = %y_6 = %z_7 |}]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
printf (List.pp " , " Term.pp) (Equality.class_of r7 t) ;
|
|
|
printf (List.pp " , " Term.pp) (Equality.class_of r7 x) ;
|
|
|
printf (List.pp " , " Term.pp) (Equality.class_of r7 z) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
%t_1
|
|
|
|
|
|
%v_3 , %x_5
|
|
|
|
|
|
%w_4 , %z_7 , %y_6 |}]
|
|
|
|
|
|
let r7' = and_eq x z r7
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r7' ;
|
|
|
pp r7' ;
|
|
|
[%expect
|
|
|
{|
|
|
|
%v_3 = %w_4 = %x_5 = %y_6 = %z_7
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%v_3 ↦ ];
|
|
|
[%w_4 ↦ %v_3];
|
|
|
[%x_5 ↦ %v_3];
|
|
|
[%y_6 ↦ %v_3];
|
|
|
[%z_7 ↦ %v_3];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = normalize r7' w |> Term.equal v
|
|
|
|
|
|
let%test _ =
|
|
|
entails_eq (of_eqs [(g w x, g y z); (x, z)]) (g w x) (g w z)
|
|
|
|
|
|
let%test _ =
|
|
|
entails_eq (of_eqs [(g w x, g y w); (x, z)]) (g w x) (g w z)
|
|
|
|
|
|
let r8 = of_eqs [(x + !42, (!3 * y) + (!13 * z)); (!13 * z, x)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r8 ;
|
|
|
pp r8 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
(13 × %z_7) = %x_5 ∧ 14 = %y_6
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ (13 × %z_7)]; [%y_6 ↦ 14]; [%z_7 ↦ ]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r8 y !14
|
|
|
|
|
|
let r9 = of_eqs [(x, z - !16)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r9 ;
|
|
|
pp r9 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
(%z_7 + -16) = %x_5
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ (%z_7 + -16)]; [%z_7 ↦ ]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = difference r9 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
|
|
|
|
|
|
let r10 = of_eqs [(!16, z - x)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r10 ;
|
|
|
pp r10 ;
|
|
|
Format.printf "@.%a@." Term.pp (z - (x + !8)) ;
|
|
|
Format.printf "@.%a@." Term.pp (normalize r10 (z - (x + !8))) ;
|
|
|
Format.printf "@.%a@." Term.pp (x + !8 - z) ;
|
|
|
Format.printf "@.%a@." Term.pp (normalize r10 (x + !8 - z)) ;
|
|
|
[%expect
|
|
|
{|
|
|
|
(%z_7 + -16) = %x_5
|
|
|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ (%z_7 + -16)]; [%z_7 ↦ ]; [-1 ↦ ]; [0 ↦ ]]}
|
|
|
|
|
|
(-1 × %x_5 + %z_7 + -8)
|
|
|
|
|
|
8
|
|
|
|
|
|
(%x_5 + -1 × %z_7 + 8)
|
|
|
|
|
|
-8 |}]
|
|
|
|
|
|
let%test _ = difference r10 z (x + !8) |> Poly.equal (Some (Z.of_int 8))
|
|
|
|
|
|
let%test _ =
|
|
|
difference r10 (x + !8) z |> Poly.equal (Some (Z.of_int (-8)))
|
|
|
|
|
|
let r11 = of_eqs [(!16, z - x); (x + !8 - z, z - !16 + !8 - z)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r11 ;
|
|
|
[%expect {| (%z_7 + -16) = %x_5 |}]
|
|
|
|
|
|
let r12 = of_eqs [(!16, z - x); (x + !8 - z, z + !16 + !8 - z)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp_classes r12 ;
|
|
|
[%expect {| (%z_7 + -16) = %x_5 |}]
|
|
|
|
|
|
let r13 = of_eqs [(Term.eq x !2, y); (Term.dq x !2, z); (y, z)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r13 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ ];
|
|
|
[%y_6 ↦ ];
|
|
|
[%z_7 ↦ %y_6];
|
|
|
[(%x_5 = 2) ↦ %y_6];
|
|
|
[(%x_5 ≠ 2) ↦ %y_6];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = not (is_false r13) (* incomplete *)
|
|
|
|
|
|
let a = Term.dq x !0
|
|
|
let r14 = of_eqs [(a, a); (x, !1)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r14 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= true; rep= [[%x_5 ↦ 1]; [(%x_5 ≠ 0) ↦ -1]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r14 a Term.true_
|
|
|
|
|
|
let b = Term.dq y !0
|
|
|
let r14 = of_eqs [(a, b); (x, !1)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r14 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ 1];
|
|
|
[%y_6 ↦ ];
|
|
|
[(%x_5 ≠ 0) ↦ -1];
|
|
|
[(%y_6 ≠ 0) ↦ -1];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r14 a Term.true_
|
|
|
let%test _ = entails_eq r14 b Term.true_
|
|
|
|
|
|
let b = Term.dq x !0
|
|
|
let r15 = of_eqs [(b, b); (x, !1)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r15 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= true; rep= [[%x_5 ↦ 1]; [(%x_5 ≠ 0) ↦ -1]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r15 b (Term.signed 1 !1)
|
|
|
let%test _ = entails_eq r15 (Term.unsigned 1 b) !1
|
|
|
|
|
|
(* f(x−1)−1=x+1, f(y)+1=y−1, y+1=x ⊢ false *)
|
|
|
let r16 =
|
|
|
of_eqs [(f (x - !1) - !1, x + !1); (f y + !1, y - !1); (y + !1, x)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r16 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= false;
|
|
|
rep= [[%x_5 ↦ (%y_6 + 1)];
|
|
|
[%y_6 ↦ ];
|
|
|
[((u8) %y_6) ↦ (%y_6 + -2)];
|
|
|
[((u8) (%x_5 + -1)) ↦ (%y_6 + 3)];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = is_false r16
|
|
|
|
|
|
(* f(x) = x, f(y) = y − 1, y = x ⊢ false *)
|
|
|
let r17 = of_eqs [(f x, x); (f y, y - !1); (y, x)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r17 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= false;
|
|
|
rep= [[%x_5 ↦ ];
|
|
|
[%y_6 ↦ %x_5];
|
|
|
[((u8) %x_5) ↦ %x_5];
|
|
|
[((u8) %y_6) ↦ (%x_5 + -1)];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = is_false r17
|
|
|
|
|
|
let%expect_test _ =
|
|
|
let r18 = of_eqs [(f x, x); (f y, y - !1)] in
|
|
|
pp r18 ;
|
|
|
pp_classes r18 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ ];
|
|
|
[%y_6 ↦ ];
|
|
|
[((u8) %x_5) ↦ %x_5];
|
|
|
[((u8) %y_6) ↦ (%y_6 + -1)];
|
|
|
[-1 ↦ ];
|
|
|
[0 ↦ ]]}
|
|
|
|
|
|
%x_5 = ((u8) %x_5) ∧ (%y_6 + -1) = ((u8) %y_6) |}]
|
|
|
|
|
|
let r19 = of_eqs [(x, y + z); (x, !0); (y, !0)]
|
|
|
|
|
|
let%expect_test _ =
|
|
|
pp r19 ;
|
|
|
[%expect
|
|
|
{|
|
|
|
{sat= true;
|
|
|
rep= [[%x_5 ↦ 0]; [%y_6 ↦ 0]; [%z_7 ↦ 0]; [-1 ↦ ]; [0 ↦ ]]} |}]
|
|
|
|
|
|
let%test _ = entails_eq r19 z !0
|
|
|
|
|
|
let%expect_test _ =
|
|
|
Equality.replay
|
|
|
{|(And_eq () (Var (id 10) (name v))
|
|
|
(Mul (((Var (id 8) (name v)) 1) ((Var (id 9) (name v)) 1)))
|
|
|
((xs ()) (sat true) (rep ())))|} ;
|
|
|
[%expect {| |}]
|
|
|
end )
|