You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1403 lines
57 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
open AbsLoc
open! AbstractDomain.Types
module L = Logging
module BoUtils = BufferOverrunUtils
module Dom = BufferOverrunDomain
module PO = BufferOverrunProofObligations
module Sem = BufferOverrunSemantics
module Relation = BufferOverrunDomainRelation
module Trace = BufferOverrunTrace
open BoUtils.ModelEnv
module Val = struct
type t = unit
end
open ProcnameDispatcher.Call.FuncArg
type exec_fun = model_env -> ret:Ident.t * Typ.t -> Dom.Mem.t -> Dom.Mem.t
type check_fun = model_env -> Dom.Mem.t -> PO.ConditionSet.checked_t -> PO.ConditionSet.checked_t
type model = {exec: exec_fun; check: check_fun}
let no_check _model_env _mem cond_set = cond_set
let no_model =
let exec {pname; location} ~ret:(id, _) mem =
L.d_printfln_escaped "No model for %a" Typ.Procname.pp pname ;
Dom.Mem.add_unknown_from id ~callee_pname:pname ~location mem
in
{exec; check= no_check}
let at ?(size = Int64.zero) array_exp index_exp =
(* TODO? use size *)
let exec {integer_type_widths} ~ret:(id, _) mem =
L.d_printfln_escaped "Using model std::array<_, %Ld>::at" size ;
Dom.Mem.add_stack (Loc.of_id id)
(Sem.eval_lindex integer_type_widths array_exp index_exp mem)
mem
and check {location; integer_type_widths} mem cond_set =
BoUtils.Check.lindex integer_type_widths ~array_exp ~index_exp ~last_included:false mem location
cond_set
in
{exec; check}
let eval_binop ~f e1 e2 =
let exec {integer_type_widths} ~ret:(id, _) mem =
let i1 = Sem.eval integer_type_widths e1 mem |> Dom.Val.get_itv in
let i2 = Sem.eval integer_type_widths e2 mem |> Dom.Val.get_itv in
let v = f i1 i2 |> Dom.Val.of_itv in
Dom.Mem.add_stack (Loc.of_id id) v mem
in
{exec; check= no_check}
(* It returns a tuple of:
- type of array element
- stride of the type
- array size
- flexible array size *)
let get_malloc_info : Exp.t -> Typ.t * Int.t option * Exp.t * Exp.t option = function
| Exp.BinOp (Binop.Mult _, Exp.Sizeof {typ; nbytes}, length)
| Exp.BinOp (Binop.Mult _, length, Exp.Sizeof {typ; nbytes}) ->
(typ, nbytes, length, None)
(* In Java all arrays are dynamically allocated *)
| Exp.Sizeof {typ; nbytes; dynamic_length= Some arr_length} when Language.curr_language_is Java ->
(typ, nbytes, arr_length, Some arr_length)
| Exp.Sizeof {typ; nbytes; dynamic_length} ->
(typ, nbytes, Exp.one, dynamic_length)
| x ->
(Typ.mk (Typ.Tint Typ.IChar), Some 1, x, None)
let check_alloc_size ~can_be_zero size_exp {location; integer_type_widths} mem cond_set =
let _, _, length0, _ = get_malloc_info size_exp in
let v_length = Sem.eval integer_type_widths length0 mem in
match Dom.Val.get_itv v_length with
| Bottom ->
cond_set
| NonBottom length ->
let traces = Dom.Val.get_traces v_length in
let latest_prune = Dom.Mem.get_latest_prune mem in
PO.ConditionSet.add_alloc_size location ~can_be_zero ~length traces latest_prune cond_set
let fgets str_exp num_exp =
let exec {integer_type_widths} ~ret:(id, _) mem =
let str_v = Sem.eval integer_type_widths str_exp mem in
let num_v = Sem.eval integer_type_widths num_exp mem in
let traces = Trace.Set.join (Dom.Val.get_traces str_v) (Dom.Val.get_traces num_v) in
let update_strlen1 allocsite arrinfo acc =
let strlen =
let offset = ArrayBlk.ArrInfo.get_offset arrinfo in
let num = Dom.Val.get_itv num_v in
Itv.plus offset (Itv.set_lb_zero (Itv.decr num))
in
Dom.Mem.set_first_idx_of_null (Loc.of_allocsite allocsite) (Dom.Val.of_itv ~traces strlen) acc
in
mem
|> Dom.Mem.update_mem (Sem.eval_locs str_exp mem) Dom.Val.Itv.zero_255
|> ArrayBlk.fold update_strlen1 (Dom.Val.get_array_blk str_v)
|> Dom.Mem.add_stack (Loc.of_id id) {str_v with itv= Itv.zero}
|> Dom.Mem.fgets_alias id (Dom.Val.get_all_locs str_v)
and check {location; integer_type_widths} mem cond_set =
BoUtils.Check.lindex_byte integer_type_widths ~array_exp:str_exp ~byte_index_exp:num_exp
~last_included:true mem location cond_set
in
{exec; check}
let malloc ~can_be_zero size_exp =
let exec ({pname; node_hash; location; tenv; integer_type_widths} as model_env) ~ret:(id, _) mem =
let size_exp = Prop.exp_normalize_noabs tenv Sil.sub_empty size_exp in
let typ, stride, length0, dyn_length = get_malloc_info size_exp in
let length = Sem.eval integer_type_widths length0 mem in
let traces = Trace.(Set.add_elem location ArrayDeclaration) (Dom.Val.get_traces length) in
let path =
Dom.Mem.find_simple_alias id mem
|> List.find_map ~f:(fun (rhs, i) -> if IntLit.iszero i then Loc.get_path rhs else None)
in
let offset, size = (Itv.zero, Dom.Val.get_itv length) in
let represents_multiple_values = not (Itv.is_one size) in
let allocsite =
Allocsite.make pname ~node_hash ~inst_num:0 ~dimension:1 ~path ~represents_multiple_values
in
let size_exp_opt =
let size_exp = Option.value dyn_length ~default:length0 in
Relation.SymExp.of_exp ~get_sym_f:(Sem.get_sym_f integer_type_widths mem) size_exp
in
if Language.curr_language_is Java then
let internal_arr =
let allocsite =
Allocsite.make pname ~node_hash ~inst_num:1 ~dimension:1 ~path:None
~represents_multiple_values
in
Dom.Val.of_java_array_alloc allocsite ~length:size ~traces
in
let arr_loc = Loc.of_allocsite allocsite in
mem
|> Dom.Mem.add_heap arr_loc internal_arr
|> Dom.Mem.add_stack (Loc.of_id id) (Dom.Val.of_pow_loc ~traces (PowLoc.singleton arr_loc))
else
let v = Dom.Val.of_c_array_alloc allocsite ~stride ~offset ~size ~traces in
mem
|> Dom.Mem.add_stack (Loc.of_id id) v
|> Dom.Mem.init_array_relation allocsite ~offset_opt:(Some offset) ~size ~size_exp_opt
|> BoUtils.Exec.init_c_array_fields model_env path typ (Dom.Val.get_array_locs v) ?dyn_length
and check = check_alloc_size ~can_be_zero size_exp in
{exec; check}
let calloc size_exp stride_exp =
let byte_size_exp = Exp.BinOp (Binop.Mult (Some Typ.size_t), size_exp, stride_exp) in
malloc byte_size_exp
let memcpy dest_exp src_exp size_exp =
let exec _ ~ret:_ mem =
let dest_loc = Sem.eval_locs dest_exp mem in
let v = Dom.Mem.find_set (Sem.eval_locs src_exp mem) mem in
Dom.Mem.update_mem dest_loc v mem
and check {location; integer_type_widths} mem cond_set =
BoUtils.Check.lindex_byte integer_type_widths ~array_exp:dest_exp ~byte_index_exp:size_exp
~last_included:true mem location cond_set
|> BoUtils.Check.lindex_byte integer_type_widths ~array_exp:src_exp ~byte_index_exp:size_exp
~last_included:true mem location
in
{exec; check}
let memset arr_exp size_exp =
let exec _ ~ret:_ mem = mem
and check {location; integer_type_widths} mem cond_set =
BoUtils.Check.lindex_byte integer_type_widths ~array_exp:arr_exp ~byte_index_exp:size_exp
~last_included:true mem location cond_set
in
{exec; check}
let eval_string_len arr_exp mem = Dom.Mem.get_c_strlen (Sem.eval_locs arr_exp mem) mem
let strlen arr_exp =
let exec _ ~ret:(id, _) mem =
let v = eval_string_len arr_exp mem in
Dom.Mem.add_stack (Loc.of_id id) v mem
in
{exec; check= no_check}
let strcpy dest_exp src_exp =
let exec {integer_type_widths} ~ret:(id, _) mem =
let src_loc = Sem.eval_locs src_exp mem in
let dest_loc = Sem.eval_locs dest_exp mem in
mem
|> Dom.Mem.update_mem dest_loc (Dom.Mem.find_set src_loc mem)
|> Dom.Mem.update_mem (PowLoc.of_c_strlen dest_loc) (Dom.Mem.get_c_strlen src_loc mem)
|> Dom.Mem.add_stack (Loc.of_id id) (Sem.eval integer_type_widths dest_exp mem)
and check {integer_type_widths; location} mem cond_set =
let access_last_char =
let idx = Dom.Mem.get_c_strlen (Sem.eval_locs src_exp mem) mem in
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
fun arr cond_set ->
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp:None ~relation ~is_plus:true
~last_included:false ~latest_prune location cond_set
in
cond_set
|> access_last_char (Sem.eval integer_type_widths dest_exp mem)
|> access_last_char (Sem.eval integer_type_widths src_exp mem)
in
{exec; check}
let strncpy dest_exp src_exp size_exp =
let {exec= memcpy_exec; check= memcpy_check} = memcpy dest_exp src_exp size_exp in
let exec model_env ~ret mem =
let dest_strlen_loc = PowLoc.of_c_strlen (Sem.eval_locs dest_exp mem) in
let strlen = Dom.Mem.find_set (PowLoc.of_c_strlen (Sem.eval_locs src_exp mem)) mem in
mem |> memcpy_exec model_env ~ret |> Dom.Mem.update_mem dest_strlen_loc strlen
in
{exec; check= memcpy_check}
let strcat dest_exp src_exp =
let exec {integer_type_widths} ~ret:(id, _) mem =
let src_loc = Sem.eval_locs src_exp mem in
let dest_loc = Sem.eval_locs dest_exp mem in
let new_contents =
let src_contents = Dom.Mem.find_set src_loc mem in
let dest_contents = Dom.Mem.find_set dest_loc mem in
Dom.Val.join dest_contents src_contents
in
let src_strlen = Dom.Mem.get_c_strlen src_loc mem in
let new_strlen =
let dest_strlen = Dom.Mem.get_c_strlen dest_loc mem in
Dom.Val.plus_a dest_strlen src_strlen
in
mem
|> Dom.Mem.update_mem dest_loc new_contents
|> Dom.Mem.update_mem (PowLoc.of_c_strlen dest_loc) new_strlen
|> Dom.Mem.add_stack (Loc.of_id id) (Sem.eval integer_type_widths dest_exp mem)
and check {integer_type_widths; location} mem cond_set =
let access_last_char arr idx cond_set =
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp:None ~relation ~is_plus:true
~last_included:false ~latest_prune location cond_set
in
let src_strlen =
let str_loc = Sem.eval_locs src_exp mem in
Dom.Mem.get_c_strlen str_loc mem
in
let new_strlen =
let dest_strlen =
let dest_loc = Sem.eval_locs dest_exp mem in
Dom.Mem.get_c_strlen dest_loc mem
in
Dom.Val.plus_a dest_strlen src_strlen
in
cond_set
|> access_last_char (Sem.eval integer_type_widths dest_exp mem) new_strlen
|> access_last_char (Sem.eval integer_type_widths src_exp mem) src_strlen
in
{exec; check}
let realloc src_exp size_exp =
let exec ({location; tenv; integer_type_widths} as model_env) ~ret:(id, _) mem =
let size_exp = Prop.exp_normalize_noabs tenv Sil.sub_empty size_exp in
let typ, _, length0, dyn_length = get_malloc_info size_exp in
let length = Sem.eval integer_type_widths length0 mem in
let v = Sem.eval integer_type_widths src_exp mem |> Dom.Val.set_array_length location ~length in
let mem = Dom.Mem.add_stack (Loc.of_id id) v mem in
Option.value_map dyn_length ~default:mem ~f:(fun dyn_length ->
let dyn_length = Dom.Val.get_itv (Sem.eval integer_type_widths dyn_length mem) in
BoUtils.Exec.set_dyn_length model_env typ (Dom.Val.get_array_locs v) dyn_length mem )
and check = check_alloc_size ~can_be_zero:false size_exp in
{exec; check}
let placement_new size_exp {exp= src_exp1; typ= t1} src_arg2_opt =
match (t1.Typ.desc, src_arg2_opt) with
| Tint _, None | Tint _, Some {typ= {Typ.desc= Tint _}} ->
malloc ~can_be_zero:true (Exp.BinOp (Binop.PlusA (Some Typ.size_t), size_exp, src_exp1))
| Tstruct (CppClass (name, _)), None
when [%compare.equal: string list] (QualifiedCppName.to_list name) ["std"; "nothrow_t"] ->
malloc ~can_be_zero:true size_exp
| _, _ ->
let exec {integer_type_widths} ~ret:(id, _) mem =
let src_exp =
if Typ.is_pointer_to_void t1 then src_exp1
else
match src_arg2_opt with
| Some {exp= src_exp2; typ= t2} when Typ.is_pointer_to_void t2 ->
src_exp2
| _ ->
(* TODO: Raise an exception when given unexpected arguments. Before that, we need
to fix the frontend to parse user defined `new` correctly. *)
L.d_error "Unexpected types of arguments for __placement_new" ;
src_exp1
in
let v = Sem.eval integer_type_widths src_exp mem in
Dom.Mem.add_stack (Loc.of_id id) v mem
in
{exec; check= no_check}
let strndup src_exp length_exp =
let exec ({pname; node_hash; location; integer_type_widths} as model_env) ~ret:((id, _) as ret)
mem =
let v =
let src_strlen = Dom.Mem.get_c_strlen (Sem.eval_locs src_exp mem) mem in
let length = Sem.eval integer_type_widths length_exp mem in
let size = Itv.incr (Itv.min_sem (Dom.Val.get_itv src_strlen) (Dom.Val.get_itv length)) in
let allocsite =
let represents_multiple_values = not (Itv.is_one size) in
Allocsite.make pname ~node_hash ~inst_num:0 ~dimension:1 ~path:None
~represents_multiple_values
in
let traces =
Trace.Set.join (Dom.Val.get_traces src_strlen) (Dom.Val.get_traces length)
|> Trace.Set.add_elem location (Trace.through ~risky_fun:(Some Trace.strndup))
|> Trace.Set.add_elem location ArrayDeclaration
in
Dom.Val.of_c_array_alloc allocsite
~stride:(Some (integer_type_widths.char_width / 8))
~offset:Itv.zero ~size ~traces
in
mem
|> Dom.Mem.add_stack (Loc.of_id id) v
|> (strncpy (Exp.Var id) src_exp length_exp).exec model_env ~ret
in
{exec; check= no_check}
let set_size {integer_type_widths; location} array_v size_exp mem =
let locs = Dom.Val.get_pow_loc array_v in
let length = Sem.eval integer_type_widths size_exp mem in
Dom.Mem.transform_mem ~f:(Dom.Val.set_array_length location ~length) locs mem
let model_by_value value id mem = Dom.Mem.add_stack (Loc.of_id id) value mem
let cast exp size_exp =
let exec {integer_type_widths} ~ret:(ret_id, _) mem =
let v = Sem.eval integer_type_widths exp mem in
let v = match size_exp with Exp.Sizeof {typ} -> Dom.Val.cast typ v | _ -> v in
model_by_value v ret_id mem
in
{exec; check= no_check}
let by_value =
let exec ~value _ ~ret:(ret_id, _) mem = model_by_value value ret_id mem in
fun value -> {exec= exec ~value; check= no_check}
let by_risky_value_from lib_fun =
let exec ~value {location} ~ret:(ret_id, _) mem =
let traces =
Trace.(Set.add_elem location (through ~risky_fun:(Some lib_fun))) (Dom.Val.get_traces value)
in
model_by_value {value with traces} ret_id mem
in
fun value -> {exec= exec ~value; check= no_check}
let bottom =
let exec _model_env ~ret:_ _mem = Dom.Mem.bot in
{exec; check= no_check}
let infer_print e =
let exec {location; integer_type_widths} ~ret:_ mem =
L.(debug BufferOverrun Medium)
"@[<v>=== Infer Print === at %a@,%a@]%!" Location.pp location Dom.Val.pp
(Sem.eval integer_type_widths e mem) ;
mem
in
{exec; check= no_check}
let load_size_alias id arr_locs mem =
match PowLoc.is_singleton_or_more arr_locs with
| IContainer.Singleton loc ->
Dom.Mem.load_size_alias id loc mem
| IContainer.Empty | IContainer.More ->
mem
(* Java only *)
let get_array_length array_exp =
let exec _ ~ret:(ret_id, _) mem =
let arr_locs = Sem.eval_locs array_exp mem in
let result = Sem.eval_array_locs_length arr_locs mem in
model_by_value result ret_id mem |> load_size_alias ret_id arr_locs
in
{exec; check= no_check}
(* Clang only *)
let set_array_length {exp; typ} length_exp =
let exec {pname; node_hash; location; integer_type_widths} ~ret:_ mem =
match (exp, typ) with
| Exp.Lvar array_pvar, {Typ.desc= Typ.Tarray {stride}} ->
let length = Sem.eval integer_type_widths length_exp mem in
let stride = Option.map ~f:IntLit.to_int_exn stride in
let path = Some (Symb.SymbolPath.of_pvar array_pvar) in
let traces = Trace.(Set.add_elem location ArrayDeclaration) (Dom.Val.get_traces length) in
let size = Dom.Val.get_itv length in
let allocsite =
let represents_multiple_values = not (Itv.is_one size) in
Allocsite.make pname ~node_hash ~inst_num:0 ~dimension:1 ~path ~represents_multiple_values
in
let v = Dom.Val.of_c_array_alloc allocsite ~stride ~offset:Itv.zero ~size ~traces in
Dom.Mem.add_stack (Loc.of_pvar array_pvar) v mem
| _ ->
L.(die InternalError) "Unexpected type of first argument for __set_array_length() "
and check = check_alloc_size ~can_be_zero:false length_exp in
{exec; check}
let snprintf = by_risky_value_from Trace.snprintf Dom.Val.Itv.nat
let vsnprintf = by_risky_value_from Trace.vsnprintf Dom.Val.Itv.nat
let copy array_v ret_id mem =
let dest_loc = Loc.of_id ret_id |> PowLoc.singleton in
Dom.Mem.update_mem dest_loc array_v mem
(** Creates a new array with the values from the given array.*)
let create_copy_array src_exp =
let exec {integer_type_widths} ~ret:(id, _) mem =
let array_v = Sem.eval integer_type_widths src_exp mem in
copy array_v id mem
in
{exec; check= no_check}
module CFArray = struct
(** Creates a new array from the given array by copying the first X
elements. *)
let create_array src_exp size_exp =
let {exec= malloc_exec; check= _} = malloc ~can_be_zero:true size_exp in
let exec model_env ~ret:((id, _) as ret) mem =
let mem = malloc_exec model_env ~ret mem in
let dest_loc = Loc.of_id id |> PowLoc.singleton in
let dest_arr_loc = Dom.Val.get_array_locs (Dom.Mem.find_set dest_loc mem) in
let src_arr_v = Dom.Mem.find_set (Sem.eval_locs src_exp mem) mem in
Dom.Mem.update_mem dest_arr_loc src_arr_v mem
and check {location; integer_type_widths} mem cond_set =
BoUtils.Check.lindex integer_type_widths ~array_exp:src_exp ~index_exp:size_exp
~last_included:true mem location cond_set
in
{exec; check}
let at {exp= array_exp} {exp= index_exp} = at ?size:None array_exp index_exp
let length e =
let exec {integer_type_widths} ~ret:(ret_id, _) mem =
let v = Sem.eval_arr integer_type_widths e mem in
let length = Dom.Val.of_itv (ArrayBlk.get_size (Dom.Val.get_array_blk v)) in
Dom.Mem.add_stack (Loc.of_id ret_id) length mem
in
{exec; check= no_check}
end
module Split = struct
let std_vector ~adds_at_least_one {exp= vector_exp; typ= vector_typ} location mem =
let increment = if adds_at_least_one then Dom.Val.Itv.pos else Dom.Val.Itv.nat in
let vector_type_name = Option.value_exn (vector_typ |> Typ.strip_ptr |> Typ.name) in
let size_field = Typ.Fieldname.Clang.from_class_name vector_type_name "infer_size" in
let vector_size_locs = Sem.eval_locs vector_exp mem |> PowLoc.append_field ~fn:size_field in
let f_trace _ traces = Trace.(Set.add_elem location (through ~risky_fun:None)) traces in
Dom.Mem.transform_mem ~f:(Dom.Val.plus_a ~f_trace increment) vector_size_locs mem
end
module Boost = struct
module Split = struct
let std_vector vector_arg =
let exec {location} ~ret:_ mem =
Split.std_vector ~adds_at_least_one:true vector_arg location mem
in
{exec; check= no_check}
end
end
module Folly = struct
module Split = struct
let std_vector vector_arg ignore_empty_opt =
let exec {location; integer_type_widths} ~ret:_ mem =
let adds_at_least_one =
match ignore_empty_opt with
| Some ignore_empty_exp ->
Sem.eval integer_type_widths ignore_empty_exp mem |> Dom.Val.get_itv |> Itv.is_false
| None ->
(* default: ignore_empty is false *)
true
in
Split.std_vector ~adds_at_least_one vector_arg location mem
in
{exec; check= no_check}
end
end
module StdArray = struct
let constructor _size =
let exec _model_env ~ret:_ mem = mem (* initialize? *) in
{exec; check= no_check}
let at size {exp= array_exp} {exp= index_exp} = at ~size array_exp index_exp
let begin_ _size {exp= array_exp} =
let exec {location; integer_type_widths} ~ret:(id, _) mem =
let v =
Sem.eval integer_type_widths array_exp mem |> Dom.Val.set_array_offset location Itv.zero
in
Dom.Mem.add_stack (Loc.of_id id) v mem
in
{exec; check= no_check}
let end_ size {exp= array_exp} =
let exec {location; integer_type_widths} ~ret:(id, _) mem =
let v =
let offset = Itv.of_int_lit (IntLit.of_int64 size) in
Sem.eval integer_type_widths array_exp mem |> Dom.Val.set_array_offset location offset
in
Dom.Mem.add_stack (Loc.of_id id) v mem
in
{exec; check= no_check}
let back size {exp= array_exp} =
let exec {location; integer_type_widths} ~ret:(id, _) mem =
let v =
let offset = Itv.of_int_lit (IntLit.of_int64 Int64.(size - one)) in
Sem.eval integer_type_widths array_exp mem |> Dom.Val.set_array_offset location offset
in
Dom.Mem.add_stack (Loc.of_id id) v mem
in
{exec; check= no_check}
end
module ArrObjCommon = struct
let deref_of {integer_type_widths} exp ~fn mem =
Dom.Val.get_all_locs (Sem.eval_arr integer_type_widths exp mem) |> PowLoc.append_field ~fn
let eval_size model_env exp ~fn mem =
Sem.eval_array_locs_length (deref_of model_env exp ~fn mem) mem
let size_exec exp ~fn model_env ~ret:(id, _) mem =
let arr_locs = deref_of model_env exp ~fn mem in
let mem = Dom.Mem.add_stack (Loc.of_id id) (Sem.eval_array_locs_length arr_locs mem) mem in
load_size_alias id arr_locs mem
let at arr_exp ~fn index_exp =
let exec ({pname; location} as model_env) ~ret:(id, _) mem =
let array_v =
let locs = deref_of model_env arr_exp ~fn mem in
if PowLoc.is_bot locs then Dom.Val.unknown_from ~callee_pname:(Some pname) ~location
else Dom.Mem.find_set locs mem
in
Dom.Mem.add_stack (Loc.of_id id) array_v mem
and check ({location; integer_type_widths} as model_env) mem cond_set =
let idx = Sem.eval integer_type_widths index_exp mem in
let arr = Dom.Mem.find_set (deref_of model_env arr_exp ~fn mem) mem in
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp:None ~relation ~is_plus:true
~last_included:false ~latest_prune location cond_set
in
{exec; check}
let copy_constructor model_env deref_of_tgt ~fn src_exp mem =
let deref_of_src = deref_of model_env src_exp ~fn mem in
Dom.Mem.update_mem deref_of_tgt (Dom.Mem.find_set deref_of_src mem) mem
let constructor_from_char_ptr ({integer_type_widths} as model_env) tgt_deref ~fn src mem =
let elem_locs = PowLoc.append_field tgt_deref ~fn in
match src with
| Exp.Const (Const.Cstr s) ->
BoUtils.Exec.decl_string model_env ~do_alloc:true elem_locs s mem
| _ ->
let v = Sem.eval integer_type_widths src mem in
Dom.Mem.update_mem elem_locs v mem
end
module StdVector = struct
let append_field loc ~vec_typ ~elt_typ =
Loc.append_field loc ~fn:(BufferOverrunField.cpp_vector_elem ~vec_typ ~elt_typ)
let append_fields locs ~vec_typ ~elt_typ =
PowLoc.append_field locs ~fn:(BufferOverrunField.cpp_vector_elem ~vec_typ ~elt_typ)
let deref_of model_env elt_typ {exp= vec_exp; typ= vec_typ} mem =
let fn = BufferOverrunField.cpp_vector_elem ~vec_typ ~elt_typ in
ArrObjCommon.deref_of model_env vec_exp ~fn mem
(* The (3) constructor in https://en.cppreference.com/w/cpp/container/vector/vector *)
let constructor_size elt_typ {exp= vec_exp; typ= vec_typ} size_exp =
let {exec= malloc_exec; check} = malloc ~can_be_zero:true size_exp in
let exec ({pname; node_hash; integer_type_widths; location} as model_env) ~ret:((id, _) as ret)
mem =
let mem = malloc_exec model_env ~ret mem in
let vec_locs = Sem.eval_locs vec_exp mem in
let deref_of_vec =
Allocsite.make pname ~node_hash ~inst_num:1 ~dimension:1 ~path:None
~represents_multiple_values:false
|> Loc.of_allocsite
in
let array_v =
Sem.eval integer_type_widths (Exp.Var id) mem
|> Dom.Val.add_assign_trace_elem location vec_locs
in
mem
|> Dom.Mem.update_mem vec_locs (Dom.Val.of_loc deref_of_vec)
|> Dom.Mem.add_heap (append_field deref_of_vec ~vec_typ ~elt_typ) array_v
in
{exec; check}
(* The (1) constructor in https://en.cppreference.com/w/cpp/container/vector/vector *)
let constructor_empty elt_typ vec = constructor_size elt_typ vec Exp.zero
(* The (5) constructor in https://en.cppreference.com/w/cpp/container/vector/vector *)
let constructor_copy elt_typ {exp= vec_exp; typ= vec_typ} src_exp =
let exec ({integer_type_widths} as model_env) ~ret:_ mem =
let vec_locs, traces =
let v = Sem.eval integer_type_widths vec_exp mem in
(Dom.Val.get_all_locs v, Dom.Val.get_traces v)
in
let deref_of_vec = append_fields vec_locs ~vec_typ ~elt_typ in
let fn = BufferOverrunField.cpp_vector_elem ~vec_typ ~elt_typ in
mem
|> Dom.Mem.update_mem vec_locs (Dom.Val.of_pow_loc ~traces deref_of_vec)
|> ArrObjCommon.copy_constructor model_env deref_of_vec ~fn src_exp
in
{exec; check= no_check}
let at elt_typ {exp= vec_exp; typ= vec_typ} index_exp =
ArrObjCommon.at vec_exp ~fn:(BufferOverrunField.cpp_vector_elem ~vec_typ ~elt_typ) index_exp
let set_size {location} locs new_size mem =
Dom.Mem.transform_mem locs mem ~f:(fun v -> Dom.Val.set_array_length location ~length:new_size v)
let empty elt_typ vec_arg =
let exec model_env ~ret:(id, _) mem =
let deref_of_vec = deref_of model_env elt_typ vec_arg mem in
let array_v = Dom.Mem.find_set deref_of_vec mem in
let traces = Dom.Val.get_traces array_v in
let size = ArrayBlk.get_size (Dom.Val.get_array_blk array_v) in
let empty = Dom.Val.of_itv ~traces (Itv.of_bool (Itv.le_sem size Itv.zero)) in
let mem = model_by_value empty id mem in
match PowLoc.is_singleton_or_more deref_of_vec with
| IContainer.Singleton loc ->
Dom.Mem.load_empty_alias id loc mem
| IContainer.(Empty | More) ->
mem
in
{exec; check= no_check}
let data elt_typ vec_arg =
let exec model_env ~ret:(id, _) mem =
let arr = Dom.Mem.find_set (deref_of model_env elt_typ vec_arg mem) mem in
model_by_value arr id mem
in
{exec; check= no_check}
let push_back elt_typ vec_arg elt_exp =
let exec model_env ~ret:_ mem =
let arr_locs = deref_of model_env elt_typ vec_arg mem in
let mem =
let new_size =
Dom.Val.plus_a (Sem.eval_array_locs_length arr_locs mem) (Dom.Val.of_int 1)
in
set_size model_env arr_locs new_size mem
in
let elt_locs = Dom.Val.get_all_locs (Dom.Mem.find_set arr_locs mem) in
let elt_v = Dom.Mem.find_set (Sem.eval_locs elt_exp mem) mem in
Dom.Mem.update_mem elt_locs elt_v mem
in
{exec; check= no_check}
let size elt_typ {exp= vec_exp; typ= vec_typ} =
let exec =
ArrObjCommon.size_exec vec_exp ~fn:(BufferOverrunField.cpp_vector_elem ~vec_typ ~elt_typ)
in
{exec; check= no_check}
end
module StdBasicString = struct
let constructor_from_char_ptr char_typ {exp= tgt_exp; typ= tgt_typ} src ~len_opt =
let exec ({pname; node_hash} as model_env) ~ret mem =
let mem =
Option.value_map len_opt ~default:mem ~f:(fun len ->
let {exec= malloc_exec} = malloc ~can_be_zero:true len in
malloc_exec model_env ~ret mem )
in
let tgt_locs = Sem.eval_locs tgt_exp mem in
let tgt_deref =
let allocsite =
Allocsite.make pname ~node_hash ~inst_num:1 ~dimension:1 ~path:None
~represents_multiple_values:false
in
PowLoc.singleton (Loc.of_allocsite allocsite)
in
let mem =
Dom.Mem.update_mem tgt_locs (Dom.Val.of_pow_loc ~traces:Trace.Set.bottom tgt_deref) mem
in
let fn = BufferOverrunField.cpp_vector_elem ~vec_typ:tgt_typ ~elt_typ:char_typ in
ArrObjCommon.constructor_from_char_ptr model_env tgt_deref src ~fn mem
in
let check ({location; integer_type_widths} as model_env) mem cond_set =
Option.value_map len_opt ~default:cond_set ~f:(fun len ->
let {check= malloc_check} = malloc ~can_be_zero:true len in
let cond_set = malloc_check model_env mem cond_set in
BoUtils.Check.lindex integer_type_widths ~array_exp:src ~index_exp:len ~last_included:true
mem location cond_set )
in
{exec; check}
(* The (4) constructor in https://en.cppreference.com/w/cpp/string/basic_string/basic_string *)
let constructor_from_char_ptr_with_len char_typ tgt_arg src len =
constructor_from_char_ptr char_typ tgt_arg src ~len_opt:(Some len)
(* The (5) constructor in https://en.cppreference.com/w/cpp/string/basic_string/basic_string *)
let constructor_from_char_ptr_without_len char_typ tgt_arg src =
constructor_from_char_ptr char_typ tgt_arg src ~len_opt:None
(* The (7) constructor in https://en.cppreference.com/w/cpp/string/basic_string/basic_string *)
let copy_constructor = StdVector.constructor_copy
let empty = StdVector.empty
let length = StdVector.size
end
(** Java's integers are modeled with an indirection to a memory
location that holds the actual integer value *)
module JavaInteger = struct
let intValue exp =
let exec _ ~ret:(id, _) mem =
let powloc = Sem.eval_locs exp mem in
let v = if PowLoc.is_empty powloc then Dom.Val.Itv.top else Dom.Mem.find_set powloc mem in
model_by_value v id mem
in
{exec; check= no_check}
let valueOf exp =
let exec {pname; node_hash; location; integer_type_widths} ~ret:(id, _) mem =
let represents_multiple_values = false in
let int_allocsite =
Allocsite.make pname ~node_hash ~inst_num:0 ~dimension:0 ~path:None
~represents_multiple_values
in
let v = Sem.eval integer_type_widths exp mem in
let int_loc = Loc.of_allocsite int_allocsite in
mem |> Dom.Mem.add_heap int_loc v
|> Dom.Mem.add_stack (Loc.of_id id)
( int_loc |> PowLoc.singleton
|> Dom.Val.of_pow_loc ~traces:Trace.(Set.singleton location JavaIntDecleration) )
in
{exec; check= no_check}
end
(* Java's Collections are represented like arrays. But we don't care about the elements.
- when they are constructed, we set the size to 0
- each time we add an element, we increase the length of the array
- each time we delete an element, we decrease the length of the array *)
module Collection = struct
let create_collection {pname; node_hash; location} ~ret:(id, _) mem ~length =
let represents_multiple_values = true in
let traces = Trace.(Set.singleton location ArrayDeclaration) in
let coll_allocsite =
Allocsite.make pname ~node_hash ~inst_num:0 ~dimension:1 ~path:None
~represents_multiple_values
in
let internal_array =
let allocsite =
Allocsite.make pname ~node_hash ~inst_num:1 ~dimension:1 ~path:None
~represents_multiple_values
in
Dom.Val.of_java_array_alloc allocsite ~length ~traces
in
let coll_loc = Loc.of_allocsite coll_allocsite in
let internal_array_loc =
Loc.append_field coll_loc ~fn:BufferOverrunField.java_collection_internal_array
in
mem
|> Dom.Mem.add_heap internal_array_loc internal_array
|> Dom.Mem.add_stack (Loc.of_id id) (coll_loc |> PowLoc.singleton |> Dom.Val.of_pow_loc ~traces)
(** Returns a fixed-size list with a given length backed by the specified array. *)
let copyOf array_exp length_exp =
let exec ({integer_type_widths} as model) ~ret:(id, _) mem =
let array_v = Sem.eval integer_type_widths array_exp mem in
copy array_v id mem |> set_size model array_v length_exp
in
{exec; check= no_check}
let new_collection =
let exec = create_collection ~length:Itv.zero in
{exec; check= no_check}
let eval_collection_internal_array_locs coll_exp mem =
Sem.eval_locs coll_exp mem
|> PowLoc.append_field ~fn:BufferOverrunField.java_collection_internal_array
let get_collection_internal_array_locs coll_id mem =
let coll = Dom.Mem.find (Loc.of_id coll_id) mem in
Dom.Val.get_pow_loc coll
|> PowLoc.append_field ~fn:BufferOverrunField.java_collection_internal_array
let eval_collection_length coll_exp mem =
let arr_locs = eval_collection_internal_array_locs coll_exp mem in
Sem.eval_array_locs_length arr_locs mem
let change_size_by ~size_f coll_id {location} ~ret:_ mem =
let arr_locs = get_collection_internal_array_locs coll_id mem in
let mem = Dom.Mem.forget_size_alias arr_locs mem in
Dom.Mem.transform_mem ~f:(Dom.Val.transform_array_length location ~f:size_f) arr_locs mem
let change_size_by_incr coll_id {location} ~ret:_ mem =
let arr_locs = get_collection_internal_array_locs coll_id mem in
Dom.Mem.transform_mem ~f:(Dom.Val.transform_array_length location ~f:Itv.incr) arr_locs mem
|> Dom.Mem.incr_size_alias arr_locs
let change_size_by_incr_or_not coll_id {location} ~ret:_ mem =
let arr_locs = get_collection_internal_array_locs coll_id mem in
Dom.Mem.transform_mem
~f:(Dom.Val.transform_array_length location ~f:(Itv.plus Itv.zero_one))
arr_locs mem
|> Dom.Mem.incr_or_not_size_alias arr_locs
let add coll_id = {exec= change_size_by_incr coll_id; check= no_check}
let singleton_collection =
let exec env ~ret:((id, _) as ret) mem =
let {exec= new_exec; check= _} = new_collection in
let mem = new_exec env ~ret mem in
change_size_by_incr id ~ret env mem
in
{exec; check= no_check}
(** increase the size by [0, 1] because put replaces the value
rather than add a new one when the key is found in the map *)
let put coll_id = {exec= change_size_by_incr_or_not coll_id; check= no_check}
(* The return value is set by [set_itv_updated_by_addition] in order to be sure that it can be
used as a control variable value in the cost checker. *)
let size coll_exp =
let exec _ ~ret:(ret_id, _) mem =
let result = eval_collection_length coll_exp mem |> Dom.Val.set_itv_updated_by_addition in
let mem = model_by_value result ret_id mem in
load_size_alias ret_id (eval_collection_internal_array_locs coll_exp mem) mem
in
{exec; check= no_check}
let iterator coll_exp =
let exec {integer_type_widths} ~ret:(ret_id, _) mem =
let itr = Sem.eval integer_type_widths coll_exp mem in
model_by_value itr ret_id mem |> Dom.Mem.add_iterator_offset_alias ret_id
in
{exec; check= no_check}
let init_with_capacity size_exp =
let exec _ ~ret:_ mem = mem and check = check_alloc_size ~can_be_zero:true size_exp in
{exec; check}
let init_with_arg lhs_id rhs_exp =
let exec {integer_type_widths} ~ret:_ mem =
let itr = Sem.eval integer_type_widths rhs_exp mem in
model_by_value itr lhs_id mem
and check = check_alloc_size ~can_be_zero:true rhs_exp in
{exec; check}
(* The return value is set by [set_itv_updated_by_addition] in order to be sure that it can be
used as a control variable value in the cost checker. *)
let hasNext iterator =
let exec _ ~ret:(ret_id, _) mem =
(* Set the size of the iterator to be [0, size], so that range
will be size of the collection. *)
let collection_size =
let arr_locs = eval_collection_internal_array_locs iterator mem in
Sem.conservative_array_length arr_locs mem
in
model_by_value collection_size ret_id mem
|> Dom.Mem.add_iterator_has_next_alias ret_id iterator
in
{exec; check= no_check}
let next iterator =
let exec {integer_type_widths} ~ret:(id, _) mem =
let traces = Sem.eval integer_type_widths iterator mem |> Dom.Val.get_traces in
let locs = eval_collection_internal_array_locs iterator mem in
model_by_value (Dom.Val.of_pow_loc ~traces locs) id mem
|> Dom.Mem.incr_iterator_offset_alias iterator
in
{exec; check= no_check}
let addAll coll_id coll_to_add =
let exec model_env ~ret mem =
let to_add_length = eval_collection_length coll_to_add mem |> Dom.Val.get_itv in
change_size_by ~size_f:(Itv.plus to_add_length) coll_id model_env ~ret mem
in
{exec; check= no_check}
(** Returns a view of the portion of this list between the specified
fromIndex, inclusive, and toIndex, exclusive. Simply model it as
creating a new list with length toIndex - fromIndex. *)
let subList from_exp to_exp =
let exec ({integer_type_widths} as model) ~ret mem =
let from_idx = Sem.eval integer_type_widths from_exp mem in
let to_idx = Sem.eval integer_type_widths to_exp mem in
let length = Itv.minus (Dom.Val.get_itv to_idx) (Dom.Val.get_itv from_idx) in
create_collection model ~ret mem ~length
in
{exec; check= no_check}
(** increase the size by [0, |collection_to_add|] because put replaces the value
rather than add a new one when the key is found in the map *)
let putAll coll_id coll_to_add =
let exec model_env ~ret mem =
let to_add_length =
eval_collection_length coll_to_add mem |> Dom.Val.get_itv |> Itv.set_lb_zero
in
change_size_by ~size_f:(Itv.plus to_add_length) coll_id model_env ~ret mem
in
{exec; check= no_check}
let check_index ~last_included coll_id index_exp {location; integer_type_widths} mem cond_set =
let arr =
let arr_locs = get_collection_internal_array_locs coll_id mem in
Dom.Mem.find_set arr_locs mem
in
let idx = Sem.eval integer_type_widths index_exp mem in
let idx_sym_exp =
Relation.SymExp.of_exp ~get_sym_f:(Sem.get_sym_f integer_type_widths mem) index_exp
in
let relation = Dom.Mem.get_relation mem in
let latest_prune = Dom.Mem.get_latest_prune mem in
BoUtils.Check.array_access ~arr ~idx ~idx_sym_exp ~relation ~is_plus:true ~last_included
~latest_prune location cond_set
let add_at_index (coll_id : Ident.t) index_exp =
{exec= change_size_by_incr coll_id; check= check_index ~last_included:true coll_id index_exp}
let remove_at_index coll_id index_exp =
{ exec= change_size_by ~size_f:Itv.decr coll_id
; check= check_index ~last_included:false coll_id index_exp }
let addAll_at_index coll_id index_exp coll_to_add =
let exec model_env ~ret mem =
let to_add_length = eval_collection_length coll_to_add mem |> Dom.Val.get_itv in
change_size_by ~size_f:(Itv.plus to_add_length) coll_id model_env ~ret mem
in
{exec; check= check_index ~last_included:true coll_id index_exp}
let get_or_set_at_index coll_id index_exp =
let exec _model_env ~ret:_ mem = mem in
{exec; check= check_index ~last_included:false coll_id index_exp}
end
module JavaString = struct
let fn = BufferOverrunField.java_collection_internal_array
let deref_of = ArrObjCommon.deref_of ~fn
let get_char_range s =
let min_max =
String.fold s ~init:None ~f:(fun acc c ->
let i = Char.to_int c in
match acc with None -> Some (i, i) | Some (lb, ub) -> Some (min lb i, max ub i) )
in
match min_max with None -> Itv.bot | Some (min, max) -> Itv.(join (of_int min) (of_int max))
let get_length_and_elem model_env exp mem =
match exp with
| Exp.Const (Const.Cstr s) ->
(Dom.Val.of_int (String.length s), Dom.Val.of_itv (get_char_range s))
| _ ->
let arr_locs = deref_of model_env exp mem in
let length = Sem.eval_array_locs_length arr_locs mem in
let elem =
let arr_locs = Dom.Val.get_all_locs (Dom.Mem.find_set arr_locs mem) in
Dom.Mem.find_set arr_locs mem
in
(length, elem)
let get_length model_env exp mem = get_length_and_elem model_env exp mem |> fst
let concat exp1 exp2 =
let exec ({pname; node_hash} as model_env) ~ret:(id, _) mem =
let length_v, elem =
let length1, elem1 = get_length_and_elem model_env exp1 mem in
let length2, elem2 = get_length_and_elem model_env exp2 mem in
(Dom.Val.plus_a length1 length2, Dom.Val.join elem1 elem2)
in
let length, traces = (Dom.Val.get_itv length_v, Dom.Val.get_traces length_v) in
let arr_loc =
Allocsite.make pname ~node_hash ~inst_num:0 ~dimension:1 ~path:None
~represents_multiple_values:false
|> Loc.of_allocsite
in
let elem_alloc =
Allocsite.make pname ~node_hash ~inst_num:1 ~dimension:1 ~path:None
~represents_multiple_values:true
in
Dom.Mem.add_stack (Loc.of_id id) (Dom.Val.of_loc arr_loc) mem
|> Dom.Mem.add_heap (Loc.append_field arr_loc ~fn)
(Dom.Val.of_java_array_alloc elem_alloc ~length ~traces)
|> Dom.Mem.add_heap (Loc.of_allocsite elem_alloc) elem
in
{exec; check= no_check}
let length exp = {exec= ArrObjCommon.size_exec exp ~fn; check= no_check}
(** Given a string of length n, return itv [-1, n_u-1]. *)
let range_itv_mone model_env exp mem =
ArrObjCommon.eval_size model_env exp ~fn mem
|> BufferOverrunDomain.Val.get_itv |> Itv.set_lb_zero |> Itv.decr
let indexOf exp =
let exec model_env ~ret:(ret_id, _) mem =
(* if not found, indexOf returns -1. *)
let v = range_itv_mone model_env exp mem |> Dom.Val.of_itv in
model_by_value v ret_id mem
in
{exec; check= no_check}
let charAt string_exp idx = ArrObjCommon.at ~fn string_exp idx
let constructor_from_char_ptr model_env tgt_deref src mem =
ArrObjCommon.constructor_from_char_ptr model_env tgt_deref ~fn src mem
(* https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#String(byte[]) *)
let constructor tgt_exp src =
let exec model_env ~ret:_ mem =
constructor_from_char_ptr model_env (Sem.eval_locs tgt_exp mem) src mem
in
{exec; check= no_check}
(* https://docs.oracle.com/javase/7/docs/api/java/lang/String.html#String(java.lang.String) *)
let copy_constructor vec_exp src_exp =
let exec ({integer_type_widths} as model_env) ~ret:_ mem =
let vec_locs = Sem.eval integer_type_widths vec_exp mem |> Dom.Val.get_all_locs in
let deref_of_vec = PowLoc.append_field vec_locs ~fn in
ArrObjCommon.copy_constructor model_env deref_of_vec ~fn src_exp mem
in
{exec; check= no_check}
end
module Preconditions = struct
let check_argument exp =
let exec {integer_type_widths} ~ret:_ mem = Sem.Prune.prune integer_type_widths exp mem in
{exec; check= no_check}
end
let unmodifiable _ s =
String.is_prefix ~prefix:"unmodifiable" s
&& List.exists ~f:(fun suffix -> String.is_suffix ~suffix s) ["Set"; "Collection"; "Map"; "List"]
module InputStream = struct
(* https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html#read(byte[],%20int,%20int) *)
let read exp =
let exec {integer_type_widths} ~ret:(ret_id, _) mem =
let max = Sem.eval integer_type_widths exp mem in
let traces = Dom.Val.get_traces max in
let v = Dom.Val.of_itv ~traces (Itv.set_lb Itv.Bound.mone (Dom.Val.get_itv max)) in
model_by_value v ret_id mem
in
{exec; check= no_check}
end
module FileChannel = struct
(* https://docs.oracle.com/javase/7/docs/api/java/io/InputStream.html#read(byte[],%20int,%20int) *)
let read buf_exp =
let exec {pname; location} ~ret:(ret_id, ret_typ) mem =
let buf_locs = Sem.eval_locs buf_exp mem in
let buf_v = Dom.Mem.find_set buf_locs mem in
let range =
Symb.SymbolPath.of_callsite ~ret_typ (CallSite.make pname location)
|> Bounds.Bound.of_modeled_path Symb.Symbol.make_onevalue
|> Dom.ModeledRange.of_modeled_function pname location
in
let mem = Dom.Mem.add_heap_set buf_locs (Dom.Val.set_modeled_range range buf_v) mem in
let v =
Dom.Val.of_itv (Itv.set_lb Itv.Bound.mone Itv.nat) |> Dom.Val.set_modeled_range range
in
model_by_value v ret_id mem
in
{exec; check= no_check}
end
module ByteBuffer = struct
let get_int buf_exp =
let exec _ ~ret:(ret_id, _) mem =
let range = Dom.Mem.find_set (Sem.eval_locs buf_exp mem) mem |> Dom.Val.get_modeled_range in
let v = Dom.Val.of_itv Itv.nat |> Dom.Val.set_modeled_range range in
model_by_value v ret_id mem
in
{exec; check= no_check}
end
module Object = struct
let clone exp =
let exec {integer_type_widths} ~ret:(ret_id, _) mem =
let v = Sem.eval integer_type_widths exp mem in
model_by_value v ret_id mem
in
{exec; check= no_check}
end
module Call = struct
let dispatch : (Tenv.t, model, unit) ProcnameDispatcher.Call.dispatcher =
let open ProcnameDispatcher.Call in
let mk_std_array () = -"std" &:: "array" < any_typ &+ capt_int in
let std_array0 = mk_std_array () in
let std_array1 = mk_std_array () in
let std_array2 = mk_std_array () in
let char_ptr = Typ.mk (Typ.Tptr (Typ.mk (Typ.Tint Typ.IChar), Pk_pointer)) in
make_dispatcher
[ -"__exit" <>--> bottom
; -"CFArrayCreate" <>$ any_arg $+ capt_exp $+ capt_exp $+...$--> CFArray.create_array
; -"CFArrayCreateCopy" <>$ any_arg $+ capt_exp $!--> create_copy_array
; -"MCFArrayGetCount" <>$ capt_exp $!--> CFArray.length
; -"CFDictionaryGetCount" <>$ capt_exp $!--> CFArray.length
; -"CFArrayGetCount" <>$ capt_exp $!--> CFArray.length
; -"CFArrayGetValueAtIndex" <>$ capt_arg $+ capt_arg $!--> CFArray.at
; -"exit" <>--> bottom
; -"__cast" <>$ capt_exp $+ capt_exp $+...$--> cast
; -"fgetc" <>--> by_value Dom.Val.Itv.m1_255
; -"fgets" <>$ capt_exp $+ capt_exp $+...$--> fgets
; -"infer_print" <>$ capt_exp $!--> infer_print
; -"malloc" <>$ capt_exp $+...$--> malloc ~can_be_zero:false
; -"calloc" <>$ capt_exp $+ capt_exp $!--> calloc ~can_be_zero:false
; -"__new"
<>$ any_arg_of_typ (+PatternMatch.implements_pseudo_collection)
$+...$--> Collection.new_collection
; -"__new"
<>$ any_arg_of_typ (+PatternMatch.implements_collection)
$+...$--> Collection.new_collection
; -"__new"
<>$ any_arg_of_typ (+PatternMatch.implements_map)
$+...$--> Collection.new_collection
; +PatternMatch.implements_map &:: "size" <>$ capt_exp $!--> Collection.size
; -"__new"
<>$ any_arg_of_typ (+PatternMatch.implements_org_json "JSONArray")
$+...$--> Collection.new_collection
; -"__new" <>$ capt_exp $+...$--> malloc ~can_be_zero:true
; -"__new_array" <>$ capt_exp $+...$--> malloc ~can_be_zero:true
; +PatternMatch.implements_arrays &:: "asList" <>$ capt_exp $!--> create_copy_array
; +PatternMatch.implements_arrays &:: "copyOf" <>$ capt_exp $+ capt_exp
$+...$--> Collection.copyOf
; -"__placement_new" <>$ capt_exp $+ capt_arg $+? capt_arg $!--> placement_new
; -"realloc" <>$ capt_exp $+ capt_exp $+...$--> realloc
; -"__get_array_length" <>$ capt_exp $!--> get_array_length
; -"__set_array_length" <>$ capt_arg $+ capt_exp $!--> set_array_length
; +PatternMatch.implements_lang "CharSequence"
&:: "length" <>$ capt_exp $!--> JavaString.length
; -"strlen" <>$ capt_exp $!--> strlen
; -"memcpy" <>$ capt_exp $+ capt_exp $+ capt_exp $+...$--> memcpy
; -"memmove" <>$ capt_exp $+ capt_exp $+ capt_exp $+...$--> memcpy
; -"memset" <>$ capt_exp $+ any_arg $+ capt_exp $!--> memset
; -"strcat" <>$ capt_exp $+ capt_exp $+...$--> strcat
; +PatternMatch.implements_lang "String"
&:: "charAt" <>$ capt_exp $+ capt_exp $--> JavaString.charAt
; +PatternMatch.implements_lang "String"
&:: "<init>" <>$ capt_exp
$+ capt_exp_of_typ (+PatternMatch.implements_lang "String")
$--> JavaString.copy_constructor
; +PatternMatch.implements_lang "String"
&:: "<init>" <>$ capt_exp $+ capt_exp $--> JavaString.constructor
; +PatternMatch.implements_lang "String"
&:: "concat" <>$ capt_exp $+ capt_exp $+...$--> JavaString.concat
; +PatternMatch.implements_lang "String"
&:: "indexOf" <>$ capt_exp $+ any_arg $--> JavaString.indexOf
; -"strcpy" <>$ capt_exp $+ capt_exp $+...$--> strcpy
; -"strncpy" <>$ capt_exp $+ capt_exp $+ capt_exp $+...$--> strncpy
; -"snprintf" <>--> snprintf
; -"vsnprintf" <>--> vsnprintf
; -"strndup" <>$ capt_exp $+ capt_exp $+...$--> strndup
; -"boost" &:: "split"
$ capt_arg_of_typ (-"std" &:: "vector")
$+ any_arg $+ any_arg $+? any_arg $--> Boost.Split.std_vector
; -"folly" &:: "split" $ any_arg $+ any_arg
$+ capt_arg_of_typ (-"std" &:: "vector")
$+? capt_exp $--> Folly.Split.std_vector
; std_array0 >:: "array" &--> StdArray.constructor
; std_array1 >:: "begin" $ capt_arg $!--> StdArray.begin_
; std_array1 >:: "cbegin" $ capt_arg $!--> StdArray.begin_
; std_array1 >:: "end" $ capt_arg $!--> StdArray.end_
; std_array1 >:: "cend" $ capt_arg $!--> StdArray.end_
; std_array1 >:: "front" $ capt_arg $!--> StdArray.begin_
; std_array1 >:: "back" $ capt_arg $!--> StdArray.back
; std_array2 >:: "at" $ capt_arg $+ capt_arg $!--> StdArray.at
; std_array2 >:: "operator[]" $ capt_arg $+ capt_arg $!--> StdArray.at
; -"std" &:: "array" &::.*--> no_model
; -"std" &:: "basic_string" < capt_typ &+...>:: "basic_string" $ capt_arg
$+ capt_exp_of_typ (-"std" &:: "basic_string")
$--> StdBasicString.copy_constructor
; -"std" &:: "basic_string" < capt_typ &+...>:: "basic_string" $ capt_arg
$+ capt_exp_of_prim_typ char_ptr $--> StdBasicString.constructor_from_char_ptr_without_len
; -"std" &:: "basic_string" < capt_typ &+...>:: "basic_string" $ capt_arg
$+ capt_exp_of_prim_typ char_ptr
$+ capt_exp_of_prim_typ (Typ.mk (Typ.Tint Typ.size_t))
$--> StdBasicString.constructor_from_char_ptr_with_len
; -"std" &:: "basic_string" < capt_typ &+...>:: "empty" $ capt_arg $--> StdBasicString.empty
; -"std" &:: "basic_string" < capt_typ &+...>:: "length" $ capt_arg $--> StdBasicString.length
; -"std" &:: "basic_string" < capt_typ &+...>:: "size" $ capt_arg $--> StdBasicString.length
; -"std" &:: "basic_string" &:: "compare" &--> by_value Dom.Val.Itv.top
; +PatternMatch.implements_lang "String"
&:: "equals"
$ any_arg_of_typ (+PatternMatch.implements_lang "String")
$+ any_arg_of_typ (+PatternMatch.implements_lang "String")
$--> by_value Dom.Val.Itv.unknown_bool
; +PatternMatch.implements_lang "String"
&:: "startsWith"
$ any_arg_of_typ (+PatternMatch.implements_lang "String")
$+ any_arg_of_typ (+PatternMatch.implements_lang "String")
$--> by_value Dom.Val.Itv.unknown_bool
; -"std" &:: "operator=="
$ any_arg_of_typ (-"std" &:: "basic_string")
$+ any_arg_of_typ (-"std" &:: "basic_string")
$--> by_value Dom.Val.Itv.unknown_bool
; -"std" &:: "operator=="
$ any_arg_of_typ (-"std" &:: "basic_string")
$+ any_arg_of_prim_typ char_ptr $--> by_value Dom.Val.Itv.unknown_bool
; -"std" &:: "operator==" $ any_arg_of_prim_typ char_ptr
$+ any_arg_of_typ (-"std" &:: "basic_string")
$--> by_value Dom.Val.Itv.unknown_bool
; -"std" &:: "operator!="
$ any_arg_of_typ (-"std" &:: "basic_string")
$+ any_arg_of_typ (-"std" &:: "basic_string")
$--> by_value Dom.Val.Itv.unknown_bool
; -"std" &:: "operator!="
$ any_arg_of_typ (-"std" &:: "basic_string")
$+ any_arg_of_prim_typ char_ptr $--> by_value Dom.Val.Itv.unknown_bool
; -"std" &:: "operator!=" $ any_arg_of_prim_typ char_ptr
$+ any_arg_of_typ (-"std" &:: "basic_string")
$--> by_value Dom.Val.Itv.unknown_bool
; -"std" &:: "basic_string" &::.*--> no_model
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "vector"
$ capt_arg_of_typ (-"std" &:: "vector")
$--> StdVector.constructor_empty
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "vector"
$ capt_arg_of_typ (-"std" &:: "vector")
$+ capt_exp_of_prim_typ (Typ.mk (Typ.Tint Typ.size_t))
$+? any_arg $--> StdVector.constructor_size
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "vector"
$ capt_arg_of_typ (-"std" &:: "vector")
$+ capt_exp_of_typ (-"std" &:: "vector")
$+? any_arg $--> StdVector.constructor_copy
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "operator[]"
$ capt_arg_of_typ (-"std" &:: "vector")
$+ capt_exp $--> StdVector.at
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "empty" $ capt_arg $--> StdVector.empty
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "data" $ capt_arg $--> StdVector.data
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "push_back" $ capt_arg $+ capt_exp
$--> StdVector.push_back
; -"std" &:: "vector" < any_typ &+ any_typ >:: "reserve" $ any_arg $+ any_arg $--> no_model
; -"std" &:: "vector" < capt_typ &+ any_typ >:: "size" $ capt_arg $--> StdVector.size
; +PatternMatch.implements_collection
&:: "<init>" <>$ capt_var_exn
$+ capt_exp_of_typ (+PatternMatch.implements_collection)
$--> Collection.init_with_arg
; +PatternMatch.implements_collection
&:: "<init>" <>$ any_arg $+ capt_exp $--> Collection.init_with_capacity
(* model sets as lists *)
; +PatternMatch.implements_collections &::+ unmodifiable <>$ capt_exp $--> Collection.iterator
; +PatternMatch.implements_collections &:: "singleton" <>--> Collection.singleton_collection
; +PatternMatch.implements_collections &:: "emptySet" <>--> Collection.new_collection
(* model maps as lists *)
; +PatternMatch.implements_collections
&:: "singletonMap" <>--> Collection.singleton_collection
; +PatternMatch.implements_collections
&:: "singletonList" <>--> Collection.singleton_collection
; +PatternMatch.implements_collection
&:: "get" <>$ capt_var_exn $+ capt_exp $--> Collection.get_or_set_at_index
; +PatternMatch.implements_collection
&:: "set" <>$ capt_var_exn $+ capt_exp $+ any_arg $--> Collection.get_or_set_at_index
; +PatternMatch.implements_collection
&:: "remove" <>$ capt_var_exn $+ capt_exp $--> Collection.remove_at_index
; +PatternMatch.implements_collection
&:: "add" <>$ capt_var_exn $+ any_arg $--> Collection.add
; +PatternMatch.implements_pseudo_collection
&:: "put" <>$ capt_var_exn $+ any_arg $+ any_arg $--> Collection.put
; +PatternMatch.implements_collection
&:: "add" <>$ capt_var_exn $+ capt_exp $+ any_arg $!--> Collection.add_at_index
; +PatternMatch.implements_lang "Iterable"
&:: "iterator" <>$ capt_exp $!--> Collection.iterator
; +PatternMatch.implements_list &:: "listIterator" <>$ capt_exp $+...$--> Collection.iterator
; +PatternMatch.implements_map &:: "entrySet" <>$ capt_exp $!--> Collection.iterator
; +PatternMatch.implements_map &:: "keySet" <>$ capt_exp $!--> Collection.iterator
; +PatternMatch.implements_map &:: "values" <>$ capt_exp $!--> Collection.iterator
; +PatternMatch.implements_map &:: "put" <>$ capt_var_exn $+ any_arg $+ any_arg
$--> Collection.put
; +PatternMatch.implements_org_json "JSONArray"
&:: "put" <>$ capt_var_exn $+...$--> Collection.put
; +PatternMatch.implements_map &:: "putAll" <>$ capt_var_exn $+ capt_exp
$--> Collection.putAll
; +PatternMatch.implements_iterator &:: "hasNext" <>$ capt_exp $!--> Collection.hasNext
; +PatternMatch.implements_iterator &:: "next" <>$ capt_exp $!--> Collection.next
; +PatternMatch.implements_list &:: "subList" <>$ any_arg $+ capt_exp $+ capt_exp
$--> Collection.subList
; +PatternMatch.implements_collection
&:: "addAll" <>$ capt_var_exn $+ capt_exp $--> Collection.addAll
; +PatternMatch.implements_collection
&:: "addAll" <>$ capt_var_exn $+ capt_exp $+ capt_exp $!--> Collection.addAll_at_index
; +PatternMatch.implements_collection &:: "size" <>$ capt_exp $!--> Collection.size
; +PatternMatch.implements_google "common.base.Preconditions"
&:: "checkArgument" <>$ capt_exp $--> Preconditions.check_argument
; +PatternMatch.implements_pseudo_collection &:: "size" <>$ capt_exp $!--> Collection.size
; +PatternMatch.implements_org_json "JSONArray"
&:: "length" <>$ capt_exp $!--> Collection.size
; +PatternMatch.implements_org_json "JSONArray"
&:: "<init>" <>$ capt_var_exn
$+ capt_exp_of_typ (+PatternMatch.implements_collection)
$--> Collection.init_with_arg
; +PatternMatch.implements_lang "Integer"
&:: "intValue" <>$ capt_exp $--> JavaInteger.intValue
; +PatternMatch.implements_lang "Integer" &:: "valueOf" <>$ capt_exp $--> JavaInteger.valueOf
; +PatternMatch.implements_io "InputStream"
&:: "read" <>$ any_arg $+ any_arg $+ any_arg $+ capt_exp $--> InputStream.read
; +PatternMatch.implements_nio "channels.FileChannel"
&:: "read" <>$ any_arg $+ capt_exp $+ any_arg $--> FileChannel.read
; +PatternMatch.implements_nio "ByteBuffer" &:: "get" <>$ capt_exp $--> ByteBuffer.get_int
; +PatternMatch.implements_nio "ByteBuffer"
&:: "getShort" <>$ capt_exp $--> ByteBuffer.get_int
; +PatternMatch.implements_nio "ByteBuffer" &:: "getInt" <>$ capt_exp $--> ByteBuffer.get_int
; +PatternMatch.implements_nio "ByteBuffer" &:: "getLong" <>$ capt_exp $--> ByteBuffer.get_int
; -"java.lang.Object" &:: "clone" <>$ capt_exp $--> Object.clone
; +PatternMatch.implements_lang "Math"
&:: "max" <>$ capt_exp $+ capt_exp
$--> eval_binop ~f:(Itv.max_sem ~use_minmax_bound:true)
; +PatternMatch.implements_lang "Math"
&:: "min" <>$ capt_exp $+ capt_exp
$--> eval_binop ~f:(Itv.min_sem ~use_minmax_bound:true) ]
end