You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

1001 lines
33 KiB

(*
* Copyright (c) 2016-present, Programming Research Laboratory (ROPAS)
* Seoul National University, Korea
* Copyright (c) 2017-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
open AbsLoc
open! AbstractDomain.Types
module F = Format
module L = Logging
module Relation = BufferOverrunDomainRelation
module Trace = BufferOverrunTrace
module TraceSet = Trace.Set
module Val = struct
type t =
{ itv: Itv.t
; sym: Relation.Sym.t
; powloc: PowLoc.t
; arrayblk: ArrayBlk.t
; offset_sym: Relation.Sym.t
; size_sym: Relation.Sym.t
; traces: TraceSet.t
; represents_multiple_values: bool }
let bot : t =
{ itv= Itv.bot
; sym= Relation.Sym.bot
; powloc= PowLoc.bot
; arrayblk= ArrayBlk.bot
; offset_sym= Relation.Sym.bot
; size_sym= Relation.Sym.bot
; traces= TraceSet.empty
; represents_multiple_values= false }
let pp fmt x =
let relation_sym_pp fmt sym =
if Option.is_some Config.bo_relational_domain then F.fprintf fmt ", %a" Relation.Sym.pp sym
in
let trace_pp fmt traces =
if Config.bo_debug >= 1 then F.fprintf fmt ", %a" TraceSet.pp traces
in
let represents_multiple_values_str = if x.represents_multiple_values then "M" else "" in
F.fprintf fmt "%s(%a%a, %a, %a%a%a%a)" represents_multiple_values_str Itv.pp x.itv
relation_sym_pp x.sym PowLoc.pp x.powloc ArrayBlk.pp x.arrayblk relation_sym_pp x.offset_sym
relation_sym_pp x.size_sym trace_pp x.traces
let sets_represents_multiple_values : represents_multiple_values:bool -> t -> t =
fun ~represents_multiple_values x -> {x with represents_multiple_values}
let unknown_from : callee_pname:_ -> location:_ -> t =
fun ~callee_pname ~location ->
let traces = Trace.(Set.singleton_final location (UnknownFrom callee_pname)) in
{ itv= Itv.top
; sym= Relation.Sym.top
; powloc= PowLoc.unknown
; arrayblk= ArrayBlk.unknown
; offset_sym= Relation.Sym.top
; size_sym= Relation.Sym.top
; traces
; represents_multiple_values= false }
let ( <= ) ~lhs ~rhs =
if phys_equal lhs rhs then true
else
Itv.( <= ) ~lhs:lhs.itv ~rhs:rhs.itv
&& Relation.Sym.( <= ) ~lhs:lhs.sym ~rhs:rhs.sym
&& PowLoc.( <= ) ~lhs:lhs.powloc ~rhs:rhs.powloc
&& ArrayBlk.( <= ) ~lhs:lhs.arrayblk ~rhs:rhs.arrayblk
&& Relation.Sym.( <= ) ~lhs:lhs.offset_sym ~rhs:rhs.offset_sym
&& Relation.Sym.( <= ) ~lhs:lhs.size_sym ~rhs:rhs.size_sym
&& Bool.( <= ) lhs.represents_multiple_values rhs.represents_multiple_values
let widen ~prev ~next ~num_iters =
if phys_equal prev next then prev
else
{ itv= Itv.widen ~prev:prev.itv ~next:next.itv ~num_iters
; sym= Relation.Sym.widen ~prev:prev.sym ~next:next.sym ~num_iters
; powloc= PowLoc.widen ~prev:prev.powloc ~next:next.powloc ~num_iters
; arrayblk= ArrayBlk.widen ~prev:prev.arrayblk ~next:next.arrayblk ~num_iters
; offset_sym= Relation.Sym.widen ~prev:prev.offset_sym ~next:next.offset_sym ~num_iters
; size_sym= Relation.Sym.widen ~prev:prev.size_sym ~next:next.size_sym ~num_iters
; traces= TraceSet.join prev.traces next.traces
; represents_multiple_values=
prev.represents_multiple_values || next.represents_multiple_values }
let join : t -> t -> t =
fun x y ->
if phys_equal x y then x
else
{ itv= Itv.join x.itv y.itv
; sym= Relation.Sym.join x.sym y.sym
; powloc= PowLoc.join x.powloc y.powloc
; arrayblk= ArrayBlk.join x.arrayblk y.arrayblk
; offset_sym= Relation.Sym.join x.offset_sym y.offset_sym
; size_sym= Relation.Sym.join x.size_sym y.size_sym
; traces= TraceSet.join x.traces y.traces
; represents_multiple_values= x.represents_multiple_values || y.represents_multiple_values }
let get_itv : t -> Itv.t = fun x -> x.itv
let get_sym : t -> Relation.Sym.t = fun x -> x.sym
let get_sym_var : t -> Relation.Var.t option = fun x -> Relation.Sym.get_var x.sym
let get_pow_loc : t -> PowLoc.t = fun x -> x.powloc
let get_array_blk : t -> ArrayBlk.t = fun x -> x.arrayblk
let get_array_locs : t -> PowLoc.t = fun x -> ArrayBlk.get_pow_loc x.arrayblk
let get_all_locs : t -> PowLoc.t = fun x -> PowLoc.join x.powloc (get_array_locs x)
let get_offset_sym : t -> Relation.Sym.t = fun x -> x.offset_sym
let get_size_sym : t -> Relation.Sym.t = fun x -> x.size_sym
let get_traces : t -> TraceSet.t = fun x -> x.traces
let of_itv ?(traces = TraceSet.empty) itv = {bot with itv; traces}
let of_int n = of_itv (Itv.of_int n)
let of_big_int n = of_itv (Itv.of_big_int n)
let of_loc : Loc.t -> t = fun x -> {bot with powloc= PowLoc.singleton x}
let of_pow_loc ~traces powloc = {bot with powloc; traces}
let of_array_alloc :
Allocsite.t -> stride:int option -> offset:Itv.t -> size:Itv.t -> traces:TraceSet.t -> t =
fun allocsite ~stride ~offset ~size ~traces ->
let stride = Option.value_map stride ~default:Itv.nat ~f:Itv.of_int in
{ bot with
arrayblk= ArrayBlk.make allocsite ~offset ~size ~stride
; offset_sym= Relation.Sym.of_allocsite_offset allocsite
; size_sym= Relation.Sym.of_allocsite_size allocsite
; traces }
let modify_itv : Itv.t -> t -> t = fun i x -> {x with itv= i}
let make_sym :
?unsigned:bool
-> Loc.t
-> Typ.Procname.t
-> Itv.SymbolTable.t
-> Itv.SymbolPath.partial
-> Counter.t
-> Location.t
-> t =
fun ?(unsigned = false) loc pname symbol_table path new_sym_num location ->
let represents_multiple_values = Itv.SymbolPath.represents_multiple_values path in
{ bot with
itv= Itv.make_sym ~unsigned pname symbol_table (Itv.SymbolPath.normal path) new_sym_num
; sym= Relation.Sym.of_loc loc
; traces= Trace.(Set.singleton location (Parameter loc))
; represents_multiple_values }
let unknown_bit : t -> t = fun x -> {x with itv= Itv.top; sym= Relation.Sym.top}
let neg : t -> t = fun x -> {x with itv= Itv.neg x.itv; sym= Relation.Sym.top}
let lnot : t -> t = fun x -> {x with itv= Itv.lnot x.itv |> Itv.of_bool; sym= Relation.Sym.top}
let lift_itv : (Itv.t -> Itv.t -> Itv.t) -> ?f_trace:_ -> t -> t -> t =
fun f ?(f_trace = TraceSet.join) x y ->
{bot with itv= f x.itv y.itv; traces= f_trace x.traces y.traces}
let lift_cmp_itv : (Itv.t -> Itv.t -> Boolean.t) -> Boolean.EqualOrder.t -> t -> t -> t =
fun cmp_itv cmp_loc x y ->
let b =
match
( x.itv
, PowLoc.is_bot x.powloc
, ArrayBlk.is_bot x.arrayblk
, y.itv
, PowLoc.is_bot y.powloc
, ArrayBlk.is_bot y.arrayblk )
with
| NonBottom _, true, true, NonBottom _, true, true ->
cmp_itv x.itv y.itv
| Bottom, false, true, Bottom, false, true ->
PowLoc.lift_cmp cmp_loc x.powloc y.powloc
| Bottom, true, false, Bottom, true, false ->
ArrayBlk.lift_cmp_itv cmp_itv cmp_loc x.arrayblk y.arrayblk
| _ ->
Boolean.Top
in
let itv = Itv.of_bool b in
{bot with itv; traces= TraceSet.join x.traces y.traces}
let plus_a = lift_itv Itv.plus
let minus_a = lift_itv Itv.minus
let get_iterator_itv : t -> t =
fun i ->
let itv = Itv.get_iterator_itv i.itv in
of_itv itv ~traces:i.traces
let mult = lift_itv Itv.mult
let div = lift_itv Itv.div
let mod_sem = lift_itv Itv.mod_sem
let shiftlt = lift_itv Itv.shiftlt
let shiftrt = lift_itv Itv.shiftrt
let band_sem = lift_itv Itv.band_sem
let lt_sem : t -> t -> t = lift_cmp_itv Itv.lt_sem Boolean.EqualOrder.strict_cmp
let gt_sem : t -> t -> t = lift_cmp_itv Itv.gt_sem Boolean.EqualOrder.strict_cmp
let le_sem : t -> t -> t = lift_cmp_itv Itv.le_sem Boolean.EqualOrder.loose_cmp
let ge_sem : t -> t -> t = lift_cmp_itv Itv.ge_sem Boolean.EqualOrder.loose_cmp
let eq_sem : t -> t -> t = lift_cmp_itv Itv.eq_sem Boolean.EqualOrder.eq
let ne_sem : t -> t -> t = lift_cmp_itv Itv.ne_sem Boolean.EqualOrder.ne
let land_sem : t -> t -> t = lift_cmp_itv Itv.land_sem Boolean.EqualOrder.top
let lor_sem : t -> t -> t = lift_cmp_itv Itv.lor_sem Boolean.EqualOrder.top
(* TODO: get rid of those cases *)
let warn_against_pruning_multiple_values : t -> t =
fun x ->
if x.represents_multiple_values && Config.write_html then
L.d_printfln ~color:Pp.Red "Pruned %a that represents multiple values" pp x ;
x
let lift_prune1 : (Itv.t -> Itv.t) -> t -> t =
fun f x -> warn_against_pruning_multiple_values {x with itv= f x.itv}
let lift_prune2 :
(Itv.t -> Itv.t -> Itv.t) -> (ArrayBlk.t -> ArrayBlk.t -> ArrayBlk.t) -> t -> t -> t =
fun f g x y ->
let itv = f x.itv y.itv in
let arrayblk = g x.arrayblk y.arrayblk in
if phys_equal itv x.itv && phys_equal arrayblk x.arrayblk then
(* x hasn't changed, don't join traces *)
x
else
warn_against_pruning_multiple_values
{x with itv; arrayblk; traces= TraceSet.join x.traces y.traces}
let prune_eq_zero : t -> t = lift_prune1 Itv.prune_eq_zero
let prune_ne_zero : t -> t = lift_prune1 Itv.prune_ne_zero
let prune_comp : Binop.t -> t -> t -> t =
fun c -> lift_prune2 (Itv.prune_comp c) (ArrayBlk.prune_comp c)
let prune_eq : t -> t -> t = lift_prune2 Itv.prune_eq ArrayBlk.prune_eq
let prune_ne : t -> t -> t = lift_prune2 Itv.prune_ne ArrayBlk.prune_ne
let is_pointer_to_non_array x = (not (PowLoc.is_bot x.powloc)) && ArrayBlk.is_bot x.arrayblk
(* In the pointer arithmetics, it returns top, if we cannot
precisely follow the physical memory model, e.g., (&x + 1). *)
let lift_pi : (ArrayBlk.t -> Itv.t -> ArrayBlk.t) -> t -> t -> t =
fun f x y ->
let traces = TraceSet.join x.traces y.traces in
if is_pointer_to_non_array x then {bot with itv= Itv.top; traces}
else {bot with arrayblk= f x.arrayblk y.itv; traces}
let plus_pi : t -> t -> t = fun x y -> lift_pi ArrayBlk.plus_offset x y
let minus_pi : t -> t -> t = fun x y -> lift_pi ArrayBlk.minus_offset x y
let minus_pp : t -> t -> t =
fun x y ->
let itv =
if is_pointer_to_non_array x && is_pointer_to_non_array y then Itv.top
else ArrayBlk.diff x.arrayblk y.arrayblk
in
{bot with itv; traces= TraceSet.join x.traces y.traces}
let get_symbols : t -> Itv.SymbolSet.t =
fun x -> Itv.SymbolSet.union (Itv.get_symbols x.itv) (ArrayBlk.get_symbols x.arrayblk)
let normalize : t -> t =
fun x -> {x with itv= Itv.normalize x.itv; arrayblk= ArrayBlk.normalize x.arrayblk}
let subst : t -> Bounds.Bound.eval_sym * (Symb.Symbol.t -> TraceSet.t) -> Location.t -> t =
fun x (eval_sym, trace_of_sym) location ->
let symbols = get_symbols x in
let traces_caller =
Itv.SymbolSet.fold
(fun symbol traces -> TraceSet.join (trace_of_sym symbol) traces)
symbols TraceSet.empty
in
let traces = TraceSet.call location ~traces_caller ~traces_callee:x.traces in
{x with itv= Itv.subst x.itv eval_sym; arrayblk= ArrayBlk.subst x.arrayblk eval_sym; traces}
(* normalize bottom *)
|> normalize
let add_assign_trace_elem location x =
let traces = Trace.(Set.add_elem location Assign) x.traces in
{x with traces}
let set_array_length : Location.t -> length:t -> t -> t =
fun location ~length v ->
{ v with
arrayblk= ArrayBlk.set_length length.itv v.arrayblk
; traces= Trace.(Set.add_elem location ArrayDeclaration) length.traces }
let set_array_stride : Z.t -> t -> t =
fun new_stride v ->
let stride = ArrayBlk.strideof (get_array_blk v) in
if Itv.eq_const new_stride stride then v
else {v with arrayblk= ArrayBlk.set_stride new_stride v.arrayblk}
let unknown_locs = of_pow_loc PowLoc.unknown ~traces:TraceSet.empty
module Itv = struct
let m1_255 = of_itv Itv.m1_255
let nat = of_itv Itv.nat
let one = of_itv Itv.one
let pos = of_itv Itv.pos
let top = of_itv Itv.top
let zero = of_itv Itv.zero
end
end
module StackLocs = struct
include AbstractDomain.FiniteSet (Loc)
let bot = empty
end
module MemPure = struct
include AbstractDomain.Map (Loc) (Val)
let bot = empty
let range : filter_loc:(Loc.t -> bool) -> t -> Polynomials.NonNegativePolynomial.t =
fun ~filter_loc mem ->
fold
(fun loc v acc ->
if filter_loc loc then
v |> Val.get_itv |> Itv.range |> Itv.ItvRange.to_top_lifted_polynomial
|> Polynomials.NonNegativePolynomial.mult acc
else acc )
mem Polynomials.NonNegativePolynomial.one
end
module AliasTarget = struct
type t = Simple of Loc.t | Empty of Loc.t [@@deriving compare]
let equal = [%compare.equal: t]
let pp fmt = function Simple l -> Loc.pp fmt l | Empty l -> F.fprintf fmt "empty(%a)" Loc.pp l
let of_empty l = Empty l
let use l = function Simple l' | Empty l' -> Loc.equal l l'
let loc_map x ~f =
match x with
| Simple l ->
Option.map (f l) ~f:(fun l -> Simple l)
| Empty l ->
Option.map (f l) ~f:(fun l -> Empty l)
let ( <= ) ~lhs ~rhs = equal lhs rhs
let join x y =
assert (equal x y) ;
x
let widen ~prev ~next ~num_iters:_ = join prev next
end
(* Relations between values of logical variables(registers) and
program variables
"AliasTarget.Simple relation": Since Sil distinguishes logical and
program variables, we need a relation for pruning values of program
variables. For example, a C statement "if(x){...}" is translated
to "%r=load(x); if(%r){...}" in Sil. At the load statement, we
record the alias between the values of %r and x, then we can prune
not only the value of %r, but also that of x inside the if branch.
"AliasTarget.Empty relation": For pruning vector.size with
vector::empty() results, we adopt a specific relation between %r
and x, where %r=v.empty() and x=v.size. So, if %r!=0, x is pruned
by x=0. On the other hand, if %r==0, x is pruned by x>=1. *)
module AliasMap = struct
include AbstractDomain.Map (Ident) (AliasTarget)
let pp : F.formatter -> t -> unit =
fun fmt x ->
if not (is_empty x) then
let pp_sep fmt () = F.fprintf fmt ", @," in
let pp1 fmt (k, v) = F.fprintf fmt "%a=%a" Ident.pp k AliasTarget.pp v in
F.pp_print_list ~pp_sep pp1 fmt (bindings x)
let load : Ident.t -> AliasTarget.t -> t -> t = add
let store : Loc.t -> t -> t = fun l m -> filter (fun _ y -> not (AliasTarget.use l y)) m
let find : Ident.t -> t -> AliasTarget.t option = find_opt
end
module AliasRet = struct
include AbstractDomain.Flat (AliasTarget)
let pp : F.formatter -> t -> unit = fun fmt x -> F.pp_print_string fmt "ret=" ; pp fmt x
end
module Alias = struct
type t = {map: AliasMap.t; ret: AliasRet.t}
let ( <= ) ~lhs ~rhs =
if phys_equal lhs rhs then true
else AliasMap.( <= ) ~lhs:lhs.map ~rhs:rhs.map && AliasRet.( <= ) ~lhs:lhs.ret ~rhs:rhs.ret
let join x y =
if phys_equal x y then x else {map= AliasMap.join x.map y.map; ret= AliasRet.join x.ret y.ret}
let widen ~prev ~next ~num_iters =
if phys_equal prev next then prev
else
{ map= AliasMap.widen ~prev:prev.map ~next:next.map ~num_iters
; ret= AliasRet.widen ~prev:prev.ret ~next:next.ret ~num_iters }
let pp fmt x =
F.fprintf fmt "@[<hov 2>{ %a%s%a }@]" AliasMap.pp x.map
(if AliasMap.is_empty x.map then "" else ", ")
AliasRet.pp x.ret
let bot : t = {map= AliasMap.empty; ret= AliasRet.empty}
let lift_map : (AliasMap.t -> AliasMap.t) -> t -> t = fun f a -> {a with map= f a.map}
let bind_map : (AliasMap.t -> 'a) -> t -> 'a = fun f a -> f a.map
let find : Ident.t -> t -> AliasTarget.t option = fun x -> bind_map (AliasMap.find x)
let find_ret : t -> AliasTarget.t option = fun x -> AliasRet.get x.ret
let load : Ident.t -> AliasTarget.t -> t -> t = fun id loc -> lift_map (AliasMap.load id loc)
let store_simple : Loc.t -> Exp.t -> t -> t =
fun loc e a ->
let a = lift_map (AliasMap.store loc) a in
match e with
| Exp.Var l when Loc.is_return loc ->
let update_ret retl = {a with ret= AliasRet.v retl} in
Option.value_map (find l a) ~default:a ~f:update_ret
| _ ->
a
let store_empty : Val.t -> Loc.t -> t -> t =
fun formal loc a ->
let a = lift_map (AliasMap.store loc) a in
let locs = Val.get_all_locs formal in
match PowLoc.is_singleton_or_more locs with
| IContainer.Singleton loc ->
{a with ret= AliasRet.v (AliasTarget.of_empty loc)}
| _ ->
a
let remove_temp : Ident.t -> t -> t = fun temp -> lift_map (AliasMap.remove temp)
end
(* [PrunePairs] is a map from abstract locations to abstract values that represents pruned results
in the latest pruning. It uses [InvertedMap] because more pruning means smaller abstract
states. *)
module PrunePairs = AbstractDomain.InvertedMap (Loc) (Val)
module LatestPrune = struct
(* Latest p: The pruned pairs 'p' has pruning information (which
abstract locations are updated by which abstract values) in the
latest pruning.
TrueBranch (x, p): After a pruning, the variable 'x' is assigned
by 1. There is no other memory updates after the latest pruning.
FalseBranch (x, p): After a pruning, the variable 'x' is assigned
by 0. There is no other memory updates after the latest pruning.
V (x, ptrue, pfalse): After two non-sequential prunings ('ptrue'
and 'pfalse'), the variable 'x' is assigned by 1 and 0,
respectively. There is no other memory updates after the latest
prunings.
Top: No information about the latest pruning. *)
type t =
| Latest of PrunePairs.t
| TrueBranch of Pvar.t * PrunePairs.t
| FalseBranch of Pvar.t * PrunePairs.t
| V of Pvar.t * PrunePairs.t * PrunePairs.t
| Top
let pvar_pp = Pvar.pp Pp.text
let pp fmt = function
| Top ->
()
| Latest p ->
F.fprintf fmt "LatestPrune: latest %a" PrunePairs.pp p
| TrueBranch (v, p) ->
F.fprintf fmt "LatestPrune: true(%a) %a" pvar_pp v PrunePairs.pp p
| FalseBranch (v, p) ->
F.fprintf fmt "LatestPrune: false(%a) %a" pvar_pp v PrunePairs.pp p
| V (v, p1, p2) ->
F.fprintf fmt "LatestPrune: v(%a) %a / %a" pvar_pp v PrunePairs.pp p1 PrunePairs.pp p2
let ( <= ) ~lhs ~rhs =
if phys_equal lhs rhs then true
else
match (lhs, rhs) with
| _, Top ->
true
| Top, _ ->
false
| Latest p1, Latest p2 ->
PrunePairs.( <= ) ~lhs:p1 ~rhs:p2
| TrueBranch (x1, p1), TrueBranch (x2, p2)
| FalseBranch (x1, p1), FalseBranch (x2, p2)
| TrueBranch (x1, p1), V (x2, p2, _)
| FalseBranch (x1, p1), V (x2, _, p2) ->
Pvar.equal x1 x2 && PrunePairs.( <= ) ~lhs:p1 ~rhs:p2
| V (x1, ptrue1, pfalse1), V (x2, ptrue2, pfalse2) ->
Pvar.equal x1 x2
&& PrunePairs.( <= ) ~lhs:ptrue1 ~rhs:ptrue2
&& PrunePairs.( <= ) ~lhs:pfalse1 ~rhs:pfalse2
| _, _ ->
false
let join x y =
match (x, y) with
| _, _ when ( <= ) ~lhs:x ~rhs:y ->
y
| _, _ when ( <= ) ~lhs:y ~rhs:x ->
x
| Latest p1, Latest p2 ->
Latest (PrunePairs.join p1 p2)
| FalseBranch (x1, p1), FalseBranch (x2, p2) when Pvar.equal x1 x2 ->
FalseBranch (x1, PrunePairs.join p1 p2)
| TrueBranch (x1, p1), TrueBranch (x2, p2) when Pvar.equal x1 x2 ->
TrueBranch (x1, PrunePairs.join p1 p2)
| FalseBranch (x', pfalse), TrueBranch (y', ptrue)
| TrueBranch (x', ptrue), FalseBranch (y', pfalse)
when Pvar.equal x' y' ->
V (x', ptrue, pfalse)
| V (x1, ptrue1, pfalse1), V (x2, ptrue2, pfalse2) when Pvar.equal x1 x2 ->
V (x1, PrunePairs.join ptrue1 ptrue2, PrunePairs.join pfalse1 pfalse2)
| _, _ ->
Top
let widen ~prev ~next ~num_iters:_ = join prev next
let top = Top
end
module MemReach = struct
type t =
{ stack_locs: StackLocs.t
; mem_pure: MemPure.t
; alias: Alias.t
; latest_prune: LatestPrune.t
; relation: Relation.t }
let init : t =
{ stack_locs= StackLocs.bot
; mem_pure= MemPure.bot
; alias= Alias.bot
; latest_prune= LatestPrune.top
; relation= Relation.empty }
let ( <= ) ~lhs ~rhs =
if phys_equal lhs rhs then true
else
StackLocs.( <= ) ~lhs:lhs.stack_locs ~rhs:rhs.stack_locs
&& MemPure.( <= ) ~lhs:lhs.mem_pure ~rhs:rhs.mem_pure
&& Alias.( <= ) ~lhs:lhs.alias ~rhs:rhs.alias
&& LatestPrune.( <= ) ~lhs:lhs.latest_prune ~rhs:rhs.latest_prune
&& Relation.( <= ) ~lhs:lhs.relation ~rhs:rhs.relation
let widen ~prev ~next ~num_iters =
if phys_equal prev next then prev
else
{ stack_locs= StackLocs.widen ~prev:prev.stack_locs ~next:next.stack_locs ~num_iters
; mem_pure= MemPure.widen ~prev:prev.mem_pure ~next:next.mem_pure ~num_iters
; alias= Alias.widen ~prev:prev.alias ~next:next.alias ~num_iters
; latest_prune= LatestPrune.widen ~prev:prev.latest_prune ~next:next.latest_prune ~num_iters
; relation= Relation.widen ~prev:prev.relation ~next:next.relation ~num_iters }
let join : t -> t -> t =
fun x y ->
{ stack_locs= StackLocs.join x.stack_locs y.stack_locs
; mem_pure= MemPure.join x.mem_pure y.mem_pure
; alias= Alias.join x.alias y.alias
; latest_prune= LatestPrune.join x.latest_prune y.latest_prune
; relation= Relation.join x.relation y.relation }
let pp : F.formatter -> t -> unit =
fun fmt x ->
F.fprintf fmt "StackLocs:@;%a@;MemPure:@;%a@;Alias:@;%a@;%a" StackLocs.pp x.stack_locs
MemPure.pp x.mem_pure Alias.pp x.alias LatestPrune.pp x.latest_prune ;
if Option.is_some Config.bo_relational_domain then
F.fprintf fmt "@;Relation:@;%a" Relation.pp x.relation
let is_stack_loc : Loc.t -> t -> bool = fun l m -> StackLocs.mem l m.stack_locs
let find_opt : Loc.t -> t -> Val.t option = fun l m -> MemPure.find_opt l m.mem_pure
let find_stack : Loc.t -> t -> Val.t = fun l m -> Option.value (find_opt l m) ~default:Val.bot
let find_heap : Loc.t -> t -> Val.t = fun l m -> Option.value (find_opt l m) ~default:Val.Itv.top
let find : Loc.t -> t -> Val.t =
fun l m -> if is_stack_loc l m then find_stack l m else find_heap l m
let find_set : PowLoc.t -> t -> Val.t =
fun locs m ->
let find_join loc acc = Val.join acc (find loc m) in
PowLoc.fold find_join locs Val.bot
let find_alias : Ident.t -> t -> AliasTarget.t option = fun k m -> Alias.find k m.alias
let find_simple_alias : Ident.t -> t -> Loc.t option =
fun k m ->
match Alias.find k m.alias with
| Some (AliasTarget.Simple l) ->
Some l
| Some (AliasTarget.Empty _) | None ->
None
let find_ret_alias : t -> AliasTarget.t option = fun m -> Alias.find_ret m.alias
let load_alias : Ident.t -> AliasTarget.t -> t -> t =
fun id loc m -> {m with alias= Alias.load id loc m.alias}
let store_simple_alias : Loc.t -> Exp.t -> t -> t =
fun loc e m -> {m with alias= Alias.store_simple loc e m.alias}
let store_empty_alias : Val.t -> Loc.t -> t -> t =
fun formal loc m -> {m with alias= Alias.store_empty formal loc m.alias}
let add_stack_loc : Loc.t -> t -> t = fun k m -> {m with stack_locs= StackLocs.add k m.stack_locs}
let add_stack : Loc.t -> Val.t -> t -> t =
fun k v m ->
{m with stack_locs= StackLocs.add k m.stack_locs; mem_pure= MemPure.add k v m.mem_pure}
let replace_stack : Loc.t -> Val.t -> t -> t =
fun k v m -> {m with mem_pure= MemPure.add k v m.mem_pure}
let add_heap : Loc.t -> Val.t -> t -> t =
fun x v m ->
let v =
let sym = if Itv.is_empty (Val.get_itv v) then Relation.Sym.bot else Relation.Sym.of_loc x in
let offset_sym, size_sym =
if ArrayBlk.is_bot (Val.get_array_blk v) then (Relation.Sym.bot, Relation.Sym.bot)
else (Relation.Sym.of_loc_offset x, Relation.Sym.of_loc_size x)
in
{v with Val.sym; Val.offset_sym; Val.size_sym}
in
{m with mem_pure= MemPure.add x v m.mem_pure}
let add_unknown_from :
Ident.t -> callee_pname:Typ.Procname.t option -> location:Location.t -> t -> t =
fun id ~callee_pname ~location m ->
let val_unknown = Val.unknown_from ~callee_pname ~location in
add_stack (Loc.of_id id) val_unknown m |> add_heap Loc.unknown val_unknown
let strong_update : PowLoc.t -> Val.t -> t -> t =
fun locs v m ->
let strong_update1 l m = if is_stack_loc l m then replace_stack l v m else add_heap l v m in
PowLoc.fold strong_update1 locs m
let transform_mem : f:(Val.t -> Val.t) -> PowLoc.t -> t -> t =
fun ~f locs m ->
let transform_mem1 l m =
let add, find =
if is_stack_loc l m then (replace_stack, find_stack) else (add_heap, find_heap)
in
add l (f (find l m)) m
in
PowLoc.fold transform_mem1 locs m
let weak_update locs v m = transform_mem ~f:(fun v' -> Val.join v' v) locs m
let update_mem : PowLoc.t -> Val.t -> t -> t =
fun ploc v s ->
if can_strong_update ploc then strong_update ploc v s
else
let () = L.d_printfln "Weak update for %a <- %a" PowLoc.pp ploc Val.pp v in
weak_update ploc v s
let remove_temp : Ident.t -> t -> t =
fun temp m ->
let l = Loc.of_id temp in
{ m with
stack_locs= StackLocs.remove l m.stack_locs
; mem_pure= MemPure.remove l m.mem_pure
; alias= Alias.remove_temp temp m.alias }
let remove_temps : Ident.t list -> t -> t =
fun temps m -> List.fold temps ~init:m ~f:(fun acc temp -> remove_temp temp acc)
let set_prune_pairs : PrunePairs.t -> t -> t =
fun prune_pairs m -> {m with latest_prune= LatestPrune.Latest prune_pairs}
let apply_latest_prune : Exp.t -> t -> t =
fun e m ->
match (m.latest_prune, e) with
| LatestPrune.V (x, prunes, _), Exp.Var r
| LatestPrune.V (x, _, prunes), Exp.UnOp (Unop.LNot, Exp.Var r, _) -> (
match find_simple_alias r m with
| Some (Loc.Var (Var.ProgramVar y)) when Pvar.equal x y ->
PrunePairs.fold (fun l v acc -> update_mem (PowLoc.singleton l) v acc) prunes m
| _ ->
m )
| _ ->
m
let update_latest_prune : Exp.t -> Exp.t -> t -> t =
fun e1 e2 m ->
match (e1, e2, m.latest_prune) with
| Lvar x, Const (Const.Cint i), LatestPrune.Latest p ->
if IntLit.isone i then {m with latest_prune= LatestPrune.TrueBranch (x, p)}
else if IntLit.iszero i then {m with latest_prune= LatestPrune.FalseBranch (x, p)}
else {m with latest_prune= LatestPrune.Top}
| _, _, _ ->
{m with latest_prune= LatestPrune.Top}
let get_reachable_locs_from : PowLoc.t -> t -> PowLoc.t =
let add_reachable1 ~root loc v acc =
if Loc.equal root loc then PowLoc.union acc (Val.get_all_locs v)
else if Loc.is_field_of ~loc:root ~field_loc:loc then PowLoc.add loc acc
else acc
in
let rec add_from_locs heap locs acc = PowLoc.fold (add_from_loc heap) locs acc
and add_from_loc heap loc acc =
if PowLoc.mem loc acc then acc
else
let reachable_locs = MemPure.fold (add_reachable1 ~root:loc) heap PowLoc.empty in
add_from_locs heap reachable_locs (PowLoc.add loc acc)
in
fun locs m -> add_from_locs m.mem_pure locs PowLoc.empty
let range : filter_loc:(Loc.t -> bool) -> t -> Polynomials.NonNegativePolynomial.t =
fun ~filter_loc {mem_pure} -> MemPure.range ~filter_loc mem_pure
let get_relation : t -> Relation.t = fun m -> m.relation
let is_relation_unsat : t -> bool = fun m -> Relation.is_unsat m.relation
let lift_relation : (Relation.t -> Relation.t) -> t -> t =
fun f m -> {m with relation= f m.relation}
let meet_constraints : Relation.Constraints.t -> t -> t =
fun constrs -> lift_relation (Relation.meet_constraints constrs)
let store_relation :
PowLoc.t
-> Relation.SymExp.t option * Relation.SymExp.t option * Relation.SymExp.t option
-> t
-> t =
fun locs symexp_opts -> lift_relation (Relation.store_relation locs symexp_opts)
let forget_locs : PowLoc.t -> t -> t = fun locs -> lift_relation (Relation.forget_locs locs)
let init_param_relation : Loc.t -> t -> t = fun loc -> lift_relation (Relation.init_param loc)
let init_array_relation :
Allocsite.t -> offset:Itv.t -> size:Itv.t -> size_exp_opt:Relation.SymExp.t option -> t -> t
=
fun allocsite ~offset ~size ~size_exp_opt ->
lift_relation (Relation.init_array allocsite ~offset ~size ~size_exp_opt)
let instantiate_relation : Relation.SubstMap.t -> caller:t -> callee:t -> t =
fun subst_map ~caller ~callee ->
{ caller with
relation= Relation.instantiate subst_map ~caller:caller.relation ~callee:callee.relation }
end
module Mem = struct
include AbstractDomain.BottomLifted (MemReach)
let bot : t = Bottom
let init : t = NonBottom MemReach.init
let f_lift_default : default:'a -> (MemReach.t -> 'a) -> t -> 'a =
fun ~default f m -> match m with Bottom -> default | NonBottom m' -> f m'
let f_lift : (MemReach.t -> MemReach.t) -> t -> t =
fun f -> f_lift_default ~default:Bottom (fun m' -> NonBottom (f m'))
let is_stack_loc : Loc.t -> t -> bool =
fun k -> f_lift_default ~default:false (MemReach.is_stack_loc k)
let find : Loc.t -> t -> Val.t = fun k -> f_lift_default ~default:Val.bot (MemReach.find k)
let find_stack : Loc.t -> t -> Val.t =
fun k -> f_lift_default ~default:Val.bot (MemReach.find_stack k)
let find_set : PowLoc.t -> t -> Val.t =
fun k -> f_lift_default ~default:Val.bot (MemReach.find_set k)
let find_opt : Loc.t -> t -> Val.t option =
fun k -> f_lift_default ~default:None (MemReach.find_opt k)
let find_alias : Ident.t -> t -> AliasTarget.t option =
fun k -> f_lift_default ~default:None (MemReach.find_alias k)
let find_simple_alias : Ident.t -> t -> Loc.t option =
fun k -> f_lift_default ~default:None (MemReach.find_simple_alias k)
let find_ret_alias : t -> AliasTarget.t option =
f_lift_default ~default:None MemReach.find_ret_alias
let load_alias : Ident.t -> AliasTarget.t -> t -> t =
fun id loc -> f_lift (MemReach.load_alias id loc)
let load_simple_alias : Ident.t -> Loc.t -> t -> t =
fun id loc -> load_alias id (AliasTarget.Simple loc)
let store_simple_alias : Loc.t -> Exp.t -> t -> t =
fun loc e -> f_lift (MemReach.store_simple_alias loc e)
let store_empty_alias : Val.t -> Loc.t -> t -> t =
fun formal loc -> f_lift (MemReach.store_empty_alias formal loc)
let add_stack_loc : Loc.t -> t -> t = fun k -> f_lift (MemReach.add_stack_loc k)
let add_stack : Loc.t -> Val.t -> t -> t = fun k v -> f_lift (MemReach.add_stack k v)
let add_heap : Loc.t -> Val.t -> t -> t = fun k v -> f_lift (MemReach.add_heap k v)
let add_unknown_from : Ident.t -> callee_pname:Typ.Procname.t -> location:Location.t -> t -> t =
fun id ~callee_pname ~location ->
f_lift (MemReach.add_unknown_from id ~callee_pname:(Some callee_pname) ~location)
let add_unknown : Ident.t -> location:Location.t -> t -> t =
fun id ~location -> f_lift (MemReach.add_unknown_from id ~callee_pname:None ~location)
let strong_update : PowLoc.t -> Val.t -> t -> t = fun p v -> f_lift (MemReach.strong_update p v)
let weak_update : PowLoc.t -> Val.t -> t -> t = fun p v -> f_lift (MemReach.weak_update p v)
let get_reachable_locs_from : PowLoc.t -> t -> PowLoc.t =
fun locs -> f_lift_default ~default:PowLoc.empty (MemReach.get_reachable_locs_from locs)
let update_mem : PowLoc.t -> Val.t -> t -> t = fun ploc v -> f_lift (MemReach.update_mem ploc v)
let transform_mem : f:(Val.t -> Val.t) -> PowLoc.t -> t -> t =
fun ~f ploc -> f_lift (MemReach.transform_mem ~f ploc)
let remove_temps : Ident.t list -> t -> t = fun temps -> f_lift (MemReach.remove_temps temps)
let set_prune_pairs : PrunePairs.t -> t -> t =
fun prune_pairs -> f_lift (MemReach.set_prune_pairs prune_pairs)
let apply_latest_prune : Exp.t -> t -> t = fun e -> f_lift (MemReach.apply_latest_prune e)
let update_latest_prune : Exp.t -> Exp.t -> t -> t =
fun e1 e2 -> f_lift (MemReach.update_latest_prune e1 e2)
let get_relation : t -> Relation.t =
fun m -> f_lift_default ~default:Relation.bot MemReach.get_relation m
let meet_constraints : Relation.Constraints.t -> t -> t =
fun constrs -> f_lift (MemReach.meet_constraints constrs)
let is_relation_unsat m = f_lift_default ~default:true MemReach.is_relation_unsat m
let store_relation :
PowLoc.t
-> Relation.SymExp.t option * Relation.SymExp.t option * Relation.SymExp.t option
-> t
-> t =
fun locs symexp_opts -> f_lift (MemReach.store_relation locs symexp_opts)
let forget_locs : PowLoc.t -> t -> t = fun locs -> f_lift (MemReach.forget_locs locs)
let init_param_relation : Loc.t -> t -> t = fun loc -> f_lift (MemReach.init_param_relation loc)
let init_array_relation :
Allocsite.t -> offset:Itv.t -> size:Itv.t -> size_exp_opt:Relation.SymExp.t option -> t -> t
=
fun allocsite ~offset ~size ~size_exp_opt ->
f_lift (MemReach.init_array_relation allocsite ~offset ~size ~size_exp_opt)
let instantiate_relation : Relation.SubstMap.t -> caller:t -> callee:t -> t =
fun subst_map ~caller ~callee ->
match callee with
| Bottom ->
caller
| NonBottom callee ->
f_lift (fun caller -> MemReach.instantiate_relation subst_map ~caller ~callee) caller
end