You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

155 lines
6.2 KiB

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open Fol
module T = Term
module F = Formula
let lookup_func lookup term =
match Term.get_trm term with
| Some (Apply (Uninterp name, [||])) -> lookup name
| _ -> None
let uconst name = T.apply (Funsym.uninterp name) [||]
let global g = uconst (Llair.Global.name g)
let reg r = Var.identified ~name:(Llair.Reg.name r) ~id:(Llair.Reg.id r)
let regs rs = Var.Set.of_iter (Iter.map ~f:reg (Llair.Reg.Set.to_iter rs))
let uap0 f = T.apply f [||]
let uap1 f a = T.apply f [|a|]
let uap2 f a b = T.apply f [|a; b|]
let lit2 p a b = F.lit p [|a; b|]
let nlit2 p a b = F.not_ (lit2 p a b)
let rec ap_ttt : 'a. (T.t -> T.t -> 'a) -> _ -> _ -> 'a =
fun f a b -> f (term a) (term b)
and ap_ttf (f : T.t -> T.t -> F.t) a b = F.inject (ap_ttt f a b)
and ap_fff (f : F.t -> F.t -> F.t) a b =
F.inject (f (formula a) (formula b))
and ap_uut : 'a. (T.t -> T.t -> 'a) -> _ -> _ -> _ -> 'a =
fun f typ a b ->
let bits = Llair.Typ.bit_size_of typ in
let unsigned x = uap1 (Unsigned bits) x in
f (unsigned (term a)) (unsigned (term b))
and ap_uuf (f : T.t -> T.t -> F.t) typ a b = F.inject (ap_uut f typ a b)
and term : Llair.Exp.t -> T.t =
fun e ->
let imp p q = F.or_ (F.not_ p) q in
let nimp p q = F.and_ p (F.not_ q) in
let if_ p q = F.or_ p (F.not_ q) in
let nif p q = F.and_ (F.not_ p) q in
match e with
(* formulas *)
| Ap2 (Eq, Integer {bits= 1; _}, p, q) -> ap_fff F.iff p q
| Ap2 (Dq, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
| Ap2 ((Gt | Ugt), Integer {bits= 1; _}, p, q) -> ap_fff nimp p q
| Ap2 ((Lt | Ult), Integer {bits= 1; _}, p, q) -> ap_fff nif p q
| Ap2 ((Ge | Uge), Integer {bits= 1; _}, p, q) -> ap_fff if_ p q
| Ap2 ((Le | Ule), Integer {bits= 1; _}, p, q) -> ap_fff imp p q
| Ap2 (Add, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
| Ap2 (Sub, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
| Ap2 (Mul, Integer {bits= 1; _}, p, q) -> ap_fff F.and_ p q
(* div and rem are not formulas even if bits=1 due to division by 0 *)
| Ap2 (And, Integer {bits= 1; _}, p, q) -> ap_fff F.and_ p q
| Ap2 (Or, Integer {bits= 1; _}, p, q) -> ap_fff F.or_ p q
| Ap2 (Xor, Integer {bits= 1; _}, p, q) -> ap_fff F.xor p q
| Ap2 ((Shl | Lshr), Integer {bits= 1; _}, p, q) -> ap_fff nimp p q
| Ap2 (Ashr, Integer {bits= 1; _}, p, q) -> ap_fff F.or_ p q
| Ap3 (Conditional, Integer {bits= 1; _}, cnd, pos, neg) ->
F.inject
(F.cond ~cnd:(formula cnd) ~pos:(formula pos) ~neg:(formula neg))
(* terms *)
| Reg {name; id; typ= _} -> T.var (Var.identified ~name ~id)
| Global {name; typ= _} | Function {name; typ= _} -> uconst name
| Label {parent; name} ->
uap0 (Funsym.uninterp ("label_" ^ parent ^ "_" ^ name))
| Integer {typ= _; data} -> T.integer data
| Float {data; typ= _} -> (
match Q.of_float (Float.of_string_exn data) with
| q when Q.is_real q -> T.rational q
| _ | (exception Invalid_argument _) ->
uap0 (Funsym.uninterp ("float_" ^ data)) )
| Ap1 (Signed {bits}, _, e) ->
let a = term e in
if bits = 1 then
match F.project a with
| Some fml -> F.inject fml
| _ -> uap1 (Signed bits) a
else uap1 (Signed bits) a
| Ap1 (Unsigned {bits}, _, e) ->
let a = term e in
if bits = 1 then
match F.project a with
| Some fml -> F.inject fml
| _ -> uap1 (Unsigned bits) a
else uap1 (Unsigned bits) a
| Ap1 (Convert {src}, dst, e) when Llair.Typ.equivalent src dst -> term e
| Ap1 (Convert {src= Float _}, Float _, e) -> term e
| Ap1 (Convert {src}, dst, e) ->
let s =
Format.asprintf "convert_%a_of_%a" Llair.Typ.pp dst Llair.Typ.pp src
in
uap1 (Funsym.uninterp s) (term e)
| Ap2 (Eq, _, d, e) -> ap_ttf F.eq d e
| Ap2 (Dq, _, d, e) -> ap_ttf F.dq d e
| Ap2 (Gt, _, d, e) -> ap_ttf F.gt d e
| Ap2 (Lt, _, d, e) -> ap_ttf F.lt d e
| Ap2 (Ge, _, d, e) -> ap_ttf F.ge d e
| Ap2 (Le, _, d, e) -> ap_ttf F.le d e
| Ap2 (Ugt, typ, d, e) -> ap_uuf F.gt typ d e
| Ap2 (Ult, typ, d, e) -> ap_uuf F.lt typ d e
| Ap2 (Uge, typ, d, e) -> ap_uuf F.ge typ d e
| Ap2 (Ule, typ, d, e) -> ap_uuf F.le typ d e
| Ap2 (Ord, _, d, e) -> ap_ttf (lit2 (Predsym.uninterp "ord")) d e
| Ap2 (Uno, _, d, e) -> ap_ttf (nlit2 (Predsym.uninterp "ord")) d e
| Ap2 (Add, _, d, e) -> ap_ttt T.add d e
| Ap2 (Sub, _, d, e) -> ap_ttt T.sub d e
| Ap2 (Mul, _, d, e) -> ap_ttt T.mul d e
| Ap2 (Div, _, d, e) -> ap_ttt T.div d e
| Ap2 (Rem, _, d, e) -> ap_ttt (uap2 Rem) d e
| Ap2 (Udiv, typ, d, e) -> ap_uut T.div typ d e
| Ap2 (Urem, typ, d, e) -> ap_uut (uap2 Rem) typ d e
| Ap2 (And, _, d, e) -> ap_ttt (uap2 BitAnd) d e
| Ap2 (Or, _, d, e) -> ap_ttt (uap2 BitOr) d e
| Ap2 (Xor, _, d, e) -> ap_ttt (uap2 BitXor) d e
| Ap2 (Shl, _, d, e) -> ap_ttt (uap2 BitShl) d e
| Ap2 (Lshr, _, d, e) -> ap_ttt (uap2 BitLshr) d e
| Ap2 (Ashr, _, d, e) -> ap_ttt (uap2 BitAshr) d e
| Ap3 (Conditional, _, cnd, thn, els) ->
T.ite ~cnd:(formula cnd) ~thn:(term thn) ~els:(term els)
| Ap1 (Select idx, typ, rcd) ->
let off, len = Llair.Typ.offset_length_of_elt typ idx in
let off = T.integer (Z.of_int off) in
let len = T.integer (Z.of_int len) in
T.extract ~seq:(term rcd) ~off ~len
| Ap2 (Update idx, typ, rcd, elt) ->
let oI, lI = Llair.Typ.offset_length_of_elt typ idx in
let oJ = oI + lI in
let off0 = T.zero in
let len0 = T.integer (Z.of_int oI) in
let len1 = T.integer (Z.of_int lI) in
let off2 = T.integer (Z.of_int oJ) in
let len2 = T.integer (Z.of_int (Llair.Typ.size_of typ - oI - lI)) in
let seq = term rcd in
T.concat
[| T.extract ~seq ~off:off0 ~len:len0
; T.sized ~seq:(term elt) ~siz:len1
; T.extract ~seq ~off:off2 ~len:len2 |]
| ApN (Record, typ, elts) ->
let elt_siz i =
T.integer (Z.of_int (snd (Llair.Typ.offset_length_of_elt typ i)))
in
T.concat
(Array.mapi (IArray.to_array elts) ~f:(fun i elt ->
T.sized ~seq:(term elt) ~siz:(elt_siz i) ))
| Ap1 (Splat, _, byt) -> T.splat (term byt)
and formula e = F.dq0 (term e)