You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

717 lines
26 KiB

(*
* Copyright (c) 2009-2013, Monoidics ltd.
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
module L = Logging
(** This function should be used before adding a new index to Earray. The [exp] is the newly created
index. This function "cleans" [exp] according to whether it is the footprint or current part of
the prop. The function faults in the re - execution mode, as an internal check of the tool. *)
let array_clean_new_index footprint_part new_idx =
assert (not (footprint_part && not !BiabductionConfig.footprint)) ;
if
footprint_part
&& Exp.free_vars new_idx |> Sequence.exists ~f:(fun id -> not (Ident.is_footprint id))
then (
L.d_warning
( "Array index " ^ Exp.to_string new_idx
^ " has non-footprint vars: replaced by fresh footprint var" ) ;
L.d_ln () ;
let id = Ident.create_fresh Ident.kfootprint in
Exp.Var id )
else new_idx
(** Abstraction for Arrays *)
type sigma = Predicates.hpred list
(** Matcher for the sigma part specialized to strexps *)
module StrexpMatch : sig
(** path through a strexp *)
type path
val path_to_exps : path -> Exp.t list
(** convert a path into a list of expressions *)
val path_from_exp_offsets : Exp.t -> Predicates.offset list -> path
(** create a path from a root and a list of offsets *)
(** path to the root, length, elements and type of a new_array *)
type strexp_data = path * Predicates.strexp * Typ.t
(** sigma with info about a current array *)
type t
val find_path : sigma -> path -> t
(** Find a strexp at the given path. Can raise [Not_found_s/Caml.Not_found] *)
val find : Tenv.t -> sigma -> (strexp_data -> bool) -> t list
(** Find a strexp with the given property. *)
val get_data : Tenv.t -> t -> strexp_data
(** Get the array *)
val replace_strexp : Tenv.t -> bool -> t -> Predicates.strexp -> sigma
(** Replace the strexp at a given position by a new strexp *)
val replace_index : Tenv.t -> bool -> t -> Exp.t -> Exp.t -> sigma
(** Replace the index in the array at a given position with the new index *)
end = struct
(** syntactic offset *)
type syn_offset = Field of Fieldname.t * Typ.t | Index of Exp.t
(** path through an Estruct *)
type path = Exp.t * syn_offset list
(** Find a strexp and a type at the given syntactic offset list *)
let rec get_strexp_at_syn_offsets tenv se (t : Typ.t) syn_offs =
let fail () =
L.d_strln "Failure of get_strexp_at_syn_offsets" ;
L.d_str "se: " ;
Predicates.d_sexp se ;
L.d_ln () ;
L.d_str "t: " ;
Typ.d_full t ;
L.d_ln () ;
assert false
in
match (se, t.desc, syn_offs) with
| _, _, [] ->
(se, t)
| Predicates.Estruct (fsel, _), Tstruct name, Field (fld, _) :: syn_offs' -> (
match Tenv.lookup tenv name with
| Some {fields} ->
let se' = snd (List.find_exn ~f:(fun (f', _) -> Fieldname.equal f' fld) fsel) in
let t' = snd3 (List.find_exn ~f:(fun (f', _, _) -> Fieldname.equal f' fld) fields) in
get_strexp_at_syn_offsets tenv se' t' syn_offs'
| None ->
fail () )
| Predicates.Earray (_, esel, _), Typ.Tarray {elt= t'}, Index ind :: syn_offs' ->
let se' = snd (List.find_exn ~f:(fun (i', _) -> Exp.equal i' ind) esel) in
get_strexp_at_syn_offsets tenv se' t' syn_offs'
| _ ->
fail ()
(** Replace a strexp at the given syntactic offset list *)
let rec replace_strexp_at_syn_offsets tenv se (t : Typ.t) syn_offs update =
match (se, t.desc, syn_offs) with
| _, _, [] ->
update se
| Predicates.Estruct (fsel, inst), Tstruct name, Field (fld, _) :: syn_offs' -> (
match Tenv.lookup tenv name with
| Some {fields} ->
let se' = snd (List.find_exn ~f:(fun (f', _) -> Fieldname.equal f' fld) fsel) in
let t' =
(fun (_, y, _) -> y)
(List.find_exn ~f:(fun (f', _, _) -> Fieldname.equal f' fld) fields)
in
let se_mod = replace_strexp_at_syn_offsets tenv se' t' syn_offs' update in
let fsel' =
List.map
~f:(fun (f'', se'') -> if Fieldname.equal f'' fld then (fld, se_mod) else (f'', se''))
fsel
in
Predicates.Estruct (fsel', inst)
| None ->
assert false )
| Predicates.Earray (len, esel, inst), Tarray {elt= t'}, Index idx :: syn_offs' ->
let se' = snd (List.find_exn ~f:(fun (i', _) -> Exp.equal i' idx) esel) in
let se_mod = replace_strexp_at_syn_offsets tenv se' t' syn_offs' update in
let esel' =
List.map ~f:(fun ese -> if Exp.equal (fst ese) idx then (idx, se_mod) else ese) esel
in
Predicates.Earray (len, esel', inst)
| _ ->
assert false
(** convert a path into an expression *)
let path_to_exps (root, syn_offs_in) =
let rec convert acc = function
| [] ->
acc
| Field (f, t) :: syn_offs' ->
let acc' = List.map ~f:(fun e -> Exp.Lfield (e, f, t)) acc in
convert acc' syn_offs'
| Index idx :: syn_offs' ->
let acc' = List.map ~f:(fun e -> Exp.Lindex (e, idx)) acc in
convert acc' syn_offs'
in
convert [root] syn_offs_in
(** create a path from a root and a list of offsets *)
let path_from_exp_offsets root offs =
let offset_to_syn_offset = function
| Predicates.Off_fld (fld, typ) ->
Field (fld, typ)
| Predicates.Off_index idx ->
Index idx
in
let syn_offs = List.map ~f:offset_to_syn_offset offs in
(root, syn_offs)
(** path to the root, len, elements and type of a new_array *)
type strexp_data = path * Predicates.strexp * Typ.t
(** Store hpred using physical equality, and offset list for an array *)
type t = sigma * Predicates.hpred * syn_offset list
(** Find an array at the given path. Can raise [Not_found_s/Caml.Not_found] *)
let find_path sigma (root, syn_offs) : t =
let filter = function Predicates.Hpointsto (e, _, _) -> Exp.equal root e | _ -> false in
let hpred = List.find_exn ~f:filter sigma in
(sigma, hpred, syn_offs)
(** Find a sub strexp with the given property. Can raise [Not_found_s/Caml.Not_found] *)
let find tenv (sigma : sigma) (pred : strexp_data -> bool) : t list =
let found = ref [] in
let rec find_offset_sexp sigma_other hpred root offs se (typ : Typ.t) =
let offs' = List.rev offs in
let path = (root, offs') in
if pred (path, se, typ) then found := (sigma, hpred, offs') :: !found
else
match (se, typ.desc) with
| Predicates.Estruct (fsel, _), Tstruct name -> (
match Tenv.lookup tenv name with
| Some {fields} ->
find_offset_fsel sigma_other hpred root offs fsel fields typ
| None ->
() )
| Predicates.Earray (_, esel, _), Tarray {elt} ->
find_offset_esel sigma_other hpred root offs esel elt
| _ ->
()
and find_offset_fsel sigma_other hpred root offs fsel ftal typ =
match fsel with
| [] ->
()
| (f, se) :: fsel' ->
( match List.find ~f:(fun (f', _, _) -> Fieldname.equal f' f) ftal with
| Some (_, t, _) ->
find_offset_sexp sigma_other hpred root (Field (f, typ) :: offs) se t
| None ->
L.d_printfln "Can't find field %a in StrexpMatch.find" Fieldname.pp f ) ;
find_offset_fsel sigma_other hpred root offs fsel' ftal typ
and find_offset_esel sigma_other hpred root offs esel t =
match esel with
| [] ->
()
| (ind, se) :: esel' ->
find_offset_sexp sigma_other hpred root (Index ind :: offs) se t ;
find_offset_esel sigma_other hpred root offs esel' t
in
let rec iterate sigma_seen = function
| [] ->
()
| hpred :: sigma_rest ->
( match hpred with
| Predicates.Hpointsto (root, se, te) ->
let sigma_other = sigma_seen @ sigma_rest in
find_offset_sexp sigma_other hpred root [] se (Exp.texp_to_typ None te)
| _ ->
() ) ;
iterate (hpred :: sigma_seen) sigma_rest
in
iterate [] sigma ;
!found
(** Get the matched strexp *)
let get_data tenv ((_, hpred, syn_offs) : t) =
match hpred with
| Predicates.Hpointsto (root, se, te) ->
let t = Exp.texp_to_typ None te in
let se', t' = get_strexp_at_syn_offsets tenv se t syn_offs in
let path' = (root, syn_offs) in
(path', se', t')
| _ ->
assert false
(** Replace the current hpred *)
let replace_hpred ((sigma, hpred, _) : t) hpred' =
List.map ~f:(fun hpred'' -> if phys_equal hpred'' hpred then hpred' else hpred'') sigma
(** Replace the strexp at the given offset in the given hpred *)
let hpred_replace_strexp tenv footprint_part hpred syn_offs update =
let update se' =
let se_in = update se' in
match (se', se_in) with
| Predicates.Earray (len, esel, _), Predicates.Earray (_, esel_in, inst2) ->
let orig_indices = List.map ~f:fst esel in
let index_is_not_new idx = List.exists ~f:(Exp.equal idx) orig_indices in
let process_index idx =
if index_is_not_new idx then idx else array_clean_new_index footprint_part idx
in
let esel_in' = List.map ~f:(fun (idx, se) -> (process_index idx, se)) esel_in in
Predicates.Earray (len, esel_in', inst2)
| _, _ ->
se_in
in
match hpred with
| Predicates.Hpointsto (root, se, te) ->
let t = Exp.texp_to_typ None te in
let se' = replace_strexp_at_syn_offsets tenv se t syn_offs update in
Predicates.Hpointsto (root, se', te)
| _ ->
assert false
(** Replace the strexp at a given position by a new strexp *)
let replace_strexp tenv footprint_part ((sigma, hpred, syn_offs) : t) se_in =
let update _ = se_in in
let hpred' = hpred_replace_strexp tenv footprint_part hpred syn_offs update in
replace_hpred (sigma, hpred, syn_offs) hpred'
(** Replace the index in the array at a given position with the new index *)
let replace_index tenv footprint_part ((sigma, hpred, syn_offs) : t) (index : Exp.t)
(index' : Exp.t) =
let update se' =
match se' with
| Predicates.Earray (len, esel, inst) ->
let esel' =
List.map
~f:(fun (e', se') -> if Exp.equal e' index then (index', se') else (e', se'))
esel
in
Predicates.Earray (len, esel', inst)
| _ ->
assert false
in
let hpred' = hpred_replace_strexp tenv footprint_part hpred syn_offs update in
replace_hpred (sigma, hpred, syn_offs) hpred'
end
(** This function renames expressions in [p]. The renaming is, roughly speaking, to replace [path.i]
by [path.i'] for all (i, i') in [map]. *)
let prop_replace_path_index tenv (p : Prop.exposed Prop.t) (path : StrexpMatch.path)
(map : (Exp.t * Exp.t) list) : Prop.exposed Prop.t =
let elist_path = StrexpMatch.path_to_exps path in
let expmap_list =
List.fold
~f:(fun acc_outer e_path ->
List.fold
~f:(fun acc_inner (old_index, new_index) ->
let old_e_path_index =
Prop.exp_normalize_prop tenv p (Exp.Lindex (e_path, old_index))
in
let new_e_path_index =
Prop.exp_normalize_prop tenv p (Exp.Lindex (e_path, new_index))
in
(old_e_path_index, new_e_path_index) :: acc_inner )
~init:acc_outer map )
~init:[] elist_path
in
let expmap_fun e' =
Option.value_map ~f:snd (List.find ~f:(fun (e, _) -> Exp.equal e e') expmap_list) ~default:e'
in
Prop.prop_expmap expmap_fun p
(** This function uses [update] and transforms the two sigma parts of [p], the sigma of the current
SH of [p] and that of the footprint of [p]. *)
let prop_update_sigma_and_fp_sigma tenv (p : Prop.normal Prop.t)
(update : bool -> sigma -> sigma * bool) : Prop.normal Prop.t * bool =
let sigma', changed = update false p.Prop.sigma in
let ep1 = Prop.set p ~sigma:sigma' in
let ep2, changed2 =
if !BiabductionConfig.footprint then
let sigma_fp', changed' = update true ep1.Prop.sigma_fp in
(Prop.set ep1 ~sigma_fp:sigma_fp', changed')
else (ep1, false)
in
(Prop.normalize tenv ep2, changed || changed2)
(** Remember whether array abstraction was performed (to be reset before calling Abs.abstract) *)
let array_abstraction_performed = ref false
(** This function abstracts strexps. The parameter [can_abstract] spots strexps where the
abstraction might be applicable, and the parameter [do_abstract] does the abstraction to those
spotted strexps. *)
let generic_strexp_abstract tenv (abstraction_name : string) (p_in : Prop.normal Prop.t)
(can_abstract_ : StrexpMatch.strexp_data -> bool)
(do_abstract :
bool -> Prop.normal Prop.t -> StrexpMatch.strexp_data -> Prop.normal Prop.t * bool) :
Prop.normal Prop.t =
let can_abstract data =
let r = can_abstract_ data in
if r then array_abstraction_performed := true ;
r
in
let find_strexp_to_abstract p0 =
let find sigma = StrexpMatch.find tenv sigma can_abstract in
let matchings_cur = find p0.Prop.sigma in
let matchings_fp = find p0.Prop.sigma_fp in
(matchings_cur, matchings_fp)
in
let match_select_next (matchings_cur, matchings_fp) =
match (matchings_cur, matchings_fp) with
| [], [] ->
raise Caml.Not_found
| matched :: cur', fp' ->
(matched, false, (cur', fp'))
| [], matched :: fp' ->
(matched, true, ([], fp'))
in
let rec match_abstract p0 matchings_cur_fp =
try
let matched, footprint_part, matchings_cur_fp' = match_select_next matchings_cur_fp in
let n = List.length (snd matchings_cur_fp') + 1 in
if Config.trace_absarray then L.d_printfln "Num of fp candidates %d" n ;
let strexp_data = StrexpMatch.get_data tenv matched in
let p1, changed = do_abstract footprint_part p0 strexp_data in
if changed then (p1, true) else match_abstract p0 matchings_cur_fp'
with Caml.Not_found -> (p0, false)
in
let rec find_then_abstract bound p0 =
if Int.equal bound 0 then p0
else (
if Config.trace_absarray then (
L.d_printfln "Applying %s to" abstraction_name ;
Prop.d_prop p0 ;
L.d_ln () ;
L.d_ln () ) ;
let matchings_cur_fp = find_strexp_to_abstract p0 in
let p1, changed = match_abstract p0 matchings_cur_fp in
if changed then find_then_abstract (bound - 1) p1 else p0 )
in
let matchings_cur, matchings_fp = find_strexp_to_abstract p_in in
let num_matches = List.length matchings_cur + List.length matchings_fp in
find_then_abstract num_matches p_in
(** Return [true] if there's a pointer to the index *)
let index_is_pointed_to tenv (p : Prop.normal Prop.t) (path : StrexpMatch.path) (index : Exp.t) :
bool =
let indices =
let index_plus_one = Exp.BinOp (Binop.PlusA None, index, Exp.one) in
[index; index_plus_one]
in
let add_index_to_paths =
let elist_path = StrexpMatch.path_to_exps path in
let add_index i e = Prop.exp_normalize_prop tenv p (Exp.Lindex (e, i)) in
fun i -> List.map ~f:(add_index i) elist_path
in
let pointers = List.concat_map ~f:add_index_to_paths indices in
let filter = function
| Predicates.Hpointsto (_, Predicates.Eexp (e, _), _) ->
List.exists ~f:(Exp.equal e) pointers
| _ ->
false
in
List.exists ~f:filter p.Prop.sigma
(** Given [p] containing an array at [path], blur [index] in it *)
let blur_array_index tenv (p : Prop.normal Prop.t) (path : StrexpMatch.path) (index : Exp.t) :
Prop.normal Prop.t =
try
let fresh_index =
Exp.Var
(Ident.create_fresh
(if !BiabductionConfig.footprint then Ident.kfootprint else Ident.kprimed))
in
let p2 =
try
if !BiabductionConfig.footprint then
let sigma_fp = p.Prop.sigma_fp in
let matched_fp = StrexpMatch.find_path sigma_fp path in
let sigma_fp' = StrexpMatch.replace_index tenv true matched_fp index fresh_index in
Prop.set p ~sigma_fp:sigma_fp'
else Prop.expose p
with Not_found_s _ | Caml.Not_found -> Prop.expose p
in
let p3 =
let matched = StrexpMatch.find_path p.Prop.sigma path in
let sigma' = StrexpMatch.replace_index tenv false matched index fresh_index in
Prop.set p2 ~sigma:sigma'
in
let p4 =
let index_next = Exp.BinOp (Binop.PlusA None, index, Exp.one) in
let fresh_index_next = Exp.BinOp (Binop.PlusA None, fresh_index, Exp.one) in
let map = [(index, fresh_index); (index_next, fresh_index_next)] in
prop_replace_path_index tenv p3 path map
in
Prop.normalize tenv p4
with Not_found_s _ | Caml.Not_found -> p
(** Given [p] containing an array at [root], blur [indices] in it *)
let blur_array_indices tenv (p : Prop.normal Prop.t) (root : StrexpMatch.path)
(indices : Exp.t list) : Prop.normal Prop.t * bool =
let f prop index = blur_array_index tenv prop root index in
(List.fold ~f ~init:p indices, List.length indices > 0)
(** Given [p] containing an array at [root], only keep [indices] in it *)
let keep_only_indices tenv (p : Prop.normal Prop.t) (path : StrexpMatch.path) (indices : Exp.t list)
: Prop.normal Prop.t * bool =
let prune_sigma footprint_part sigma =
try
let matched = StrexpMatch.find_path sigma path in
let _, se, _ = StrexpMatch.get_data tenv matched in
match se with
| Predicates.Earray (len, esel, inst) ->
let esel', esel_leftover' =
List.partition_tf ~f:(fun (e, _) -> List.exists ~f:(Exp.equal e) indices) esel
in
if List.is_empty esel_leftover' then (sigma, false)
else
let se' = Predicates.Earray (len, esel', inst) in
let sigma' = StrexpMatch.replace_strexp tenv footprint_part matched se' in
(sigma', true)
| _ ->
(sigma, false)
with Not_found_s _ | Caml.Not_found -> (sigma, false)
in
prop_update_sigma_and_fp_sigma tenv p prune_sigma
(** If the type is array, check whether we should do abstraction *)
let array_typ_can_abstract {Typ.desc} =
match desc with
| Tarray {elt= {desc= Tptr ({desc= Tfun}, _)}} ->
false (* don't abstract arrays of pointers *)
| _ ->
true
(** This function checks whether we can apply an abstraction to a strexp *)
let strexp_can_abstract ((_, se, typ) : StrexpMatch.strexp_data) : bool =
let can_abstract_se =
match se with
| Predicates.Earray (_, esel, _) ->
let len = List.length esel in
len > 1
| _ ->
false
in
can_abstract_se && array_typ_can_abstract typ
(** This function abstracts a strexp *)
let strexp_do_abstract tenv footprint_part p ((path, se_in, _) : StrexpMatch.strexp_data) :
Prop.normal Prop.t * bool =
if Config.trace_absarray && footprint_part then L.d_strln "strexp_do_abstract (footprint)" ;
if Config.trace_absarray && not footprint_part then L.d_strln "strexp_do_abstract (nonfootprint)" ;
let prune_and_blur d_keys keep blur path keep_keys blur_keys =
let p2, changed2 =
if Config.trace_absarray then (
L.d_str "keep " ;
d_keys keep_keys ;
L.d_ln () ) ;
keep p path keep_keys
in
let p3, changed3 =
if List.is_empty blur_keys then (p2, false)
else (
if Config.trace_absarray then (
L.d_str "blur " ;
d_keys blur_keys ;
L.d_ln () ) ;
blur p2 path blur_keys )
in
if Config.trace_absarray then (
L.d_strln "Returns" ;
Prop.d_prop p3 ;
L.d_ln () ;
L.d_ln () ) ;
(p3, changed2 || changed3)
in
let prune_and_blur_indices =
prune_and_blur Exp.d_list (keep_only_indices tenv) (blur_array_indices tenv)
in
let partition_abstract should_keep abstract ksel default_keys =
let keep_ksel, remove_ksel = List.partition_tf ~f:should_keep ksel in
let keep_keys, _, _ =
(List.map ~f:fst keep_ksel, List.map ~f:fst remove_ksel, List.map ~f:fst ksel)
in
let keep_keys' = if List.is_empty keep_keys then default_keys else keep_keys in
abstract keep_keys' keep_keys'
in
let do_array_footprint esel =
(* array case footprint: keep only the last index, and blur it *)
let should_keep (i0, _) = index_is_pointed_to tenv p path i0 in
let abstract = prune_and_blur_indices path in
let default_indices =
match List.map ~f:fst esel with [] -> [] | indices -> [List.last_exn indices]
(* keep last key at least *)
in
partition_abstract should_keep abstract esel default_indices
in
let do_footprint () =
match se_in with Predicates.Earray (_, esel, _) -> do_array_footprint esel | _ -> assert false
in
let filter_abstract d_keys should_keep abstract ksel default_keys =
let keep_ksel = List.filter ~f:should_keep ksel in
let keep_keys = List.map ~f:fst keep_ksel in
let keep_keys' = if List.is_empty keep_keys then default_keys else keep_keys in
if Config.trace_absarray then (
L.d_str "keep " ;
d_keys keep_keys' ;
L.d_ln () ) ;
abstract keep_keys' []
in
let do_array_reexecution esel =
(* array case re-execution: remove and blur constant and primed indices *)
let is_pointed index = index_is_pointed_to tenv p path index in
let should_keep (index, _) =
match index with
| Exp.Const _ ->
is_pointed index
| Exp.Var id ->
Ident.is_normal id || is_pointed index
| _ ->
false
in
let abstract = prune_and_blur_indices path in
filter_abstract Exp.d_list should_keep abstract esel []
in
let do_reexecution () =
match se_in with
| Predicates.Earray (_, esel, _) ->
do_array_reexecution esel
| _ ->
assert false
in
if !BiabductionConfig.footprint then do_footprint () else do_reexecution ()
let strexp_abstract tenv (p : Prop.normal Prop.t) : Prop.normal Prop.t =
generic_strexp_abstract tenv "strexp_abstract" p strexp_can_abstract (strexp_do_abstract tenv)
let report_error prop =
L.d_strln "Check after array abstraction: FAIL" ;
Prop.d_prop prop ;
L.d_ln () ;
assert false
(** Check performed after the array abstraction to see whether it was successful. Raise assert false
in case of failure *)
let check_after_array_abstraction tenv prop =
let lookup = Tenv.lookup tenv in
let check_index root offs (ind, _) =
if !BiabductionConfig.footprint then
let path = StrexpMatch.path_from_exp_offsets root offs in
index_is_pointed_to tenv prop path ind
else not (Exp.free_vars ind |> Sequence.exists ~f:Ident.is_primed)
in
let rec check_se root offs typ = function
| Predicates.Eexp _ ->
()
| Predicates.Earray (_, esel, _) ->
(* check that no more than 2 elements are in the array *)
let typ_elem = Typ.array_elem (Some Typ.void) typ in
if List.length esel > 2 && array_typ_can_abstract typ then
if List.for_all ~f:(check_index root offs) esel then () else report_error prop
else
List.iter
~f:(fun (ind, se) -> check_se root (offs @ [Predicates.Off_index ind]) typ_elem se)
esel
| Predicates.Estruct (fsel, _) ->
List.iter
~f:(fun (f, se) ->
let typ_f = Struct.fld_typ ~lookup ~default:Typ.void f typ in
check_se root (offs @ [Predicates.Off_fld (f, typ)]) typ_f se )
fsel
in
let check_hpred = function
| Predicates.Hpointsto (root, se, texp) ->
let typ = Exp.texp_to_typ (Some Typ.void) texp in
check_se root [] typ se
| Predicates.Hlseg _ | Predicates.Hdllseg _ ->
()
in
let check_sigma sigma = List.iter ~f:check_hpred sigma in
(* check_footprint_pure prop; *)
check_sigma prop.Prop.sigma ;
check_sigma prop.Prop.sigma_fp
(** Apply array abstraction and check the result *)
let abstract_array_check tenv p =
let p_res = strexp_abstract tenv p in
check_after_array_abstraction tenv p_res ;
p_res
(** remove redundant elements in an array *)
let remove_redundant_elements tenv prop =
Prop.d_prop prop ;
L.d_ln () ;
let occurs_at_most_once : Ident.t -> bool =
let fav_curr =
let ( @@@ ) = Sequence.append in
Predicates.subst_free_vars prop.Prop.sub
@@@ Prop.pi_free_vars prop.Prop.pi
@@@ Prop.sigma_free_vars prop.Prop.sigma
in
let fav_foot =
Sequence.append (Prop.pi_free_vars prop.Prop.pi_fp) (Prop.sigma_free_vars prop.Prop.sigma_fp)
in
let at_most_once seq id =
Sequence.filter seq ~f:(Ident.equal id) |> Sequence.length_is_bounded_by ~max:1
in
let at_most_once_in_curr_or_foot v = at_most_once fav_curr v && at_most_once fav_foot v in
at_most_once_in_curr_or_foot
in
let modified = ref false in
let filter_redundant_e_se fp_part (e, se) =
let remove () =
L.d_strln "kill_redundant: removing " ;
Exp.d_exp e ;
L.d_str " " ;
Predicates.d_sexp se ;
L.d_ln () ;
array_abstraction_performed := true ;
modified := true ;
false
in
match (e, se) with
| Exp.Const (Const.Cint i), Predicates.Eexp (Exp.Var id, _)
when ((not fp_part) || IntLit.iszero i)
&& (not (Ident.is_normal id))
&& occurs_at_most_once id ->
remove () (* unknown value can be removed in re-execution mode or if the index is zero *)
| Exp.Var id, Predicates.Eexp _ when (not (Ident.is_normal id)) && occurs_at_most_once id ->
remove () (* index unknown can be removed *)
| _ ->
true
in
let remove_redundant_se fp_part = function
| Predicates.Earray (len, esel, inst) ->
let esel' = List.filter ~f:(filter_redundant_e_se fp_part) esel in
Predicates.Earray (len, esel', inst)
| se ->
se
in
let remove_redundant_hpred fp_part = function
| Predicates.Hpointsto (e, se, te) ->
let se' = remove_redundant_se fp_part se in
Predicates.Hpointsto (e, se', te)
| hpred ->
hpred
in
let remove_redundant_sigma fp_part sigma = List.map ~f:(remove_redundant_hpred fp_part) sigma in
let sigma' = remove_redundant_sigma false prop.Prop.sigma in
let sigma_fp' = remove_redundant_sigma true prop.Prop.sigma_fp in
if !modified then
let prop' = Prop.set prop ~sigma:sigma' ~sigma_fp:sigma_fp' in
Prop.normalize tenv prop'
else prop