You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

180 lines
3.5 KiB

/*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*/
#include <stdlib.h>
void error_under_true_conditionals_bad(int* x) {
if (1) {
free(x);
}
if (2 == 2) {
*x = 42;
}
}
void simple_infeasible_error_path_ok(int* x) {
free(x);
if (0 == 1) {
*x = 42;
}
int y = 0;
if (y == 1) {
*x = 42;
}
if (y) {
*x = 42;
}
if (y != 0) {
*x = 42;
}
if (!(y == 0)) {
*x = 42;
}
if (!(!(y != 0))) {
*x = 42;
}
if (!(!(!(0 == y)))) {
*x = 42;
}
}
void free_if(int* x, int b) {
if (b) {
free(x);
}
}
void no_free_if_ok(int* x) {
free_if(x, 0);
*x = 42;
}
void free_if_deref_bad(int* x) {
free_if(x, 1);
*x = 42;
}
// that was supposed to be a FP due to tricky arithmetic but inferbo is too
// smart!
void infeasible_tricky_ok(int* x) {
free_if(x, x == x);
int y = 42;
if (2 * y != y << 1) {
free(x);
*x = 42;
}
}
int minus(int x, int y) { return x - y; }
void function_call_infeasible_error_path_ok(int* x) {
free(x);
if (minus(0, 0) < 0) {
*x = 42;
}
}
// somewhat like folly::Range<char const*>
struct StringRange {
char const *b_, *e_;
StringRange() : b_(), e_(){};
char const* data() const { return b_; }
size_t size() const { return size_t(e_ - b_); }
};
void function_empty_range_ok() {
StringRange x{};
auto b = x.data(), past = x.data() + x.size();
for (;; ++b) {
if (b >= past) {
return;
}
if (*b != ' ') {
break;
}
}
}
void find_first_non_space(StringRange& x) {
auto b = x.data(), past = x.data() + x.size();
for (;; ++b) {
if (b >= past) {
return;
}
if (*b != ' ') {
break;
}
}
}
void function_empty_range_interproc_ok() {
StringRange x{};
find_first_non_space(x);
}
// arithmetic on integers does not wrap around but ignores too-large
// values. However, somehow the FP is gone for other reasons.
void int_over_cap_ok() {
unsigned long one = 1;
// 2^(63+63+3) + 2*2^(63+3) + 1*8 = 2^129 + 2^67 + 8 = 8 mod 2^64
// this is convoluted to escape various simplifications from Z that would
// avoid the false positive
unsigned long x = ((one << 62) * 2 + 1) * ((one << 62) * 2 + 1) * 8;
unsigned long y = ((one << 62) * 2 + 1) * ((one << 62) * 2 + 1) * 8;
// - x == y+1 is true in "Formulas" because x = y = Q.undef, but not true in
// inferbo intervals because they keep arbitrary precision integers
// - x != 8 is not true in Formulas but true in inferbo
// - In C both of these would be false, so overall we get a false positive
if (x == y + 1 || x != 8) {
int* p = nullptr;
*p = 42;
}
}
void int_under_cap_ok() {
unsigned long one = 1;
// 2^63
unsigned long x = (one << 62) * 2;
if (x != (unsigned long)9223372036854775808) {
int* p = nullptr;
*p = 42;
}
}
// used to confuse inferbo
int mult(int x, int y) { return x * y; }
// integers are internally represented as rationals
void FP_ints_are_not_rationals_ok() {
int x = 5 / 2;
if (x != mult(2, 1)) {
int* p = nullptr;
*p = 42;
}
}
void shift_equal_mult_by_power_of_two_ok(int x) {
if (x << 1 != mult(2, x)) {
int* p = nullptr;
*p = 42;
}
}
void shift_by_too_much_ok(int x) {
if (x << 64 != 0 || x >> 4000 != 0) {
int* p = nullptr;
*p = 42;
}
}
void interproc_mult_ok(int v, int w) {
if (mult(32, 52) != 1664 || mult(10, v) != 10 * v || mult(v, w) != v * w) {
int* p = nullptr;
*p = 42;
}
}