You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

714 lines
20 KiB

This file contains ambiguous Unicode characters!

This file contains ambiguous Unicode characters that may be confused with others in your current locale. If your use case is intentional and legitimate, you can safely ignore this warning. Use the Escape button to highlight these characters.

(*
* Copyright (c) Facebook, Inc. and its affiliates.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
(* A mini-LLVM model, focussing on the semantics of the parts of the IR that
* are relevant for the LLVM -> LLAIR translation, especially exceptions. *)
open HolKernel boolLib bossLib Parse;
open settingsTheory;
new_theory "llvm";
numLib.prefer_num ();
(* ----- Abstract syntax ----- *)
(* Only support 1, 8, 32, and 64 bit words for now *)
Datatype `
size = W1 | W8 | W32 | W64`;
Datatype `
ty =
| FunT ty (ty list)
| IntT size
| PtrT ty
| ArrT num ty
| StrT (ty list)`;
Datatype `
label = Lab string`;
Datatype `
loc_var = Loc string`;
Datatype `
glob_var = GlobName string`;
Datatype `
fun_name = Fn string`;
Datatype `
const =
| IntC size int
| StrC ((ty # const) list)
| ArrC ((ty # const) list)
| GepC ty const (ty # const) ((ty # const) list)
| GlobalC glob_var
| UndefC`;
Datatype `
arg = Constant const | Variable loc_var`;
type_abbrev ("targ", ``:ty # arg``);
Datatype `
cond = Eq | Ult | Slt`;
Datatype `
instr =
(* Terminators *)
| Ret targ
| Br arg label label
| Invoke loc_var ty arg (targ list) label label
| Unreachable
(* Non-terminators *)
| Sub loc_var bool bool ty arg arg
| Extractvalue loc_var targ (const list)
| Insertvalue loc_var targ targ (const list)
| Alloca loc_var ty targ
| Load loc_var ty targ
| Store targ targ
| Gep loc_var targ (targ list)
| Ptrtoint loc_var targ ty
| Inttoptr loc_var targ ty
| Icmp cond ty arg arg
| Call loc_var ty fun_name (targ list)
(* C++ runtime functions *)
| Cxa_allocate_exn loc_var arg
| Cxa_throw arg arg arg
| Cxa_begin_catch loc_var arg
| Cxa_end_catch
| Cxa_get_exception_ptr loc_var arg`;
Datatype `
phi = Phi loc_var ty (label option |-> arg)`;
Datatype `
clause = Catch targ`;
Datatype `
landingpad = Landingpad ty bool (clause list)`;
Datatype `
blockHeader =
| Entry
| Head (phi list) (landingpad option)`;
Datatype `
block = <| h : blockHeader; body : instr list |>`;
Datatype `
def =
<| r : ty;
params : loc_var list;
(* None -> entry block, and Some name -> non-entry block *)
blocks : label option |-> block |>`;
type_abbrev ("prog", ``:fun_name |-> def``);
Definition terminator_def:
(terminator (Ret _) T)
(terminator (Br _ _ _) T)
(terminator (Invoke _ _ _ _ _ _) T)
(terminator Unreachable T)
(terminator _ F)
End
(* ----- Semantic states ----- *)
Datatype `
addr = A num`;
Datatype `
v =
| W1V word1
| W8V word8
| W32V word32
| W64V word64
| AggV (v list)
| PtrV word64
| UndefV`;
Datatype `
pv = <| poison : bool; value : v |>`;
Datatype `
pc = <| f : fun_name; b : label option; i : num |>`;
Datatype `
frame = <| ret : pc; saved_locals : loc_var |-> pv; result_var : loc_var; stack_allocs : addr list |>`;
Datatype `
state =
<| ip : pc;
(* Keep the size of the global with its memory address *)
globals : glob_var |-> (num # word64);
locals : loc_var |-> pv;
stack : frame list;
(* The set of allocated ranges. The bool indicates whether the range is
* free-able or not *)
allocations : (bool # num # num) set;
heap : addr |-> bool # word8 |>`;
(* ----- Things about types ----- *)
Definition sizeof_def:
(sizeof (IntT W1) = 1)
(sizeof (IntT W8) = 1)
(sizeof (IntT W32) = 4)
(sizeof (IntT W64) = 8)
(sizeof (PtrT _) = 8)
(sizeof (ArrT n t) = n * sizeof t)
(sizeof (StrT ts) = sum (map sizeof ts))
Termination
WF_REL_TAC `measure ty_size` >> simp [] >>
Induct >> rw [definition "ty_size_def"] >> simp [] >>
first_x_assum drule >> decide_tac
End
Definition first_class_type_def:
(first_class_type (IntT _) T)
(first_class_type (PtrT _) T)
(first_class_type (ArrT _ t) first_class_type t)
(first_class_type (StrT ts) every first_class_type ts)
(first_class_type _ F)
Termination
WF_REL_TAC `measure ty_size` >>
rw [] >>
Induct_on `ts` >> rw [definition "ty_size_def"] >>
res_tac >> decide_tac
End
Definition indices_ok_def:
(indices_ok _ [] T)
(indices_ok (ArrT n t) (i::indices)
i < n indices_ok t indices)
(indices_ok (StrT ts) (i::indices)
i < length ts indices_ok (el i ts) indices)
(indices_ok _ _ F)
End
Inductive value_type:
(value_type (IntT W1) (W1V w1))
(value_type (IntT W8) (W8V w8))
(value_type (IntT W32) (W32V w32))
(value_type (IntT W64) (W64V w64))
(value_type (PtrT _) (PtrV w64))
(every (value_type t) vs length vs = n first_class_type t
value_type (ArrT n t) (AggV vs))
(list_rel value_type ts vs
value_type (StrT ts) (AggV vs))
End
(* ----- Semantic transitions ----- *)
Definition w64_cast_def:
(w64_cast w (IntT W1) = Some (W1V (w2w w)))
(w64_cast w (IntT W8) = Some (W8V (w2w w)))
(w64_cast w (IntT W32) = Some (W32V (w2w w)))
(w64_cast w (IntT W64) = Some (W64V w))
(w64_cast _ _ = None)
End
Definition cast_w64_def:
(cast_w64 (W1V w) = Some (w2w w))
(cast_w64 (W8V w) = Some (w2w w))
(cast_w64 (W32V w) = Some (w2w w))
(cast_w64 (W64V w) = Some w)
(cast_w64 _ = None)
End
Definition cast_num_def:
cast_num v = option_map w2n (cast_w64 v)
End
Definition bool_to_v_def:
bool_to_v b = if b then W1V 1w else W1V 0w
End
Definition get_offset_def:
(get_offset _ [] = Some 0)
(get_offset (ArrT _ t) (i::is) =
case get_offset t is of
| None => None
| Some off => Some (i * sizeof t + off))
(get_offset (StrT ts) (i::is) =
if i < length ts then
case get_offset (el i ts) is of
| None => None
| Some off => Some (sum (map sizeof (take i ts)) + off)
else
None)
(get_offset _ _ = Some 0)
End
Definition eval_const_def:
(eval_const g (IntC W1 i) = W1V (i2w i))
(eval_const g (IntC W8 i) = W8V (i2w i))
(eval_const g (IntC W32 i) = W32V (i2w i))
(eval_const g (IntC W64 i) = W64V (i2w i))
(eval_const g (StrC tconsts) = AggV (map (eval_const g) (map snd tconsts)))
(eval_const g (ArrC tconsts) = AggV (map (eval_const g) (map snd tconsts)))
(eval_const g (GepC ty ptr (t, idx) indices) =
case (eval_const g ptr, cast_num (eval_const g idx)) of
| (PtrV w, Some n) =>
let ns = map (λ(t,ci). case cast_num (eval_const g ci) of None => 0 | Some n => n) indices in
(case get_offset ty ns of
| None => UndefV
| Some off => PtrV (n2w (w2n w + sizeof ty * n + off)))
| _ => UndefV)
(eval_const g (GlobalC var) =
case flookup g var of
| None => PtrV 0w
| Some (s,w) => PtrV w)
(eval_const g UndefC = UndefV)
Termination
WF_REL_TAC `measure (const_size o snd)` >> rw [listTheory.MEM_MAP] >>
TRY
(TRY (PairCases_on `y`) >> simp [] >>
Induct_on `tconsts` >> rw [] >> rw [definition "const_size_def"] >>
res_tac >> fs [] >> NO_TAC) >>
Induct_on `indices` >> rw [] >> rw [definition "const_size_def"] >>
fs []
End
Definition eval_def:
(eval s (Variable v) =
case flookup s.locals v of
| None => <| poison := F; value := W1V 0w |>
| Some v => v)
(eval s (Constant c) = <| poison := F; value := eval_const s.globals c |>)
End
Definition v2n_def:
(v2n (W1V b) = Some (if T then 1 else 0))
(v2n (W8V w8) = Some (w2n w8))
(v2n (W32V w32) = Some (w2n w32))
(v2n (W64V w64) = Some (w2n w64))
(v2n _ = None)
End
Definition update_result_def:
update_result x v s = s with locals := s.locals |+ (x, v)
End
Definition inc_pc_def:
inc_pc s = s with ip := (s.ip with i := s.ip.i + 1)
End
Definition interval_to_set_def:
interval_to_set (_, start,stop) =
{ n | start n n < stop }
End
Definition interval_ok_def:
interval_ok (_, i1, i2)
i1 i2 i2 < 2 ** 64
End
Definition is_allocated_def:
is_allocated b1 allocs
interval_ok b1
∃b2. b2 allocs interval_to_set b1 interval_to_set b2
End
Definition is_free_def:
is_free b1 allocs
interval_ok b1
∀b2. b2 allocs interval_to_set b1 interval_to_set b2 =
End
Inductive allocate:
(v2n v.value = Some m
b = (T, w2n w, w2n w + m * len)
is_free b s.allocations
allocate s v len
(<| poison := v.poison; value := PtrV w |>,
s with allocations := { b } s.allocations))
End
Definition deallocate_def:
(deallocate (A n) (Some allocs) =
if ∃m. (T,n,m) allocs then
Some { (b,start,stop) | (b,start,stop) allocs start n }
else
None)
(deallocate _ None = None)
End
Definition get_bytes_def:
get_bytes h (_, start, stop) =
map
(λoff.
case flookup h (A (start + off)) of
| None => (F, 0w)
| Some w => w)
(count_list (stop - start))
End
Definition le_read_w_def:
le_read_w len (bs : word8 list) =
if length bs < len then
(l2w 256 (map w2n bs), [])
else
(l2w 256 (map w2n (take len bs)), drop len bs)
End
Definition le_write_w_def:
le_write_w len w =
let (l : word8 list) = map n2w (w2l 256 w) in
take len (l ++ replicate (len - length l) 0w)
End
Definition bytes_to_value_def:
(bytes_to_value (IntT W1) (b::bs) = (W1V (w2w b), bs))
(bytes_to_value (IntT W8) (b::bs) = (W8V b, bs))
(bytes_to_value (IntT W32) bs = (W32V ## I) (le_read_w 4 bs))
(bytes_to_value (IntT W64) bs = (W64V ## I) (le_read_w 8 bs))
(bytes_to_value (PtrT _) bs = (PtrV ## I) (le_read_w 8 bs))
(bytes_to_value (ArrT n t) bs = (AggV ## I) (read_array n t bs))
(bytes_to_value (StrT ts) bs = (AggV ## I) (read_str ts bs))
(read_array 0 t bs = ([], bs))
(read_array (Suc n) t bs =
let (v, bs) = bytes_to_value t bs in
let (rest, bs) = read_array n t bs in
(v::rest, bs))
(read_str [] bs = ([], bs))
(read_str (t::ts) bs =
let (v, bs) = bytes_to_value t bs in
let (rest, bs) = read_str ts bs in
(v::rest, bs))
Termination
WF_REL_TAC `measure (λx. case x of
| INL (t, bs) => ty_size t
| INR (INL (n, t, bs)) => n + ty_size t
| INR (INR (ts, bs)) => ty1_size ts)`
End
Definition value_to_bytes_def:
(value_to_bytes (W1V w) = [w2w w])
(value_to_bytes (W8V w) = [w])
(value_to_bytes (W32V w) = le_write_w 4 w)
(value_to_bytes (W64V w) = le_write_w 8 w)
(value_to_bytes (PtrV n) = le_write_w 8 n)
(value_to_bytes (AggV vs) = flat (map value_to_bytes vs))
Termination
WF_REL_TAC `measure v_size` >>
Induct >> rw [definition "v_size_def"] >>
TRY (first_x_assum drule) >>
decide_tac
End
Definition set_bytes_def:
(set_bytes p [] n h = h)
(set_bytes p (b::bs) n h =
set_bytes p bs (Suc n) (h |+ (A n, (p, b))))
End
Definition do_sub_def:
do_sub (nuw:bool) (nsw:bool) (v1:pv) (v2:pv) =
let (diff, u_overflow, s_overflow) =
case (v1.value, v2.value) of
| (W1V w1, W1V w2) => (W1V ## I) (add_with_carry (w1, ¬w2, T))
| (W8V w1, W8V w2) => (W8V ## I) (add_with_carry (w1, ¬w2, T))
| (W32V w1, W32V w2) => (W32V ## I) (add_with_carry (w1, ¬w2, T))
| (W64V w1, W64V w2) => (W64V ## I) (add_with_carry (w1, ¬w2, T))
in
let p = ((nuw u_overflow) (nsw s_overflow) v1.poison v2.poison) in
<| poison := p; value := diff |>
End
Definition get_comp_def:
(get_comp Eq = $=)
(get_comp Slt = $<)
(get_comp Ult = $<+)
End
Definition do_icmp_def:
do_icmp c v1 v2 =
<| poison := (v1.poison v2.poison);
value := bool_to_v (
case (v1.value, v2.value) of
| (W1V w1, W1V w2) => (get_comp c) w1 w2
| (W8V w1, W8V w2) => (get_comp c) w1 w2
| (W32V w1, W32V w2) => (get_comp c) w1 w2
| (W64V w1, W64V w2) => (get_comp c) w1 w2
| (PtrV w1, PtrV w2) => (get_comp c) w1 w2) |>
End
Definition do_phi_def:
do_phi from_l s (Phi id _ entries) =
option_map (λarg. (id, eval s arg)) (flookup entries from_l)
End
Definition extract_value_def:
(extract_value v [] = Some v)
(extract_value (AggV vs) (i::indices) =
if i < length vs then
extract_value (el i vs) indices
else
None)
(extract_value _ _ = None)
End
Definition insert_value_def:
(insert_value _ v [] = Some v)
(insert_value (AggV vs) v (i::indices) =
if i < length vs then
case insert_value (el i vs) v indices of
| None => None
| Some v => Some (AggV (list_update v i vs))
else
None)
(insert_value _ _ _ = None)
End
(* NB, the semantics tracks the poison values, but not much thought has been put
* into getting it exactly right, so we don't have much confidence that it is
* exactly right. We also are currently ignoring the undefined value. *)
Inductive step_instr:
(s.stack = fr::st
FOLDR deallocate (Some s.allocations) fr.stack_allocs = Some new_allocs
step_instr prog s
(Ret (t, a))
(update_result fr.result_var (eval s a)
<| ip := fr.ret;
locals := fr.saved_locals;
stack := st;
allocations := new_allocs;
heap := heap |>))
(* Do the phi assignments in parallel. The manual says "For the purposes of the
* SSA form, the use of each incoming value is deemed to occur on the edge from
* the corresponding predecessor block to the current block (but after any
* definition of an 'invoke' instruction's return value on the same edge)".
* So treat these two as equivalent
* %r1 = phi [0, %l]
* %r2 = phi [%r1, %l]
* and
* %r2 = phi [%r1, %l]
* %r1 = phi [0, %l]
*)
(eval s a = <| poison := p; value := W1V tf |>
l = Some (if tf = 1w then l1 else l2)
flookup prog s.ip.f = Some d
flookup d.blocks l = Some <| h := Head phis None; body := b |>
map (do_phi l s) phis = map Some updates
step_instr prog s
(Br a l1 l2)
(s with <| ip := <| f := s.ip.f; b := l; i := 0 |>;
locals := s.locals |++ updates |>))
(* TODO *)
(step_instr prog s (Invoke r t a args l1 l2) s)
(step_instr prog s
(Sub r nuw nsw t a1 a2)
(inc_pc (update_result r (do_sub nuw nsw (eval s a1) (eval s a2)) s)))
(eval s a = v
map (λci. cast_num (eval_const s.globals ci)) const_indices = map Some ns
extract_value v.value ns = Some result
step_instr prog s
(Extractvalue r (t, a) const_indices)
(inc_pc (update_result r
<| poison := v.poison; value := result |> s)))
(eval s a1 = v1
eval s a2 = v2
map (λci. cast_num (eval_const s.globals ci)) const_indices = map Some ns
insert_value v1.value v2.value ns = Some result
step_instr prog s
(Insertvalue r (t1, a1) (t2, a2) const_indices)
(inc_pc (update_result r
<| poison := (v1.poison v2.poison); value := result |> s)))
(allocate s (eval s a1) (sizeof t) (v2, s2)
step_instr prog s
(Alloca r t (t1, a1))
(inc_pc (update_result r v2 s2)))
(eval s a1 = <| poison := p1; value := PtrV w |>
interval = (b, w2n w, w2n w + sizeof t)
is_allocated interval s.allocations
pbytes = get_bytes s.heap interval
step_instr prog s
(Load r t (t1, a1))
(inc_pc (update_result r <| poison := (T set (map fst pbytes));
value := fst (bytes_to_value t (map snd pbytes)) |>
s)))
(eval s a2 = <| poison := p2; value := PtrV w |>
interval = (b, w2n w, w2n w + sizeof t)
is_allocated interval s.allocations
bytes = value_to_bytes (eval s a1).value
length bytes = sizeof t
step_instr prog s
(Store (t1, a1) (t2, a2))
(inc_pc (s with heap := set_bytes p2 bytes (w2n w) s.heap)))
(map (eval s o snd) tindices = i1::indices
(eval s a1).value = PtrV w1
cast_num i1.value = Some n
map (λx. cast_num x.value) indices = map Some ns
get_offset t1 ns = Some off
step_instr prog s
(Gep r ((PtrT t1), a1) tindices)
(inc_pc (update_result r
<| poison := (v1.poison i1.poison exists (λv. v.poison) indices);
value := PtrV (n2w (w2n w1 + sizeof t1 * n + off)) |>
s)))
(eval s a1 = v1
v1.value = PtrV w
w64_cast w t = Some int_v
step_instr prog s
(Ptrtoint r (t1, a1) t)
(inc_pc (update_result r <| poison := v1.poison; value := int_v |> s)))
(eval s a1 = v1
cast_w64 v1.value = Some w
step_instr prog s
(Inttoptr r (t1, a1) t)
(inc_pc (update_result r <| poison := v1.poison; value := PtrV w |> s)))
(step_instr prog s
(Icmp c t a1 a2)
(inc_pc (update_result r (do_icmp c (eval s a1) (eval s a2)) s)))
(flookup prog fname = Some d
step_instr prog s
(Call r t fname targs)
<| ip := <| f := fname; b := None; i := 0 |>;
locals := alist_to_fmap (zip (d.params, map (eval s o snd) targs));
stack :=
<| ret := s.ip with i := s.ip.i + 1;
saved_locals := s.locals;
result_var := r;
stack_allocs := [] |> :: s.stack;
heap := heap |>)
(* TODO *)
(step_instr prog s (Cxa_allocate_exn r a) s)
(* TODO *)
(step_instr prog s (Cxa_throw a1 a2 a3) s)
(* TODO *)
(step_instr prog s (Cxa_begin_catch r a) s)
(* TODO *)
(step_instr prog s (Cxa_end_catch) s)
(* TODO *)
(step_instr prog s (Cxa_get_exception_ptr r a) s)
End
Inductive next_instr:
flookup p s.ip.f = Some d
flookup d.blocks s.ip.b = Some b
s.ip.i < length b.body
next_instr p s (el s.ip.i b.body)
End
Inductive step:
next_instr p s i
step_instr p s i s'
step p s s'
End
(* ----- Initial state ----- *)
Definition allocations_ok_def:
allocations_ok s
∀i1 i2.
i1 s.allocations i2 s.allocations
interval_ok i1 interval_ok i2
(interval_to_set i1 interval_to_set i2
interval_to_set i1 = interval_to_set i2)
End
Definition heap_ok_def:
heap_ok s
∀i n. i s.allocations n interval_to_set i flookup s.heap (A n) None
End
Definition globals_ok_def:
globals_ok s
∀g n w.
flookup s.globals g = Some (n, w)
is_allocated (F, w2n w, w2n w + n) s.allocations
End
(* The initial state contains allocations for the initialised global variables *)
Definition is_init_state_def:
is_init_state s (global_init : glob_var |-> ty # v)
s.ip.f = Fn "main"
s.ip.b = None
s.ip.i = 0
s.locals = fempty
s.stack = []
allocations_ok s
globals_ok s
fdom s.globals = fdom global_init
s.allocations {F, start, stop | T}
∀g w t v n.
flookup s.globals g = Some (n, w) flookup global_init g = Some (t,v)
∃bytes.
get_bytes s.heap (F, w2n w, w2n w + sizeof t) = map (λb. (F,b)) bytes
bytes_to_value t bytes = (v, [])
End
(* ----- Invariants on state ----- *)
Definition prog_ok_def:
prog_ok p
∀fname dec bname block.
flookup p fname = Some dec
flookup dec.blocks bname = Some block
block.body [] terminator (last block.body)
End
Definition ip_ok_def:
ip_ok p ip
∃dec block. flookup p ip.f = Some dec flookup dec.blocks ip.b = Some block ip.i < length block.body
End
Definition frame_ok_def:
frame_ok p s f
ip_ok p f.ret
every (λn. ∃start stop. n = A start (T, start, stop) s.allocations) f.stack_allocs
End
Definition stack_ok_def:
stack_ok p s
every (frame_ok p s) s.stack
End
Definition state_invariant_def:
state_invariant p s
ip_ok p s.ip allocations_ok s heap_ok s globals_ok s stack_ok p s
End
export_theory();