|
|
(*
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
*
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
*)
|
|
|
|
|
|
(* A mini-LLVM model, focussing on the semantics of the parts of the IR that
|
|
|
* are relevant for the LLVM -> LLAIR translation, especially exceptions. *)
|
|
|
|
|
|
open HolKernel boolLib bossLib Parse;
|
|
|
open settingsTheory;
|
|
|
|
|
|
new_theory "llvm";
|
|
|
|
|
|
numLib.prefer_num ();
|
|
|
|
|
|
(* ----- Abstract syntax ----- *)
|
|
|
|
|
|
(* Only support 1, 8, 32, and 64 bit words for now *)
|
|
|
Datatype `
|
|
|
size = W1 | W8 | W32 | W64`;
|
|
|
|
|
|
Datatype `
|
|
|
ty =
|
|
|
| FunT ty (ty list)
|
|
|
| IntT size
|
|
|
| PtrT ty
|
|
|
| ArrT num ty
|
|
|
| StrT (ty list)`;
|
|
|
|
|
|
Datatype `
|
|
|
label = Lab string`;
|
|
|
|
|
|
Datatype `
|
|
|
loc_var = Loc string`;
|
|
|
|
|
|
Datatype `
|
|
|
glob_var = GlobName string`;
|
|
|
|
|
|
Datatype `
|
|
|
fun_name = Fn string`;
|
|
|
|
|
|
Datatype `
|
|
|
const =
|
|
|
| IntC size int
|
|
|
| StrC ((ty # const) list)
|
|
|
| ArrC ((ty # const) list)
|
|
|
| GepC ty const (ty # const) ((ty # const) list)
|
|
|
| GlobalC glob_var
|
|
|
| UndefC`;
|
|
|
|
|
|
Datatype `
|
|
|
arg = Constant const | Variable loc_var`;
|
|
|
|
|
|
type_abbrev ("targ", ``:ty # arg``);
|
|
|
|
|
|
Datatype `
|
|
|
cond = Eq | Ult | Slt`;
|
|
|
|
|
|
Datatype `
|
|
|
instr =
|
|
|
(* Terminators *)
|
|
|
| Ret targ
|
|
|
| Br arg label label
|
|
|
| Invoke loc_var ty arg (targ list) label label
|
|
|
| Unreachable
|
|
|
(* Non-terminators *)
|
|
|
| Sub loc_var bool bool ty arg arg
|
|
|
| Extractvalue loc_var targ (const list)
|
|
|
| Insertvalue loc_var targ targ (const list)
|
|
|
| Alloca loc_var ty targ
|
|
|
| Load loc_var ty targ
|
|
|
| Store targ targ
|
|
|
| Gep loc_var targ (targ list)
|
|
|
| Ptrtoint loc_var targ ty
|
|
|
| Inttoptr loc_var targ ty
|
|
|
| Icmp cond ty arg arg
|
|
|
| Call loc_var ty fun_name (targ list)
|
|
|
(* C++ runtime functions *)
|
|
|
| Cxa_allocate_exn loc_var arg
|
|
|
| Cxa_throw arg arg arg
|
|
|
| Cxa_begin_catch loc_var arg
|
|
|
| Cxa_end_catch
|
|
|
| Cxa_get_exception_ptr loc_var arg`;
|
|
|
|
|
|
Datatype `
|
|
|
phi = Phi loc_var ty (label option |-> arg)`;
|
|
|
|
|
|
Datatype `
|
|
|
clause = Catch targ`;
|
|
|
|
|
|
Datatype `
|
|
|
landingpad = Landingpad ty bool (clause list)`;
|
|
|
|
|
|
Datatype `
|
|
|
blockHeader =
|
|
|
| Entry
|
|
|
| Head (phi list) (landingpad option)`;
|
|
|
|
|
|
Datatype `
|
|
|
block = <| h : blockHeader; body : instr list |>`;
|
|
|
|
|
|
Datatype `
|
|
|
def =
|
|
|
<| r : ty;
|
|
|
params : loc_var list;
|
|
|
(* None -> entry block, and Some name -> non-entry block *)
|
|
|
blocks : label option |-> block |>`;
|
|
|
|
|
|
type_abbrev ("prog", ``:fun_name |-> def``);
|
|
|
|
|
|
Definition terminator_def:
|
|
|
(terminator (Ret _) ⇔ T) ∧
|
|
|
(terminator (Br _ _ _) ⇔ T) ∧
|
|
|
(terminator (Invoke _ _ _ _ _ _) ⇔ T) ∧
|
|
|
(terminator Unreachable ⇔ T) ∧
|
|
|
(terminator _ ⇔ F)
|
|
|
End
|
|
|
|
|
|
(* ----- Semantic states ----- *)
|
|
|
|
|
|
Datatype `
|
|
|
addr = A num`;
|
|
|
|
|
|
Datatype `
|
|
|
v =
|
|
|
| W1V word1
|
|
|
| W8V word8
|
|
|
| W32V word32
|
|
|
| W64V word64
|
|
|
| AggV (v list)
|
|
|
| PtrV word64
|
|
|
| UndefV`;
|
|
|
|
|
|
Datatype `
|
|
|
pv = <| poison : bool; value : v |>`;
|
|
|
|
|
|
Datatype `
|
|
|
pc = <| f : fun_name; b : label option; i : num |>`;
|
|
|
|
|
|
Datatype `
|
|
|
frame = <| ret : pc; saved_locals : loc_var |-> pv; result_var : loc_var; stack_allocs : addr list |>`;
|
|
|
|
|
|
Datatype `
|
|
|
state =
|
|
|
<| ip : pc;
|
|
|
(* Keep the size of the global with its memory address *)
|
|
|
globals : glob_var |-> (num # word64);
|
|
|
locals : loc_var |-> pv;
|
|
|
stack : frame list;
|
|
|
(* The set of allocated ranges. The bool indicates whether the range is
|
|
|
* free-able or not *)
|
|
|
allocations : (bool # num # num) set;
|
|
|
heap : addr |-> bool # word8 |>`;
|
|
|
|
|
|
(* ----- Things about types ----- *)
|
|
|
|
|
|
Definition sizeof_def:
|
|
|
(sizeof (IntT W1) = 1) ∧
|
|
|
(sizeof (IntT W8) = 1) ∧
|
|
|
(sizeof (IntT W32) = 4) ∧
|
|
|
(sizeof (IntT W64) = 8) ∧
|
|
|
(sizeof (PtrT _) = 8) ∧
|
|
|
(sizeof (ArrT n t) = n * sizeof t) ∧
|
|
|
(sizeof (StrT ts) = sum (map sizeof ts))
|
|
|
Termination
|
|
|
WF_REL_TAC `measure ty_size` >> simp [] >>
|
|
|
Induct >> rw [definition "ty_size_def"] >> simp [] >>
|
|
|
first_x_assum drule >> decide_tac
|
|
|
End
|
|
|
|
|
|
Definition first_class_type_def:
|
|
|
(first_class_type (IntT _) ⇔ T) ∧
|
|
|
(first_class_type (PtrT _) ⇔ T) ∧
|
|
|
(first_class_type (ArrT _ t) ⇔ first_class_type t) ∧
|
|
|
(first_class_type (StrT ts) ⇔ every first_class_type ts) ∧
|
|
|
(first_class_type _ ⇔ F)
|
|
|
Termination
|
|
|
WF_REL_TAC `measure ty_size` >>
|
|
|
rw [] >>
|
|
|
Induct_on `ts` >> rw [definition "ty_size_def"] >>
|
|
|
res_tac >> decide_tac
|
|
|
End
|
|
|
|
|
|
Definition indices_ok_def:
|
|
|
(indices_ok _ [] ⇔ T) ∧
|
|
|
(indices_ok (ArrT n t) (i::indices) ⇔
|
|
|
i < n ∧ indices_ok t indices) ∧
|
|
|
(indices_ok (StrT ts) (i::indices) ⇔
|
|
|
i < length ts ∧ indices_ok (el i ts) indices) ∧
|
|
|
(indices_ok _ _ ⇔ F)
|
|
|
End
|
|
|
|
|
|
Inductive value_type:
|
|
|
(value_type (IntT W1) (W1V w1)) ∧
|
|
|
(value_type (IntT W8) (W8V w8)) ∧
|
|
|
(value_type (IntT W32) (W32V w32)) ∧
|
|
|
(value_type (IntT W64) (W64V w64)) ∧
|
|
|
(value_type (PtrT _) (PtrV w64)) ∧
|
|
|
(every (value_type t) vs ∧ length vs = n ∧ first_class_type t
|
|
|
⇒
|
|
|
value_type (ArrT n t) (AggV vs)) ∧
|
|
|
(list_rel value_type ts vs
|
|
|
⇒
|
|
|
value_type (StrT ts) (AggV vs))
|
|
|
End
|
|
|
|
|
|
(* ----- Semantic transitions ----- *)
|
|
|
|
|
|
Definition w64_cast_def:
|
|
|
(w64_cast w (IntT W1) = Some (W1V (w2w w))) ∧
|
|
|
(w64_cast w (IntT W8) = Some (W8V (w2w w))) ∧
|
|
|
(w64_cast w (IntT W32) = Some (W32V (w2w w))) ∧
|
|
|
(w64_cast w (IntT W64) = Some (W64V w)) ∧
|
|
|
(w64_cast _ _ = None)
|
|
|
End
|
|
|
|
|
|
Definition cast_w64_def:
|
|
|
(cast_w64 (W1V w) = Some (w2w w)) ∧
|
|
|
(cast_w64 (W8V w) = Some (w2w w)) ∧
|
|
|
(cast_w64 (W32V w) = Some (w2w w)) ∧
|
|
|
(cast_w64 (W64V w) = Some w) ∧
|
|
|
(cast_w64 _ = None)
|
|
|
End
|
|
|
|
|
|
Definition cast_num_def:
|
|
|
cast_num v = option_map w2n (cast_w64 v)
|
|
|
End
|
|
|
|
|
|
Definition bool_to_v_def:
|
|
|
bool_to_v b = if b then W1V 1w else W1V 0w
|
|
|
End
|
|
|
|
|
|
Definition get_offset_def:
|
|
|
(get_offset _ [] = Some 0) ∧
|
|
|
(get_offset (ArrT _ t) (i::is) =
|
|
|
case get_offset t is of
|
|
|
| None => None
|
|
|
| Some off => Some (i * sizeof t + off)) ∧
|
|
|
(get_offset (StrT ts) (i::is) =
|
|
|
if i < length ts then
|
|
|
case get_offset (el i ts) is of
|
|
|
| None => None
|
|
|
| Some off => Some (sum (map sizeof (take i ts)) + off)
|
|
|
else
|
|
|
None) ∧
|
|
|
(get_offset _ _ = Some 0)
|
|
|
End
|
|
|
|
|
|
Definition eval_const_def:
|
|
|
(eval_const g (IntC W1 i) = W1V (i2w i)) ∧
|
|
|
(eval_const g (IntC W8 i) = W8V (i2w i)) ∧
|
|
|
(eval_const g (IntC W32 i) = W32V (i2w i)) ∧
|
|
|
(eval_const g (IntC W64 i) = W64V (i2w i)) ∧
|
|
|
(eval_const g (StrC tconsts) = AggV (map (eval_const g) (map snd tconsts))) ∧
|
|
|
(eval_const g (ArrC tconsts) = AggV (map (eval_const g) (map snd tconsts))) ∧
|
|
|
(eval_const g (GepC ty ptr (t, idx) indices) =
|
|
|
case (eval_const g ptr, cast_num (eval_const g idx)) of
|
|
|
| (PtrV w, Some n) =>
|
|
|
let ns = map (λ(t,ci). case cast_num (eval_const g ci) of None => 0 | Some n => n) indices in
|
|
|
(case get_offset ty ns of
|
|
|
| None => UndefV
|
|
|
| Some off => PtrV (n2w (w2n w + sizeof ty * n + off)))
|
|
|
| _ => UndefV) ∧
|
|
|
(eval_const g (GlobalC var) =
|
|
|
case flookup g var of
|
|
|
| None => PtrV 0w
|
|
|
| Some (s,w) => PtrV w) ∧
|
|
|
(eval_const g UndefC = UndefV)
|
|
|
Termination
|
|
|
WF_REL_TAC `measure (const_size o snd)` >> rw [listTheory.MEM_MAP] >>
|
|
|
TRY
|
|
|
(TRY (PairCases_on `y`) >> simp [] >>
|
|
|
Induct_on `tconsts` >> rw [] >> rw [definition "const_size_def"] >>
|
|
|
res_tac >> fs [] >> NO_TAC) >>
|
|
|
Induct_on `indices` >> rw [] >> rw [definition "const_size_def"] >>
|
|
|
fs []
|
|
|
End
|
|
|
|
|
|
Definition eval_def:
|
|
|
(eval s (Variable v) =
|
|
|
case flookup s.locals v of
|
|
|
| None => <| poison := F; value := W1V 0w |>
|
|
|
| Some v => v) ∧
|
|
|
(eval s (Constant c) = <| poison := F; value := eval_const s.globals c |>)
|
|
|
End
|
|
|
|
|
|
Definition v2n_def:
|
|
|
(v2n (W1V b) = Some (if T then 1 else 0)) ∧
|
|
|
(v2n (W8V w8) = Some (w2n w8)) ∧
|
|
|
(v2n (W32V w32) = Some (w2n w32)) ∧
|
|
|
(v2n (W64V w64) = Some (w2n w64)) ∧
|
|
|
(v2n _ = None)
|
|
|
End
|
|
|
|
|
|
Definition update_result_def:
|
|
|
update_result x v s = s with locals := s.locals |+ (x, v)
|
|
|
End
|
|
|
|
|
|
Definition inc_pc_def:
|
|
|
inc_pc s = s with ip := (s.ip with i := s.ip.i + 1)
|
|
|
End
|
|
|
|
|
|
Definition interval_to_set_def:
|
|
|
interval_to_set (_, start,stop) =
|
|
|
{ n | start ≤ n ∧ n < stop }
|
|
|
End
|
|
|
|
|
|
Definition interval_ok_def:
|
|
|
interval_ok (_, i1, i2) ⇔
|
|
|
i1 ≤ i2 ∧ i2 < 2 ** 64
|
|
|
End
|
|
|
|
|
|
Definition is_allocated_def:
|
|
|
is_allocated b1 allocs ⇔
|
|
|
interval_ok b1 ∧
|
|
|
∃b2. b2 ∈ allocs ∧ interval_to_set b1 ⊆ interval_to_set b2
|
|
|
End
|
|
|
|
|
|
Definition is_free_def:
|
|
|
is_free b1 allocs ⇔
|
|
|
interval_ok b1 ∧
|
|
|
∀b2. b2 ∈ allocs ⇒ interval_to_set b1 ∩ interval_to_set b2 = ∅
|
|
|
End
|
|
|
|
|
|
Inductive allocate:
|
|
|
(v2n v.value = Some m ∧
|
|
|
b = (T, w2n w, w2n w + m * len) ∧
|
|
|
is_free b s.allocations
|
|
|
⇒
|
|
|
allocate s v len
|
|
|
(<| poison := v.poison; value := PtrV w |>,
|
|
|
s with allocations := { b } ∪ s.allocations))
|
|
|
End
|
|
|
|
|
|
Definition deallocate_def:
|
|
|
(deallocate (A n) (Some allocs) =
|
|
|
if ∃m. (T,n,m) ∈ allocs then
|
|
|
Some { (b,start,stop) | (b,start,stop) ∈ allocs ∧ start ≠ n }
|
|
|
else
|
|
|
None) ∧
|
|
|
(deallocate _ None = None)
|
|
|
End
|
|
|
|
|
|
Definition get_bytes_def:
|
|
|
get_bytes h (_, start, stop) =
|
|
|
map
|
|
|
(λoff.
|
|
|
case flookup h (A (start + off)) of
|
|
|
| None => (F, 0w)
|
|
|
| Some w => w)
|
|
|
(count_list (stop - start))
|
|
|
End
|
|
|
|
|
|
Definition le_read_w_def:
|
|
|
le_read_w len (bs : word8 list) =
|
|
|
if length bs < len then
|
|
|
(l2w 256 (map w2n bs), [])
|
|
|
else
|
|
|
(l2w 256 (map w2n (take len bs)), drop len bs)
|
|
|
End
|
|
|
|
|
|
Definition le_write_w_def:
|
|
|
le_write_w len w =
|
|
|
let (l : word8 list) = map n2w (w2l 256 w) in
|
|
|
take len (l ++ replicate (len - length l) 0w)
|
|
|
End
|
|
|
|
|
|
Definition bytes_to_value_def:
|
|
|
(bytes_to_value (IntT W1) (b::bs) = (W1V (w2w b), bs)) ∧
|
|
|
(bytes_to_value (IntT W8) (b::bs) = (W8V b, bs)) ∧
|
|
|
(bytes_to_value (IntT W32) bs = (W32V ## I) (le_read_w 4 bs)) ∧
|
|
|
(bytes_to_value (IntT W64) bs = (W64V ## I) (le_read_w 8 bs)) ∧
|
|
|
(bytes_to_value (PtrT _) bs = (PtrV ## I) (le_read_w 8 bs)) ∧
|
|
|
(bytes_to_value (ArrT n t) bs = (AggV ## I) (read_array n t bs)) ∧
|
|
|
(bytes_to_value (StrT ts) bs = (AggV ## I) (read_str ts bs)) ∧
|
|
|
(read_array 0 t bs = ([], bs)) ∧
|
|
|
(read_array (Suc n) t bs =
|
|
|
let (v, bs) = bytes_to_value t bs in
|
|
|
let (rest, bs) = read_array n t bs in
|
|
|
(v::rest, bs)) ∧
|
|
|
(read_str [] bs = ([], bs)) ∧
|
|
|
(read_str (t::ts) bs =
|
|
|
let (v, bs) = bytes_to_value t bs in
|
|
|
let (rest, bs) = read_str ts bs in
|
|
|
(v::rest, bs))
|
|
|
Termination
|
|
|
WF_REL_TAC `measure (λx. case x of
|
|
|
| INL (t, bs) => ty_size t
|
|
|
| INR (INL (n, t, bs)) => n + ty_size t
|
|
|
| INR (INR (ts, bs)) => ty1_size ts)`
|
|
|
End
|
|
|
|
|
|
Definition value_to_bytes_def:
|
|
|
(value_to_bytes (W1V w) = [w2w w]) ∧
|
|
|
(value_to_bytes (W8V w) = [w]) ∧
|
|
|
(value_to_bytes (W32V w) = le_write_w 4 w) ∧
|
|
|
(value_to_bytes (W64V w) = le_write_w 8 w) ∧
|
|
|
(value_to_bytes (PtrV n) = le_write_w 8 n) ∧
|
|
|
(value_to_bytes (AggV vs) = flat (map value_to_bytes vs))
|
|
|
Termination
|
|
|
WF_REL_TAC `measure v_size` >>
|
|
|
Induct >> rw [definition "v_size_def"] >>
|
|
|
TRY (first_x_assum drule) >>
|
|
|
decide_tac
|
|
|
End
|
|
|
|
|
|
Definition set_bytes_def:
|
|
|
(set_bytes p [] n h = h) ∧
|
|
|
(set_bytes p (b::bs) n h =
|
|
|
set_bytes p bs (Suc n) (h |+ (A n, (p, b))))
|
|
|
End
|
|
|
|
|
|
Definition do_sub_def:
|
|
|
do_sub (nuw:bool) (nsw:bool) (v1:pv) (v2:pv) =
|
|
|
let (diff, u_overflow, s_overflow) =
|
|
|
case (v1.value, v2.value) of
|
|
|
| (W1V w1, W1V w2) => (W1V ## I) (add_with_carry (w1, ¬w2, T))
|
|
|
| (W8V w1, W8V w2) => (W8V ## I) (add_with_carry (w1, ¬w2, T))
|
|
|
| (W32V w1, W32V w2) => (W32V ## I) (add_with_carry (w1, ¬w2, T))
|
|
|
| (W64V w1, W64V w2) => (W64V ## I) (add_with_carry (w1, ¬w2, T))
|
|
|
in
|
|
|
let p = ((nuw ∧ u_overflow) ∨ (nsw ∧ s_overflow) ∨ v1.poison ∨ v2.poison) in
|
|
|
<| poison := p; value := diff |>
|
|
|
End
|
|
|
|
|
|
Definition get_comp_def:
|
|
|
(get_comp Eq = $=) ∧
|
|
|
(get_comp Slt = $<) ∧
|
|
|
(get_comp Ult = $<+)
|
|
|
End
|
|
|
|
|
|
Definition do_icmp_def:
|
|
|
do_icmp c v1 v2 =
|
|
|
<| poison := (v1.poison ∨ v2.poison);
|
|
|
value := bool_to_v (
|
|
|
case (v1.value, v2.value) of
|
|
|
| (W1V w1, W1V w2) => (get_comp c) w1 w2
|
|
|
| (W8V w1, W8V w2) => (get_comp c) w1 w2
|
|
|
| (W32V w1, W32V w2) => (get_comp c) w1 w2
|
|
|
| (W64V w1, W64V w2) => (get_comp c) w1 w2
|
|
|
| (PtrV w1, PtrV w2) => (get_comp c) w1 w2) |>
|
|
|
End
|
|
|
|
|
|
Definition do_phi_def:
|
|
|
do_phi from_l s (Phi id _ entries) =
|
|
|
option_map (λarg. (id, eval s arg)) (flookup entries from_l)
|
|
|
End
|
|
|
|
|
|
Definition extract_value_def:
|
|
|
(extract_value v [] = Some v) ∧
|
|
|
(extract_value (AggV vs) (i::indices) =
|
|
|
if i < length vs then
|
|
|
extract_value (el i vs) indices
|
|
|
else
|
|
|
None) ∧
|
|
|
(extract_value _ _ = None)
|
|
|
End
|
|
|
|
|
|
Definition insert_value_def:
|
|
|
(insert_value _ v [] = Some v) ∧
|
|
|
(insert_value (AggV vs) v (i::indices) =
|
|
|
if i < length vs then
|
|
|
case insert_value (el i vs) v indices of
|
|
|
| None => None
|
|
|
| Some v => Some (AggV (list_update v i vs))
|
|
|
else
|
|
|
None) ∧
|
|
|
(insert_value _ _ _ = None)
|
|
|
End
|
|
|
|
|
|
(* NB, the semantics tracks the poison values, but not much thought has been put
|
|
|
* into getting it exactly right, so we don't have much confidence that it is
|
|
|
* exactly right. We also are currently ignoring the undefined value. *)
|
|
|
Inductive step_instr:
|
|
|
|
|
|
(s.stack = fr::st ∧
|
|
|
FOLDR deallocate (Some s.allocations) fr.stack_allocs = Some new_allocs
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Ret (t, a))
|
|
|
(update_result fr.result_var (eval s a)
|
|
|
<| ip := fr.ret;
|
|
|
locals := fr.saved_locals;
|
|
|
stack := st;
|
|
|
allocations := new_allocs;
|
|
|
heap := heap |>)) ∧
|
|
|
|
|
|
(* Do the phi assignments in parallel. The manual says "For the purposes of the
|
|
|
* SSA form, the use of each incoming value is deemed to occur on the edge from
|
|
|
* the corresponding predecessor block to the current block (but after any
|
|
|
* definition of an 'invoke' instruction's return value on the same edge)".
|
|
|
* So treat these two as equivalent
|
|
|
* %r1 = phi [0, %l]
|
|
|
* %r2 = phi [%r1, %l]
|
|
|
* and
|
|
|
* %r2 = phi [%r1, %l]
|
|
|
* %r1 = phi [0, %l]
|
|
|
*)
|
|
|
(eval s a = <| poison := p; value := W1V tf |> ∧
|
|
|
l = Some (if tf = 1w then l1 else l2) ∧
|
|
|
flookup prog s.ip.f = Some d ∧
|
|
|
flookup d.blocks l = Some <| h := Head phis None; body := b |> ∧
|
|
|
map (do_phi l s) phis = map Some updates
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Br a l1 l2)
|
|
|
(s with <| ip := <| f := s.ip.f; b := l; i := 0 |>;
|
|
|
locals := s.locals |++ updates |>)) ∧
|
|
|
|
|
|
(* TODO *)
|
|
|
(step_instr prog s (Invoke r t a args l1 l2) s) ∧
|
|
|
|
|
|
(step_instr prog s
|
|
|
(Sub r nuw nsw t a1 a2)
|
|
|
(inc_pc (update_result r (do_sub nuw nsw (eval s a1) (eval s a2)) s))) ∧
|
|
|
|
|
|
(eval s a = v ∧
|
|
|
map (λci. cast_num (eval_const s.globals ci)) const_indices = map Some ns ∧
|
|
|
extract_value v.value ns = Some result
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Extractvalue r (t, a) const_indices)
|
|
|
(inc_pc (update_result r
|
|
|
<| poison := v.poison; value := result |> s))) ∧
|
|
|
|
|
|
(eval s a1 = v1 ∧
|
|
|
eval s a2 = v2 ∧
|
|
|
map (λci. cast_num (eval_const s.globals ci)) const_indices = map Some ns ∧
|
|
|
insert_value v1.value v2.value ns = Some result
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Insertvalue r (t1, a1) (t2, a2) const_indices)
|
|
|
(inc_pc (update_result r
|
|
|
<| poison := (v1.poison ∨ v2.poison); value := result |> s))) ∧
|
|
|
|
|
|
(allocate s (eval s a1) (sizeof t) (v2, s2)
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Alloca r t (t1, a1))
|
|
|
(inc_pc (update_result r v2 s2))) ∧
|
|
|
|
|
|
(eval s a1 = <| poison := p1; value := PtrV w |> ∧
|
|
|
interval = (b, w2n w, w2n w + sizeof t) ∧
|
|
|
is_allocated interval s.allocations ∧
|
|
|
pbytes = get_bytes s.heap interval
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Load r t (t1, a1))
|
|
|
(inc_pc (update_result r <| poison := (T ∈ set (map fst pbytes));
|
|
|
value := fst (bytes_to_value t (map snd pbytes)) |>
|
|
|
s))) ∧
|
|
|
|
|
|
(eval s a2 = <| poison := p2; value := PtrV w |> ∧
|
|
|
interval = (b, w2n w, w2n w + sizeof t) ∧
|
|
|
is_allocated interval s.allocations ∧
|
|
|
bytes = value_to_bytes (eval s a1).value ∧
|
|
|
length bytes = sizeof t
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Store (t1, a1) (t2, a2))
|
|
|
(inc_pc (s with heap := set_bytes p2 bytes (w2n w) s.heap))) ∧
|
|
|
|
|
|
(map (eval s o snd) tindices = i1::indices ∧
|
|
|
(eval s a1).value = PtrV w1 ∧
|
|
|
cast_num i1.value = Some n ∧
|
|
|
map (λx. cast_num x.value) indices = map Some ns ∧
|
|
|
get_offset t1 ns = Some off
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Gep r ((PtrT t1), a1) tindices)
|
|
|
(inc_pc (update_result r
|
|
|
<| poison := (v1.poison ∨ i1.poison ∨ exists (λv. v.poison) indices);
|
|
|
value := PtrV (n2w (w2n w1 + sizeof t1 * n + off)) |>
|
|
|
s))) ∧
|
|
|
|
|
|
(eval s a1 = v1 ∧
|
|
|
v1.value = PtrV w ∧
|
|
|
w64_cast w t = Some int_v
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Ptrtoint r (t1, a1) t)
|
|
|
(inc_pc (update_result r <| poison := v1.poison; value := int_v |> s))) ∧
|
|
|
|
|
|
(eval s a1 = v1 ∧
|
|
|
cast_w64 v1.value = Some w
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Inttoptr r (t1, a1) t)
|
|
|
(inc_pc (update_result r <| poison := v1.poison; value := PtrV w |> s))) ∧
|
|
|
|
|
|
(step_instr prog s
|
|
|
(Icmp c t a1 a2)
|
|
|
(inc_pc (update_result r (do_icmp c (eval s a1) (eval s a2)) s))) ∧
|
|
|
|
|
|
(flookup prog fname = Some d
|
|
|
⇒
|
|
|
step_instr prog s
|
|
|
(Call r t fname targs)
|
|
|
<| ip := <| f := fname; b := None; i := 0 |>;
|
|
|
locals := alist_to_fmap (zip (d.params, map (eval s o snd) targs));
|
|
|
stack :=
|
|
|
<| ret := s.ip with i := s.ip.i + 1;
|
|
|
saved_locals := s.locals;
|
|
|
result_var := r;
|
|
|
stack_allocs := [] |> :: s.stack;
|
|
|
heap := heap |>) ∧
|
|
|
|
|
|
(* TODO *)
|
|
|
(step_instr prog s (Cxa_allocate_exn r a) s) ∧
|
|
|
(* TODO *)
|
|
|
(step_instr prog s (Cxa_throw a1 a2 a3) s) ∧
|
|
|
(* TODO *)
|
|
|
(step_instr prog s (Cxa_begin_catch r a) s) ∧
|
|
|
(* TODO *)
|
|
|
(step_instr prog s (Cxa_end_catch) s) ∧
|
|
|
(* TODO *)
|
|
|
(step_instr prog s (Cxa_get_exception_ptr r a) s)
|
|
|
End
|
|
|
|
|
|
Inductive next_instr:
|
|
|
flookup p s.ip.f = Some d ∧
|
|
|
flookup d.blocks s.ip.b = Some b ∧
|
|
|
s.ip.i < length b.body
|
|
|
⇒
|
|
|
next_instr p s (el s.ip.i b.body)
|
|
|
End
|
|
|
|
|
|
Inductive step:
|
|
|
next_instr p s i ∧
|
|
|
step_instr p s i s'
|
|
|
⇒
|
|
|
step p s s'
|
|
|
End
|
|
|
|
|
|
(* ----- Initial state ----- *)
|
|
|
|
|
|
Definition allocations_ok_def:
|
|
|
allocations_ok s ⇔
|
|
|
∀i1 i2.
|
|
|
i1 ∈ s.allocations ∧ i2 ∈ s.allocations
|
|
|
⇒
|
|
|
interval_ok i1 ∧ interval_ok i2 ∧
|
|
|
(interval_to_set i1 ∩ interval_to_set i2 ≠ ∅ ⇒
|
|
|
interval_to_set i1 = interval_to_set i2)
|
|
|
End
|
|
|
|
|
|
Definition heap_ok_def:
|
|
|
heap_ok s ⇔
|
|
|
∀i n. i ∈ s.allocations ∧ n ∈ interval_to_set i ⇒ flookup s.heap (A n) ≠ None
|
|
|
End
|
|
|
|
|
|
Definition globals_ok_def:
|
|
|
globals_ok s ⇔
|
|
|
∀g n w.
|
|
|
flookup s.globals g = Some (n, w)
|
|
|
⇒
|
|
|
is_allocated (F, w2n w, w2n w + n) s.allocations
|
|
|
End
|
|
|
|
|
|
(* The initial state contains allocations for the initialised global variables *)
|
|
|
Definition is_init_state_def:
|
|
|
is_init_state s (global_init : glob_var |-> ty # v) ⇔
|
|
|
s.ip.f = Fn "main" ∧
|
|
|
s.ip.b = None ∧
|
|
|
s.ip.i = 0 ∧
|
|
|
s.locals = fempty ∧
|
|
|
s.stack = [] ∧
|
|
|
allocations_ok s ∧
|
|
|
globals_ok s ∧
|
|
|
fdom s.globals = fdom global_init ∧
|
|
|
s.allocations ⊆ {F, start, stop | T} ∧
|
|
|
∀g w t v n.
|
|
|
flookup s.globals g = Some (n, w) ∧ flookup global_init g = Some (t,v) ⇒
|
|
|
∃bytes.
|
|
|
get_bytes s.heap (F, w2n w, w2n w + sizeof t) = map (λb. (F,b)) bytes ∧
|
|
|
bytes_to_value t bytes = (v, [])
|
|
|
End
|
|
|
|
|
|
(* ----- Invariants on state ----- *)
|
|
|
|
|
|
Definition prog_ok_def:
|
|
|
prog_ok p ⇔
|
|
|
∀fname dec bname block.
|
|
|
flookup p fname = Some dec ∧
|
|
|
flookup dec.blocks bname = Some block
|
|
|
⇒
|
|
|
block.body ≠ [] ∧ terminator (last block.body)
|
|
|
End
|
|
|
|
|
|
Definition ip_ok_def:
|
|
|
ip_ok p ip ⇔
|
|
|
∃dec block. flookup p ip.f = Some dec ∧ flookup dec.blocks ip.b = Some block ∧ ip.i < length block.body
|
|
|
End
|
|
|
|
|
|
Definition frame_ok_def:
|
|
|
frame_ok p s f ⇔
|
|
|
ip_ok p f.ret ∧
|
|
|
every (λn. ∃start stop. n = A start ∧ (T, start, stop) ∈ s.allocations) f.stack_allocs
|
|
|
End
|
|
|
|
|
|
Definition stack_ok_def:
|
|
|
stack_ok p s ⇔
|
|
|
every (frame_ok p s) s.stack
|
|
|
End
|
|
|
|
|
|
Definition state_invariant_def:
|
|
|
state_invariant p s ⇔
|
|
|
ip_ok p s.ip ∧ allocations_ok s ∧ heap_ok s ∧ globals_ok s ∧ stack_ok p s
|
|
|
End
|
|
|
|
|
|
export_theory();
|