You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

535 lines
16 KiB

(*
* Copyright (c) 2018-present, Facebook, Inc.
*
* This source code is licensed under the MIT license found in the
* LICENSE file in the root directory of this source tree.
*)
open! IStd
open! AbstractDomain.Types
module Bound = Bounds.Bound
open Ints
module TopTrace = Bounds.BoundTrace
module DegreeKind = struct
type t = Linear | Log [@@deriving compare]
let compute d i =
match d with
| Linear ->
i
| Log -> (
try NonNegativeInt.log2_ceil_exn i with Invalid_argument _ -> NonNegativeInt.zero )
let pp_hole pp f d x = match d with Linear -> pp f x | Log -> Format.fprintf f "log(%a)" pp x
end
module Degree = struct
type t = {linear: NonNegativeInt.t; log: NonNegativeInt.t} [@@deriving compare]
let zero = {linear= NonNegativeInt.zero; log= NonNegativeInt.zero}
let succ (k : DegreeKind.t) d =
match k with
| Linear ->
{d with linear= NonNegativeInt.succ d.linear}
| Log ->
{d with log= NonNegativeInt.succ d.log}
let encode_to_int d =
(*
Constructs an integer compatible with compare.
We assume that degrees won't go exceed 100 ;-)
*)
(NonNegativeInt.to_int_exn d.linear * 100) + NonNegativeInt.to_int_exn d.log
let is_zero d = NonNegativeInt.is_zero d.linear && NonNegativeInt.is_zero d.log
let pp f d =
NonNegativeInt.pp f d.linear ;
if not (NonNegativeInt.is_zero d.log) then
F.fprintf f " + %a%slog" NonNegativeInt.pp d.log SpecialChars.dot_operator
end
module type NonNegativeSymbol = sig
type t [@@deriving compare]
val classify : t -> (Ints.NonNegativeInt.t, t, TopTrace.t) Bounds.valclass
val int_lb : t -> NonNegativeInt.t
val int_ub : t -> NonNegativeInt.t option
val subst :
Typ.Procname.t
-> Location.t
-> t
-> Bound.eval_sym
-> (NonNegativeInt.t, t, TopTrace.t) Bounds.valclass
val pp : hum:bool -> F.formatter -> t -> unit
end
module type NonNegativeSymbolWithDegreeKind = sig
type t0
include NonNegativeSymbol
val make : DegreeKind.t -> t0 -> t
val degree_kind : t -> DegreeKind.t
val symbol : t -> t0
end
module MakeSymbolWithDegreeKind (S : NonNegativeSymbol) :
NonNegativeSymbolWithDegreeKind with type t0 = S.t = struct
type t0 = S.t [@@deriving compare]
type t = {degree_kind: DegreeKind.t; symbol: t0} [@@deriving compare]
let classify ({degree_kind; symbol} as self) =
match S.classify symbol with
| Constant c ->
Bounds.Constant (DegreeKind.compute degree_kind c)
| Symbolic _ ->
Bounds.Symbolic self
| ValTop trace ->
Bounds.ValTop trace
let make degree_kind symbol = {degree_kind; symbol}
let int_lb {degree_kind; symbol} = S.int_lb symbol |> DegreeKind.compute degree_kind
let int_ub {degree_kind; symbol} =
S.int_ub symbol |> Option.map ~f:(DegreeKind.compute degree_kind)
let subst callee_pname location {degree_kind; symbol} eval =
match S.subst callee_pname location symbol eval with
| Constant c ->
Bounds.Constant (DegreeKind.compute degree_kind c)
| Symbolic symbol ->
Bounds.Symbolic {degree_kind; symbol}
| ValTop trace ->
Bounds.ValTop trace
let pp ~hum f {degree_kind; symbol} = DegreeKind.pp_hole (S.pp ~hum) f degree_kind symbol
let degree_kind {degree_kind} = degree_kind
let symbol {symbol} = symbol
end
module MakePolynomial (S : NonNegativeSymbolWithDegreeKind) = struct
module M = struct
include Caml.Map.Make (S)
let increasing_union ~f m1 m2 = union (fun _ v1 v2 -> Some (f v1 v2)) m1 m2
let zip m1 m2 = merge (fun _ opt1 opt2 -> Some (opt1, opt2)) m1 m2
let fold_no_key m ~init ~f =
let f _k v acc = f acc v in
fold f m init
let le ~le_elt m1 m2 =
match
merge
(fun _ v1_opt v2_opt ->
match (v1_opt, v2_opt) with
| Some _, None ->
raise Exit
| Some lhs, Some rhs when not (le_elt ~lhs ~rhs) ->
raise Exit
| _ ->
None )
m1 m2
with
| _ ->
true
| exception Exit ->
false
let xcompare ~xcompare_elt ~lhs ~rhs =
(* TODO: avoid creating zipped map *)
zip lhs rhs
|> PartialOrder.container ~fold:fold_no_key ~xcompare_elt:(PartialOrder.of_opt ~xcompare_elt)
end
(** If x < y < z then
2 + 3 * x + 4 * x ^ 2 + x * y + 7 * y ^ 2 * z
is represented by
{const= 2; terms= {
x -> {const= 3; terms= {
x -> {const= 4; terms={}},
y -> {const= 1; terms={}}
}},
y -> {const= 0; terms= {
y -> {const= 0; terms= {
z -> {const= 7; terms={}}
}}
}}
}}
The representation is a tree, each edge from a node to a child (terms) represents a multiplication by a symbol. If a node has a non-zero const, it represents the multiplication (of the path) by this constant.
In the example above, we have the following paths:
2
x * 3
x * x * 4
x * y * 1
y * y * z * 7
Invariants:
- except for the root, terms <> {} \/ const <> 0
- symbols children of a term are 'smaller' than its self symbol
- contents of terms are not zero
- symbols in terms are only symbolic values
*)
type t = {const: NonNegativeInt.t; terms: t M.t}
let of_non_negative_int : NonNegativeInt.t -> t = fun const -> {const; terms= M.empty}
let zero = of_non_negative_int NonNegativeInt.zero
let one = of_non_negative_int NonNegativeInt.one
let of_int_exn : int -> t = fun i -> i |> NonNegativeInt.of_int_exn |> of_non_negative_int
let of_valclass : (NonNegativeInt.t, S.t, 't) Bounds.valclass -> (t, 't) below_above = function
| ValTop trace ->
Above trace
| Constant i ->
Below (of_non_negative_int i)
| Symbolic s ->
Below {const= NonNegativeInt.zero; terms= M.singleton s one}
let is_zero : t -> bool = fun {const; terms} -> NonNegativeInt.is_zero const && M.is_empty terms
let is_one : t -> bool = fun {const; terms} -> NonNegativeInt.is_one const && M.is_empty terms
let is_constant : t -> bool = fun {terms} -> M.is_empty terms
let is_symbolic : t -> bool = fun p -> not (is_constant p)
let rec plus : t -> t -> t =
fun p1 p2 ->
{ const= NonNegativeInt.(p1.const + p2.const)
; terms= M.increasing_union ~f:plus p1.terms p2.terms }
let rec mult_const_positive : t -> PositiveInt.t -> t =
fun {const; terms} c ->
{ const= NonNegativeInt.(const * (c :> NonNegativeInt.t))
; terms= M.map (fun p -> mult_const_positive p c) terms }
let mult_const : t -> NonNegativeInt.t -> t =
fun p c ->
match PositiveInt.of_big_int (c :> Z.t) with None -> zero | Some c -> mult_const_positive p c
(* (c + r * R + s * S + t * T) x s
= 0 + r * (R x s) + s * (c + s * S + t * T) *)
let rec mult_symb : t -> S.t -> t =
fun {const; terms} s ->
let less_than_s, equal_s_opt, greater_than_s = M.split s terms in
let less_than_s = M.map (fun p -> mult_symb p s) less_than_s in
let s_term =
let terms =
match equal_s_opt with
| None ->
greater_than_s
| Some equal_s_p ->
M.add s equal_s_p greater_than_s
in
{const; terms}
in
let terms = if is_zero s_term then less_than_s else M.add s s_term less_than_s in
{const= NonNegativeInt.zero; terms}
let rec mult : t -> t -> t =
fun p1 p2 ->
if is_zero p1 || is_zero p2 then zero
else if is_one p1 then p2
else if is_one p2 then p1
else
mult_const p1 p2.const |> M.fold (fun s p acc -> plus (mult_symb (mult p p1) s) acc) p2.terms
let rec int_lb {const; terms} =
M.fold
(fun symbol polynomial acc ->
let s_lb = S.int_lb symbol in
let p_lb = int_lb polynomial in
NonNegativeInt.((s_lb * p_lb) + acc) )
terms const
let rec int_ub {const; terms} =
M.fold
(fun symbol polynomial acc ->
Option.bind acc ~f:(fun acc ->
Option.bind (S.int_ub symbol) ~f:(fun s_ub ->
Option.map (int_ub polynomial) ~f:(fun p_ub -> NonNegativeInt.((s_ub * p_ub) + acc))
) ) )
terms (Some const)
(* assumes symbols are not comparable *)
let rec ( <= ) : lhs:t -> rhs:t -> bool =
fun ~lhs ~rhs ->
phys_equal lhs rhs
|| NonNegativeInt.( <= ) ~lhs:lhs.const ~rhs:rhs.const
&& M.le ~le_elt:( <= ) lhs.terms rhs.terms
|| Option.exists (int_ub lhs) ~f:(fun lhs_ub ->
NonNegativeInt.( <= ) ~lhs:lhs_ub ~rhs:(int_lb rhs) )
let rec xcompare ~lhs ~rhs =
let cmp_const =
PartialOrder.of_compare ~compare:NonNegativeInt.compare ~lhs:lhs.const ~rhs:rhs.const
in
let cmp_terms = M.xcompare ~xcompare_elt:xcompare ~lhs:lhs.terms ~rhs:rhs.terms in
PartialOrder.join cmp_const cmp_terms
(* assumes symbols are not comparable *)
(* TODO: improve this for comparable symbols *)
let min_default_left : t -> t -> t =
fun p1 p2 ->
match xcompare ~lhs:p1 ~rhs:p2 with
| `Equal | `LeftSmallerThanRight ->
p1
| `RightSmallerThanLeft ->
p2
| `NotComparable ->
if is_constant p1 then p1 else if is_constant p2 then p2 else p1
let subst callee_pname location =
let exception ReturnTop of TopTrace.t in
(* avoids top-lifting everything *)
let rec subst {const; terms} eval_sym =
M.fold
(fun s p acc ->
match S.subst callee_pname location s eval_sym with
| Constant c -> (
match PositiveInt.of_big_int (c :> Z.t) with
| None ->
acc
| Some c ->
let p = subst p eval_sym in
mult_const_positive p c |> plus acc )
| ValTop trace ->
let p = subst p eval_sym in
if is_zero p then acc else raise (ReturnTop trace)
| Symbolic s ->
let p = subst p eval_sym in
mult_symb p s |> plus acc )
terms (of_non_negative_int const)
in
fun p eval_sym ->
match subst p eval_sym with p -> Below p | exception ReturnTop trace -> Above trace
(** Emit a pair (d,t) where d is the degree of the polynomial and t is the first term with such degree *)
let rec degree_with_term {terms} =
M.fold
(fun t p acc ->
let d, p' = degree_with_term p in
max acc (Degree.succ (S.degree_kind t) d, mult_symb p' t) )
terms (Degree.zero, one)
let degree p = fst (degree_with_term p)
let multiplication_sep = F.sprintf " %s " SpecialChars.multiplication_sign
let pp : hum:bool -> F.formatter -> t -> unit =
let add_symb s (((last_s, last_occ) as last), others) =
if Int.equal 0 (S.compare s last_s) then ((last_s, PositiveInt.succ last_occ), others)
else ((s, PositiveInt.one), last :: others)
in
let pp_coeff fmt (c : NonNegativeInt.t) =
if Z.((c :> Z.t) > one) then
F.fprintf fmt "%a %s " NonNegativeInt.pp c SpecialChars.dot_operator
in
let pp_exp fmt (e : PositiveInt.t) =
if Z.((e :> Z.t) > one) then PositiveInt.pp_exponent fmt e
in
let pp_magic_parentheses pp fmt x =
let s = F.asprintf "%a" pp x in
if String.contains s ' ' then F.fprintf fmt "(%s)" s else F.pp_print_string fmt s
in
let pp_symb ~hum fmt symb = pp_magic_parentheses (S.pp ~hum) fmt symb in
let pp_symb_exp ~hum fmt (symb, exp) = F.fprintf fmt "%a%a" (pp_symb ~hum) symb pp_exp exp in
let pp_symbs ~hum fmt (last, others) =
List.rev_append others [last] |> Pp.seq ~sep:multiplication_sep (pp_symb_exp ~hum) fmt
in
let rec pp_sub ~hum ~print_plus symbs fmt {const; terms} =
let print_plus =
if not (NonNegativeInt.is_zero const) then (
if print_plus then F.pp_print_string fmt " + " ;
F.fprintf fmt "%a%a" pp_coeff const (pp_symbs ~hum) symbs ;
true )
else print_plus
in
( M.fold
(fun s p print_plus ->
pp_sub ~hum ~print_plus (add_symb s symbs) fmt p ;
true )
terms print_plus
: bool )
|> ignore
in
fun ~hum fmt {const; terms} ->
let const_not_zero = not (NonNegativeInt.is_zero const) in
if const_not_zero || M.is_empty terms then NonNegativeInt.pp fmt const ;
( M.fold
(fun s p print_plus ->
pp_sub ~hum ~print_plus ((s, PositiveInt.one), []) fmt p ;
true )
terms const_not_zero
: bool )
|> ignore
let get_symbols p : S.t0 list =
let rec get_symbols_sub {terms} acc =
M.fold (fun s p acc -> get_symbols_sub p (S.symbol s :: acc)) terms acc
in
get_symbols_sub p []
end
module NonNegativeBoundWithDegreeKind = MakeSymbolWithDegreeKind (Bounds.NonNegativeBound)
module NonNegativeNonTopPolynomial = MakePolynomial (NonNegativeBoundWithDegreeKind)
module TopTraces = struct
include AbstractDomain.MinReprSet (TopTrace)
let make_err_trace traces =
match min_elt traces with None -> [] | Some trace -> TopTrace.make_err_trace trace
end
module NonNegativePolynomial = struct
(* Use Below for non-Top values and Above for Top values with their trace *)
type t = (NonNegativeNonTopPolynomial.t, TopTraces.t) below_above
type degree_with_term =
(Degree.t * NonNegativeNonTopPolynomial.t, TopTraces.t) AbstractDomain.Types.below_above
let ( <= ) =
AbstractDomain.StackedUtils.( <= ) ~le_below:NonNegativeNonTopPolynomial.( <= )
~le_above:TopTraces.( <= )
let pp ~hum =
let pp_above f traces =
AbstractDomain.TopLiftedUtils.pp_top f ;
if not hum then F.fprintf f ": %a" TopTraces.pp traces
in
AbstractDomain.StackedUtils.pp ~pp_below:(NonNegativeNonTopPolynomial.pp ~hum) ~pp_above
let pp_hum = pp ~hum:true
let pp = pp ~hum:false
let top = Above TopTraces.bottom
let zero = Below NonNegativeNonTopPolynomial.zero
let one = Below NonNegativeNonTopPolynomial.one
let of_int_exn i = Below (NonNegativeNonTopPolynomial.of_int_exn i)
let make_trace_set = AbstractDomain.StackedUtils.map ~f_below:Fn.id ~f_above:TopTraces.singleton
let of_non_negative_bound ?(degree_kind = DegreeKind.Linear) b =
b
|> NonNegativeBoundWithDegreeKind.make degree_kind
|> NonNegativeBoundWithDegreeKind.classify |> NonNegativeNonTopPolynomial.of_valclass
|> make_trace_set
let is_symbolic = function
| Above _ ->
false
| Below p ->
NonNegativeNonTopPolynomial.is_symbolic p
let is_top = function Above _ -> true | _ -> false
let is_zero = function Below p when NonNegativeNonTopPolynomial.is_zero p -> true | _ -> false
let is_one = function Below p when NonNegativeNonTopPolynomial.is_one p -> true | _ -> false
let top_lifted_increasing ~f p1 p2 =
AbstractDomain.StackedUtils.combine ~dir:`Increasing p1 p2 ~f_below:f ~f_above:TopTraces.join
let plus = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.plus
let mult = top_lifted_increasing ~f:NonNegativeNonTopPolynomial.mult
let min_default_left p1 p2 =
AbstractDomain.StackedUtils.combine ~dir:`Decreasing p1 p2
~f_below:NonNegativeNonTopPolynomial.min_default_left ~f_above:TopTraces.join
let subst callee_pname location p eval_sym =
match p with
| Above callee_traces ->
Above
(TopTraces.map
(fun callee_trace -> TopTrace.call ~callee_pname ~location callee_trace)
callee_traces)
| Below p ->
NonNegativeNonTopPolynomial.subst callee_pname location p eval_sym |> make_trace_set
let degree p =
match p with Above _ -> None | Below p -> Some (NonNegativeNonTopPolynomial.degree p)
let compare_by_degree =
AbstractDomain.StackedUtils.compare ~cmp_above:TopTraces.compare ~cmp_below:(fun p1 p2 ->
Degree.compare
(NonNegativeNonTopPolynomial.degree p1)
(NonNegativeNonTopPolynomial.degree p2) )
let get_degree_with_term =
AbstractDomain.StackedUtils.map ~f_below:NonNegativeNonTopPolynomial.degree_with_term
~f_above:Fn.id
let get_symbols =
AbstractDomain.StackedUtils.map ~f_below:NonNegativeNonTopPolynomial.get_symbols ~f_above:Fn.id
let pp_degree ~only_bigO fmt = function
| Above _ ->
Format.pp_print_string fmt "Top"
| Below (degree, degree_term) ->
if only_bigO then
Format.fprintf fmt "O(%a)" (NonNegativeNonTopPolynomial.pp ~hum:true) degree_term
else Degree.pp fmt degree
let encode astate = Marshal.to_string astate [] |> Base64.encode_exn
let decode enc_str = Marshal.from_string (Base64.decode_exn enc_str) 0
end