|
|
(*
|
|
|
* Copyright (c) Facebook, Inc. and its affiliates.
|
|
|
*
|
|
|
* This source code is licensed under the MIT license found in the
|
|
|
* LICENSE file in the root directory of this source tree.
|
|
|
*)
|
|
|
|
|
|
(** Equality over uninterpreted functions and linear rational arithmetic *)
|
|
|
|
|
|
(** Classification of Terms by Theory *)
|
|
|
|
|
|
type kind = Interpreted | Simplified | Atomic | Uninterpreted
|
|
|
[@@deriving compare, equal]
|
|
|
|
|
|
let classify e =
|
|
|
match (e : Term.t) with
|
|
|
| Add _ | Mul _ -> Interpreted
|
|
|
| Ap2 (Memory, _, _) | Ap3 (Extract, _, _, _) | ApN (Concat, _) ->
|
|
|
Interpreted
|
|
|
| Ap2 ((Eq | Dq), _, _) -> Simplified
|
|
|
| Ap1 _ | Ap2 _ | Ap3 _ | ApN _ -> Uninterpreted
|
|
|
| RecN _ | Var _ | Integer _ | Float _ | Nondet _ | Label _ -> Atomic
|
|
|
|
|
|
let interpreted e = equal_kind (classify e) Interpreted
|
|
|
let non_interpreted e = not (interpreted e)
|
|
|
let uninterpreted e = equal_kind (classify e) Uninterpreted
|
|
|
|
|
|
let rec fold_max_solvables e ~init ~f =
|
|
|
if non_interpreted e then f e init
|
|
|
else Term.fold e ~init ~f:(fun d s -> fold_max_solvables ~f d ~init:s)
|
|
|
|
|
|
let rec iter_max_solvables e ~f =
|
|
|
if non_interpreted e then f e else Term.iter ~f:(iter_max_solvables ~f) e
|
|
|
|
|
|
(** Solution Substitutions *)
|
|
|
module Subst : sig
|
|
|
type t [@@deriving compare, equal, sexp]
|
|
|
|
|
|
val pp : t pp
|
|
|
val pp_diff : (t * t) pp
|
|
|
val empty : t
|
|
|
val is_empty : t -> bool
|
|
|
val length : t -> int
|
|
|
val mem : t -> Term.t -> bool
|
|
|
val find : t -> Term.t -> Term.t option
|
|
|
val fold : t -> init:'a -> f:(key:Term.t -> data:Term.t -> 'a -> 'a) -> 'a
|
|
|
val iteri : t -> f:(key:Term.t -> data:Term.t -> unit) -> unit
|
|
|
val for_alli : t -> f:(key:Term.t -> data:Term.t -> bool) -> bool
|
|
|
val apply : t -> Term.t -> Term.t
|
|
|
val subst : t -> Term.t -> Term.t
|
|
|
val norm : t -> Term.t -> Term.t
|
|
|
val compose : t -> t -> t
|
|
|
val compose1 : key:Term.t -> data:Term.t -> t -> t
|
|
|
val extend : Term.t -> t -> t option
|
|
|
val map_entries : f:(Term.t -> Term.t) -> t -> t
|
|
|
val to_alist : t -> (Term.t * Term.t) list
|
|
|
val partition_valid : Var.Set.t -> t -> t * Var.Set.t * t
|
|
|
end = struct
|
|
|
type t = Term.t Term.Map.t [@@deriving compare, equal, sexp_of]
|
|
|
|
|
|
let t_of_sexp = Term.Map.t_of_sexp Term.t_of_sexp Term.t_of_sexp
|
|
|
let pp = Term.Map.pp Term.pp Term.pp
|
|
|
|
|
|
let pp_diff =
|
|
|
Term.Map.pp_diff ~data_equal:Term.equal Term.pp Term.pp Term.pp_diff
|
|
|
|
|
|
let empty = Term.Map.empty
|
|
|
let is_empty = Term.Map.is_empty
|
|
|
let length = Term.Map.length
|
|
|
let mem = Term.Map.mem
|
|
|
let find = Term.Map.find
|
|
|
let fold = Term.Map.fold
|
|
|
let iteri = Term.Map.iteri
|
|
|
let for_alli = Term.Map.for_alli
|
|
|
let to_alist = Term.Map.to_alist
|
|
|
|
|
|
(** look up a term in a substitution *)
|
|
|
let apply s a = Term.Map.find s a |> Option.value ~default:a
|
|
|
|
|
|
let rec subst s a = apply s (Term.map ~f:(subst s) a)
|
|
|
|
|
|
(** apply a substitution to maximal non-interpreted subterms *)
|
|
|
let rec norm s a =
|
|
|
match classify a with
|
|
|
| Interpreted -> Term.map ~f:(norm s) a
|
|
|
| Simplified -> apply s (Term.map ~f:(norm s) a)
|
|
|
| Atomic | Uninterpreted -> apply s a
|
|
|
|
|
|
(** compose two substitutions *)
|
|
|
let compose r s =
|
|
|
let r' = Term.Map.map ~f:(norm s) r in
|
|
|
Term.Map.merge_skewed r' s ~combine:(fun ~key v1 v2 ->
|
|
|
if Term.equal v1 v2 then v1
|
|
|
else fail "domains intersect: %a" Term.pp key () )
|
|
|
|
|
|
(** compose a substitution with a mapping *)
|
|
|
let compose1 ~key ~data s =
|
|
|
if Term.equal key data then s
|
|
|
else compose s (Term.Map.set Term.Map.empty ~key ~data)
|
|
|
|
|
|
(** add an identity entry if the term is not already present *)
|
|
|
let extend e s =
|
|
|
let exception Found in
|
|
|
match
|
|
|
Term.Map.update s e ~f:(function
|
|
|
| Some _ -> raise_notrace Found
|
|
|
| None -> e )
|
|
|
with
|
|
|
| exception Found -> None
|
|
|
| s -> Some s
|
|
|
|
|
|
(** map over a subst, applying [f] to both domain and range, requires that
|
|
|
[f] is injective and for any set of terms [E], [f\[E\]] is disjoint
|
|
|
from [E] *)
|
|
|
let map_entries ~f s =
|
|
|
Term.Map.fold s ~init:s ~f:(fun ~key ~data s ->
|
|
|
let key' = f key in
|
|
|
let data' = f data in
|
|
|
if Term.equal key' key then
|
|
|
if Term.equal data' data then s
|
|
|
else Term.Map.set s ~key ~data:data'
|
|
|
else Term.Map.remove s key |> Term.Map.add_exn ~key:key' ~data:data'
|
|
|
)
|
|
|
|
|
|
(** Holds only if [true ⊢ ∃xs. e=f]. Clients assume
|
|
|
[not (is_valid_eq xs e f)] implies [not (is_valid_eq ys e f)] for
|
|
|
[ys ⊆ xs]. *)
|
|
|
let is_valid_eq xs e f =
|
|
|
let is_var_in xs e =
|
|
|
Option.exists ~f:(Var.Set.mem xs) (Var.of_term e)
|
|
|
in
|
|
|
( is_var_in xs e || is_var_in xs f
|
|
|
|| (uninterpreted e && Term.exists ~f:(is_var_in xs) e)
|
|
|
|| (uninterpreted f && Term.exists ~f:(is_var_in xs) f) )
|
|
|
$> fun b ->
|
|
|
[%Trace.info
|
|
|
"is_valid_eq %a%a=%a = %b" Var.Set.pp_xs xs Term.pp e Term.pp f b]
|
|
|
|
|
|
(** Partition ∃xs. σ into equivalent ∃xs. τ ∧ ∃ks. ν where ks
|
|
|
and ν are maximal where ∃ks. ν is universally valid, xs ⊇ ks and
|
|
|
ks ∩ fv(τ) = ∅. *)
|
|
|
let partition_valid xs s =
|
|
|
(* Move equations e=f from s to t when ∃ks.e=f fails to be provably
|
|
|
valid. When moving an equation, reduce ks by fv(e=f) to maintain ks ∩
|
|
|
fv(t) = ∅. This reduction may cause equations in s to no longer be
|
|
|
valid, so loop until no change. *)
|
|
|
let rec partition_valid_ t ks s =
|
|
|
let t', ks', s' =
|
|
|
Term.Map.fold s ~init:(t, ks, s) ~f:(fun ~key ~data (t, ks, s) ->
|
|
|
if is_valid_eq ks key data then (t, ks, s)
|
|
|
else
|
|
|
let t = Term.Map.set ~key ~data t
|
|
|
and ks =
|
|
|
Var.Set.diff ks (Var.Set.union (Term.fv key) (Term.fv data))
|
|
|
and s = Term.Map.remove s key in
|
|
|
(t, ks, s) )
|
|
|
in
|
|
|
if s' != s then partition_valid_ t' ks' s' else (t', ks', s')
|
|
|
in
|
|
|
partition_valid_ empty xs s
|
|
|
end
|
|
|
|
|
|
(** Theory Solver *)
|
|
|
|
|
|
(** orient equations s.t. Var < Memory < Extract < Concat < others, then
|
|
|
using height of aggregate nesting, and then using Term.compare *)
|
|
|
let orient e f =
|
|
|
let compare e f =
|
|
|
let rank e =
|
|
|
match (e : Term.t) with
|
|
|
| Var _ -> 0
|
|
|
| Ap2 (Memory, _, _) -> 1
|
|
|
| Ap3 (Extract, _, _, _) -> 2
|
|
|
| ApN (Concat, _) -> 3
|
|
|
| _ -> 4
|
|
|
in
|
|
|
let rec height e =
|
|
|
match (e : Term.t) with
|
|
|
| Ap2 (Memory, _, x) -> 1 + height x
|
|
|
| Ap3 (Extract, x, _, _) -> 1 + height x
|
|
|
| ApN (Concat, xs) ->
|
|
|
1 + IArray.fold ~init:0 ~f:(fun h x -> max h (height x)) xs
|
|
|
| _ -> 0
|
|
|
in
|
|
|
let o = compare (rank e) (rank f) in
|
|
|
if o <> 0 then o
|
|
|
else
|
|
|
let o = compare (height e) (height f) in
|
|
|
if o <> 0 then o else Term.compare e f
|
|
|
in
|
|
|
match Int.sign (compare e f) with
|
|
|
| Neg -> Some (e, f)
|
|
|
| Zero -> None
|
|
|
| Pos -> Some (f, e)
|
|
|
|
|
|
let norm (_, _, s) e = Subst.norm s e
|
|
|
|
|
|
let extend ?f ~var ~rep (us, xs, s) =
|
|
|
let s =
|
|
|
match f with
|
|
|
| Some f when not (f var rep) -> s
|
|
|
| _ -> Subst.compose1 ~key:var ~data:rep s
|
|
|
in
|
|
|
Some (us, xs, s)
|
|
|
|
|
|
let fresh name (us, xs, s) =
|
|
|
let x, us = Var.fresh name ~wrt:us in
|
|
|
let xs = Var.Set.add xs x in
|
|
|
(Term.var x, (us, xs, s))
|
|
|
|
|
|
let solve_poly ?f p q s =
|
|
|
match Term.sub p q with
|
|
|
| Integer {data} -> if Z.equal Z.zero data then Some s else None
|
|
|
| Var _ as var -> extend ?f ~var ~rep:Term.zero s
|
|
|
| p_q -> (
|
|
|
match Term.solve_zero_eq p_q with
|
|
|
| Some (var, rep) -> extend ?f ~var ~rep s
|
|
|
| None -> extend ?f ~var:p_q ~rep:Term.zero s )
|
|
|
|
|
|
(* α[o,l) = β ==> l = |β| ∧ α = (⟨n,c⟩[0,o) ^ β ^ ⟨n,c⟩[o+l,n-o-l)) where n
|
|
|
= |α| and c fresh *)
|
|
|
let rec solve_extract ?f a o l b s =
|
|
|
let n = Term.agg_size_exn a in
|
|
|
let c, s = fresh "c" s in
|
|
|
let n_c = Term.memory ~siz:n ~arr:c in
|
|
|
let o_l = Term.add o l in
|
|
|
let n_o_l = Term.sub n o_l in
|
|
|
let c0 = Term.extract ~agg:n_c ~off:Term.zero ~len:o in
|
|
|
let c1 = Term.extract ~agg:n_c ~off:o_l ~len:n_o_l in
|
|
|
let b, s =
|
|
|
match Term.agg_size b with
|
|
|
| None -> (Term.memory ~siz:l ~arr:b, Some s)
|
|
|
| Some m -> (b, solve_ ?f l m s)
|
|
|
in
|
|
|
s >>= solve_ ?f a (Term.concat [|c0; b; c1|])
|
|
|
|
|
|
(* α₀^…^αᵢ^αⱼ^…^αᵥ = β ==> |α₀^…^αᵥ| = |β| ∧ … ∧ αⱼ = β[n₀+…+nᵢ,nⱼ) ∧ …
|
|
|
where nₓ ≡ |αₓ| and m = |β| *)
|
|
|
and solve_concat ?f a0V b m s =
|
|
|
IArray.fold_until a0V ~init:(s, Term.zero)
|
|
|
~f:(fun (s, oI) aJ ->
|
|
|
let nJ = Term.agg_size_exn aJ in
|
|
|
let oJ = Term.add oI nJ in
|
|
|
match solve_ ?f aJ (Term.extract ~agg:b ~off:oI ~len:nJ) s with
|
|
|
| Some s -> Continue (s, oJ)
|
|
|
| None -> Stop None )
|
|
|
~finish:(fun (s, n0V) -> solve_ ?f n0V m s)
|
|
|
|
|
|
and solve_ ?f d e s =
|
|
|
[%Trace.call fun {pf} ->
|
|
|
pf "%a@[%a@ %a@ %a@]" Var.Set.pp_xs (snd3 s) Term.pp d Term.pp e
|
|
|
Subst.pp (trd3 s)]
|
|
|
;
|
|
|
( match orient (norm s d) (norm s e) with
|
|
|
(* e' = f' ==> true when e' ≡ f' *)
|
|
|
| None -> Some s
|
|
|
(* i = j ==> false when i ≠ j *)
|
|
|
| Some (Integer _, Integer _) -> None
|
|
|
(* ⟨0,a⟩ = β ==> a = β = ⟨⟩ *)
|
|
|
| Some (Ap2 (Memory, n, a), b) when Term.equal n Term.zero ->
|
|
|
s |> solve_ ?f a (Term.concat [||]) >>= solve_ ?f b (Term.concat [||])
|
|
|
| Some (b, Ap2 (Memory, n, a)) when Term.equal n Term.zero ->
|
|
|
s |> solve_ ?f a (Term.concat [||]) >>= solve_ ?f b (Term.concat [||])
|
|
|
(* v = ⟨n,a⟩ ==> v = a *)
|
|
|
| Some ((Var _ as v), Ap2 (Memory, _, a)) -> s |> solve_ ?f v a
|
|
|
(* ⟨n,a⟩ = ⟨m,b⟩ ==> n = m ∧ a = β *)
|
|
|
| Some (Ap2 (Memory, n, a), Ap2 (Memory, m, b)) ->
|
|
|
s |> solve_ ?f n m >>= solve_ ?f a b
|
|
|
(* ⟨n,a⟩ = β ==> n = |β| ∧ a = β *)
|
|
|
| Some (Ap2 (Memory, n, a), b) ->
|
|
|
( match Term.agg_size b with
|
|
|
| None -> Some s
|
|
|
| Some m -> solve_ ?f n m s )
|
|
|
>>= solve_ ?f a b
|
|
|
| Some ((Var _ as v), (Ap3 (Extract, _, _, l) as e)) ->
|
|
|
if not (Var.Set.mem (Term.fv e) (Var.of_ v)) then
|
|
|
(* v = α[o,l) ==> v ↦ α[o,l) when v ∉ fv(α[o,l)) *)
|
|
|
extend ?f ~var:v ~rep:e s
|
|
|
else
|
|
|
(* v = α[o,l) ==> α[o,l) ↦ ⟨l,v⟩ when v ∈ fv(α[o,l)) *)
|
|
|
extend ?f ~var:e ~rep:(Term.memory ~siz:l ~arr:v) s
|
|
|
| Some ((Var _ as v), (ApN (Concat, a0V) as c)) ->
|
|
|
if not (Var.Set.mem (Term.fv c) (Var.of_ v)) then
|
|
|
(* v = α₀^…^αᵥ ==> v ↦ α₀^…^αᵥ when v ∉ fv(α₀^…^αᵥ) *)
|
|
|
extend ?f ~var:v ~rep:c s
|
|
|
else
|
|
|
(* v = α₀^…^αᵥ ==> ⟨|α₀^…^αᵥ|,v⟩ = α₀^…^αᵥ when v ∈ fv(α₀^…^αᵥ) *)
|
|
|
let m = Term.agg_size_exn c in
|
|
|
solve_concat ?f a0V (Term.memory ~siz:m ~arr:v) m s
|
|
|
| Some ((Ap3 (Extract, _, _, l) as e), ApN (Concat, a0V)) ->
|
|
|
solve_concat ?f a0V e l s
|
|
|
| Some (ApN (Concat, a0V), (ApN (Concat, _) as c)) ->
|
|
|
solve_concat ?f a0V c (Term.agg_size_exn c) s
|
|
|
| Some (Ap3 (Extract, a, o, l), e) -> solve_extract ?f a o l e s
|
|
|
(* p = q ==> p-q = 0 *)
|
|
|
| Some
|
|
|
( ((Add _ | Mul _ | Integer _) as p), q
|
|
|
| q, ((Add _ | Mul _ | Integer _) as p) ) ->
|
|
|
solve_poly ?f p q s
|
|
|
| Some (rep, var) ->
|
|
|
assert (non_interpreted var) ;
|
|
|
assert (non_interpreted rep) ;
|
|
|
extend ?f ~var ~rep s )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} ->
|
|
|
function
|
|
|
| Some (_, xs, s) -> pf "%a%a" Var.Set.pp_xs xs Subst.pp s
|
|
|
| None -> pf "false"]
|
|
|
|
|
|
let solve ?f ~us ~xs d e =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ %a" Term.pp d Term.pp e]
|
|
|
;
|
|
|
(solve_ ?f d e (us, xs, Subst.empty) >>| fun (_, xs, s) -> (xs, s))
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} ->
|
|
|
function
|
|
|
| Some (xs, s) -> pf "%a%a" Var.Set.pp_xs xs Subst.pp s
|
|
|
| None -> pf "false"]
|
|
|
|
|
|
(** Equality Relations *)
|
|
|
|
|
|
(** see also [invariant] *)
|
|
|
type t =
|
|
|
{ xs: Var.Set.t
|
|
|
(** existential variables that did not appear in input equations *)
|
|
|
; sat: bool (** [false] only if constraints are inconsistent *)
|
|
|
; rep: Subst.t
|
|
|
(** functional set of oriented equations: map [a] to [a'],
|
|
|
indicating that [a = a'] holds, and that [a'] is the
|
|
|
'rep(resentative)' of [a] *) }
|
|
|
[@@deriving compare, equal, sexp]
|
|
|
|
|
|
let classes r =
|
|
|
let add key data cls =
|
|
|
if Term.equal key data then cls
|
|
|
else Term.Map.add_multi cls ~key:data ~data:key
|
|
|
in
|
|
|
Subst.fold r.rep ~init:Term.Map.empty ~f:(fun ~key ~data cls ->
|
|
|
match classify key with
|
|
|
| Interpreted | Atomic -> add key data cls
|
|
|
| Simplified | Uninterpreted ->
|
|
|
add (Term.map ~f:(Subst.apply r.rep) key) data cls )
|
|
|
|
|
|
let cls_of r e =
|
|
|
let e' = Subst.apply r.rep e in
|
|
|
Term.Map.find (classes r) e' |> Option.value ~default:[e']
|
|
|
|
|
|
(** Pretty-printing *)
|
|
|
|
|
|
let pp fs {sat; rep} =
|
|
|
let pp_alist pp_k pp_v fs alist =
|
|
|
let pp_assoc fs (k, v) =
|
|
|
Format.fprintf fs "[@[%a@ @<2>↦ %a@]]" pp_k k pp_v (k, v)
|
|
|
in
|
|
|
Format.fprintf fs "[@[<hv>%a@]]" (List.pp ";@ " pp_assoc) alist
|
|
|
in
|
|
|
let pp_term_v fs (k, v) = if not (Term.equal k v) then Term.pp fs v in
|
|
|
Format.fprintf fs "@[{@[<hv>sat= %b;@ rep= %a@]}@]" sat
|
|
|
(pp_alist Term.pp pp_term_v)
|
|
|
(Subst.to_alist rep)
|
|
|
|
|
|
let pp_diff fs (r, s) =
|
|
|
let pp_sat fs =
|
|
|
if not (Bool.equal r.sat s.sat) then
|
|
|
Format.fprintf fs "sat= @[-- %b@ ++ %b@];@ " r.sat s.sat
|
|
|
in
|
|
|
let pp_rep fs =
|
|
|
if not (Subst.is_empty r.rep) then
|
|
|
Format.fprintf fs "rep= %a" Subst.pp_diff (r.rep, s.rep)
|
|
|
in
|
|
|
Format.fprintf fs "@[{@[<hv>%t%t@]}@]" pp_sat pp_rep
|
|
|
|
|
|
let ppx_cls x = List.pp "@ = " (Term.ppx x)
|
|
|
let pp_cls = ppx_cls (fun _ -> None)
|
|
|
let pp_diff_cls = List.pp_diff ~compare:Term.compare "@ = " Term.pp
|
|
|
|
|
|
let ppx_clss x fs cs =
|
|
|
List.pp "@ @<2>∧ "
|
|
|
(fun fs (key, data) ->
|
|
|
Format.fprintf fs "@[%a@ = %a@]" (Term.ppx x) key (ppx_cls x)
|
|
|
(List.sort ~compare:Term.compare data) )
|
|
|
fs (Term.Map.to_alist cs)
|
|
|
|
|
|
let pp_clss fs cs = ppx_clss (fun _ -> None) fs cs
|
|
|
|
|
|
let pp_diff_clss =
|
|
|
Term.Map.pp_diff ~data_equal:(List.equal Term.equal) Term.pp pp_cls
|
|
|
pp_diff_cls
|
|
|
|
|
|
(** Invariant *)
|
|
|
|
|
|
(** test membership in carrier *)
|
|
|
let in_car r e = Subst.mem r.rep e
|
|
|
|
|
|
let invariant r =
|
|
|
Invariant.invariant [%here] r [%sexp_of: t]
|
|
|
@@ fun () ->
|
|
|
Subst.iteri r.rep ~f:(fun ~key:a ~data:_ ->
|
|
|
(* no interpreted terms in carrier *)
|
|
|
assert (non_interpreted a) ;
|
|
|
(* carrier is closed under subterms *)
|
|
|
iter_max_solvables a ~f:(fun b ->
|
|
|
assert (
|
|
|
in_car r b
|
|
|
|| fail "@[subterm %a of %a not in carrier of@ %a@]" Term.pp b
|
|
|
Term.pp a pp r () ) ) )
|
|
|
|
|
|
(** Core operations *)
|
|
|
|
|
|
let true_ =
|
|
|
{xs= Var.Set.empty; sat= true; rep= Subst.empty} |> check invariant
|
|
|
|
|
|
let false_ = {true_ with sat= false}
|
|
|
|
|
|
(** terms are congruent if equal after normalizing subterms *)
|
|
|
let congruent r a b =
|
|
|
Term.equal
|
|
|
(Term.map ~f:(Subst.norm r.rep) a)
|
|
|
(Term.map ~f:(Subst.norm r.rep) b)
|
|
|
|
|
|
(** [lookup r a] is [b'] if [a ~ b = b'] for some equation [b = b'] in rep *)
|
|
|
let lookup r a =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ %a" Term.pp a pp r]
|
|
|
;
|
|
|
( with_return
|
|
|
@@ fun {return} ->
|
|
|
(* congruent specialized to assume [a] canonized and [b] non-interpreted *)
|
|
|
let semi_congruent r a b =
|
|
|
Term.equal a (Term.map ~f:(Subst.apply r.rep) b)
|
|
|
in
|
|
|
Subst.iteri r.rep ~f:(fun ~key ~data ->
|
|
|
if semi_congruent r a key then return data ) ;
|
|
|
a )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} -> pf "%a" Term.pp]
|
|
|
|
|
|
(** rewrite a term into canonical form using rep and, for non-interpreted
|
|
|
terms, congruence composed with rep *)
|
|
|
let rec canon r a =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ %a" Term.pp a pp r]
|
|
|
;
|
|
|
( match classify a with
|
|
|
| Atomic -> Subst.apply r.rep a
|
|
|
| Interpreted -> Term.map ~f:(canon r) a
|
|
|
| Simplified | Uninterpreted -> (
|
|
|
let a' = Term.map ~f:(canon r) a in
|
|
|
match classify a' with
|
|
|
| Atomic -> Subst.apply r.rep a'
|
|
|
| Interpreted -> Term.map ~f:(canon r) a'
|
|
|
| Simplified | Uninterpreted -> lookup r a' ) )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} -> pf "%a" Term.pp]
|
|
|
|
|
|
let rec extend_ a r =
|
|
|
match classify a with
|
|
|
| Interpreted | Simplified -> Term.fold ~f:extend_ a ~init:r
|
|
|
| Uninterpreted -> (
|
|
|
match Subst.extend a r with
|
|
|
| Some r -> Term.fold ~f:extend_ a ~init:r
|
|
|
| None -> r )
|
|
|
| Atomic -> r
|
|
|
|
|
|
(** add a term to the carrier *)
|
|
|
let extend a r =
|
|
|
let rep = extend_ a r.rep in
|
|
|
if rep == r.rep then r else {r with rep} |> check invariant
|
|
|
|
|
|
let merge us a b r =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ %a@ %a" Term.pp a Term.pp b pp r]
|
|
|
;
|
|
|
( match solve ~us ~xs:r.xs a b with
|
|
|
| Some (xs, s) ->
|
|
|
{r with xs= Var.Set.union r.xs xs; rep= Subst.compose r.rep s}
|
|
|
| None -> {r with sat= false} )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} r' ->
|
|
|
pf "%a" pp_diff (r, r') ;
|
|
|
invariant r']
|
|
|
|
|
|
(** find an unproved equation between congruent terms *)
|
|
|
let find_missing r =
|
|
|
with_return
|
|
|
@@ fun {return} ->
|
|
|
Subst.iteri r.rep ~f:(fun ~key:a ~data:a' ->
|
|
|
Subst.iteri r.rep ~f:(fun ~key:b ~data:b' ->
|
|
|
if
|
|
|
Term.compare a b < 0
|
|
|
&& (not (Term.equal a' b'))
|
|
|
&& congruent r a b
|
|
|
then return (Some (a', b')) ) ) ;
|
|
|
None
|
|
|
|
|
|
let rec close us r =
|
|
|
if not r.sat then r
|
|
|
else
|
|
|
match find_missing r with
|
|
|
| Some (a', b') -> close us (merge us a' b' r)
|
|
|
| None -> r
|
|
|
|
|
|
let close us r =
|
|
|
[%Trace.call fun {pf} -> pf "%a" pp r]
|
|
|
;
|
|
|
close us r
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} r' ->
|
|
|
pf "%a" pp_diff (r, r') ;
|
|
|
invariant r']
|
|
|
|
|
|
let and_eq us a b r =
|
|
|
if not r.sat then r
|
|
|
else
|
|
|
let a' = canon r a in
|
|
|
let b' = canon r b in
|
|
|
let r = extend a' r in
|
|
|
let r = extend b' r in
|
|
|
if Term.equal a' b' then r else close us (merge us a' b' r)
|
|
|
|
|
|
let extract_xs r = (r.xs, {r with xs= Var.Set.empty})
|
|
|
|
|
|
(** Exposed interface *)
|
|
|
|
|
|
let is_true {sat; rep} =
|
|
|
sat && Subst.for_alli rep ~f:(fun ~key:a ~data:a' -> Term.equal a a')
|
|
|
|
|
|
let is_false {sat} = not sat
|
|
|
let entails_eq r d e = Term.is_true (canon r (Term.eq d e))
|
|
|
|
|
|
let entails r s =
|
|
|
Subst.for_alli s.rep ~f:(fun ~key:e ~data:e' -> entails_eq r e e')
|
|
|
|
|
|
let normalize = canon
|
|
|
|
|
|
let class_of r e =
|
|
|
let e' = normalize r e in
|
|
|
e' :: Term.Map.find_multi (classes r) e'
|
|
|
|
|
|
let fold_uses_of r t ~init ~f =
|
|
|
let rec fold_ e ~init:s ~f =
|
|
|
let s =
|
|
|
Term.fold e ~init:s ~f:(fun sub s ->
|
|
|
if Term.equal t sub then f s e else s )
|
|
|
in
|
|
|
if interpreted e then
|
|
|
Term.fold e ~init:s ~f:(fun d s -> fold_ ~f d ~init:s)
|
|
|
else s
|
|
|
in
|
|
|
Subst.fold r.rep ~init ~f:(fun ~key:trm ~data:rep s ->
|
|
|
let f trm s = fold_ trm ~init:s ~f in
|
|
|
f trm (f rep s) )
|
|
|
|
|
|
let difference r a b =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ %a@ %a" Term.pp a Term.pp b pp r]
|
|
|
;
|
|
|
let a = canon r a in
|
|
|
let b = canon r b in
|
|
|
( if Term.equal a b then Some Z.zero
|
|
|
else
|
|
|
match normalize r (Term.sub a b) with
|
|
|
| Integer {data} -> Some data
|
|
|
| _ -> None )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} ->
|
|
|
function Some d -> pf "%a" Z.pp_print d | None -> pf ""]
|
|
|
|
|
|
let apply_subst us s r =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ %a" Subst.pp s pp r]
|
|
|
;
|
|
|
Term.Map.fold (classes r) ~init:true_ ~f:(fun ~key:rep ~data:cls r ->
|
|
|
let rep' = Subst.subst s rep in
|
|
|
List.fold cls ~init:r ~f:(fun r trm ->
|
|
|
let trm' = Subst.subst s trm in
|
|
|
and_eq us trm' rep' r ) )
|
|
|
|> extract_xs
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} (xs, r') -> pf "%a%a" Var.Set.pp_xs xs pp r']
|
|
|
|
|
|
let and_ us r s =
|
|
|
( if not r.sat then r
|
|
|
else if not s.sat then s
|
|
|
else
|
|
|
let s, r =
|
|
|
if Subst.length s.rep <= Subst.length r.rep then (s, r) else (r, s)
|
|
|
in
|
|
|
Subst.fold s.rep ~init:r ~f:(fun ~key:e ~data:e' r -> and_eq us e e' r)
|
|
|
)
|
|
|
|> extract_xs
|
|
|
|
|
|
let or_ us r s =
|
|
|
[%Trace.call fun {pf} -> pf "@[<hv 1> %a@ @<2>∨ %a@]" pp r pp s]
|
|
|
;
|
|
|
( if not s.sat then r
|
|
|
else if not r.sat then s
|
|
|
else
|
|
|
let merge_mems rs r s =
|
|
|
Term.Map.fold (classes s) ~init:rs ~f:(fun ~key:rep ~data:cls rs ->
|
|
|
List.fold cls
|
|
|
~init:([rep], rs)
|
|
|
~f:(fun (reps, rs) exp ->
|
|
|
match List.find ~f:(entails_eq r exp) reps with
|
|
|
| Some rep -> (reps, and_eq us exp rep rs)
|
|
|
| None -> (exp :: reps, rs) )
|
|
|
|> snd )
|
|
|
in
|
|
|
let rs = true_ in
|
|
|
let rs = merge_mems rs r s in
|
|
|
let rs = merge_mems rs s r in
|
|
|
rs )
|
|
|
|> extract_xs
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} (_, r) -> pf "%a" pp r]
|
|
|
|
|
|
let orN us rs =
|
|
|
match rs with
|
|
|
| [] -> (us, false_)
|
|
|
| r :: rs -> List.fold ~f:(fun (us, s) r -> or_ us s r) ~init:(us, r) rs
|
|
|
|
|
|
let rec and_term_ us e r =
|
|
|
let eq_false b r = and_eq us b Term.false_ r in
|
|
|
match (e : Term.t) with
|
|
|
| Integer {data} -> if Z.is_false data then false_ else true_
|
|
|
| Ap2 (And, a, b) -> and_term_ us a (and_term_ us b r)
|
|
|
| Ap2 (Eq, a, b) -> and_eq us a b r
|
|
|
| Ap2 (Xor, Integer {data}, a) when Z.is_true data -> eq_false a r
|
|
|
| Ap2 (Xor, a, Integer {data}) when Z.is_true data -> eq_false a r
|
|
|
| _ -> r
|
|
|
|
|
|
let and_term us e r = and_term_ us e r |> extract_xs
|
|
|
|
|
|
let and_eq us a b r =
|
|
|
[%Trace.call fun {pf} -> pf "%a = %a@ %a" Term.pp a Term.pp b pp r]
|
|
|
;
|
|
|
and_eq us a b r |> extract_xs
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} (_, r') ->
|
|
|
pf "%a" pp_diff (r, r') ;
|
|
|
invariant r']
|
|
|
|
|
|
let rename r sub =
|
|
|
[%Trace.call fun {pf} -> pf "%a" pp r]
|
|
|
;
|
|
|
let rep = Subst.map_entries ~f:(Term.rename sub) r.rep in
|
|
|
(if rep == r.rep then r else {r with rep})
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} r' ->
|
|
|
pf "%a" pp_diff (r, r') ;
|
|
|
invariant r']
|
|
|
|
|
|
let fold_terms r ~init ~f =
|
|
|
Subst.fold r.rep ~f:(fun ~key ~data z -> f (f z data) key) ~init
|
|
|
|
|
|
let fold_vars r ~init ~f =
|
|
|
fold_terms r ~init ~f:(fun init -> Term.fold_vars ~f ~init)
|
|
|
|
|
|
let fv e = fold_vars e ~f:Var.Set.add ~init:Var.Set.empty
|
|
|
let pp_classes fs r = pp_clss fs (classes r)
|
|
|
let ppx_classes x fs r = ppx_clss x fs (classes r)
|
|
|
|
|
|
let ppx_classes_diff x fs (r, s) =
|
|
|
let clss = classes s in
|
|
|
let clss =
|
|
|
Term.Map.filter_mapi clss ~f:(fun ~key:rep ~data:cls ->
|
|
|
match
|
|
|
List.filter cls ~f:(fun exp -> not (entails_eq r rep exp))
|
|
|
with
|
|
|
| [] -> None
|
|
|
| cls -> Some cls )
|
|
|
in
|
|
|
List.pp "@ @<2>∧ "
|
|
|
(fun fs (rep, cls) ->
|
|
|
Format.fprintf fs "@[%a@ = %a@]" (Term.ppx x) rep
|
|
|
(List.pp "@ = " (Term.ppx x))
|
|
|
(List.dedup_and_sort ~compare:Term.compare cls) )
|
|
|
fs (Term.Map.to_alist clss)
|
|
|
|
|
|
(** Existential Witnessing and Elimination *)
|
|
|
|
|
|
let subst_invariant us s0 s =
|
|
|
assert (s0 == s || not (Subst.equal s0 s)) ;
|
|
|
assert (
|
|
|
Subst.iteri s ~f:(fun ~key ~data ->
|
|
|
(* dom of new entries not ito us *)
|
|
|
assert (
|
|
|
Option.for_all ~f:(Term.equal data) (Subst.find s0 key)
|
|
|
|| not (Var.Set.is_subset (Term.fv key) ~of_:us) ) ;
|
|
|
(* rep not ito us implies trm not ito us *)
|
|
|
assert (
|
|
|
Var.Set.is_subset (Term.fv data) ~of_:us
|
|
|
|| not (Var.Set.is_subset (Term.fv key) ~of_:us) ) ) ;
|
|
|
true )
|
|
|
|
|
|
type 'a zom = Zero | One of 'a | Many
|
|
|
|
|
|
(** try to solve [p = q] such that [fv (p - q) ⊆ us ∪ xs] and [p - q]
|
|
|
has at most one maximal solvable subterm, [kill], where
|
|
|
[fv kill ⊈ us]; solve [p = q] for [kill]; extend subst mapping [kill]
|
|
|
to the solution *)
|
|
|
let solve_poly_eq us p' q' subst =
|
|
|
let diff = Term.sub p' q' in
|
|
|
let max_solvables_not_ito_us =
|
|
|
fold_max_solvables diff ~init:Zero ~f:(fun solvable_subterm -> function
|
|
|
| Many -> Many
|
|
|
| zom when Var.Set.is_subset (Term.fv solvable_subterm) ~of_:us -> zom
|
|
|
| One _ -> Many
|
|
|
| Zero -> One solvable_subterm )
|
|
|
in
|
|
|
match max_solvables_not_ito_us with
|
|
|
| One kill ->
|
|
|
let+ kill, keep = Term.solve_zero_eq diff ~for_:kill in
|
|
|
Subst.compose1 ~key:kill ~data:keep subst
|
|
|
| Many | Zero -> None
|
|
|
|
|
|
let solve_memory_eq us e' f' subst =
|
|
|
[%Trace.call fun {pf} -> pf "%a = %a" Term.pp e' Term.pp f']
|
|
|
;
|
|
|
let f x u =
|
|
|
(not (Var.Set.is_subset (Term.fv x) ~of_:us))
|
|
|
&& Var.Set.is_subset (Term.fv u) ~of_:us
|
|
|
in
|
|
|
let solve_concat ms n a =
|
|
|
let a, n =
|
|
|
match Term.agg_size a with
|
|
|
| Some n -> (a, n)
|
|
|
| None -> (Term.memory ~siz:n ~arr:a, n)
|
|
|
in
|
|
|
let+ _, xs, s = solve_concat ~f ms a n (us, Var.Set.empty, subst) in
|
|
|
assert (Var.Set.is_empty xs) ;
|
|
|
s
|
|
|
in
|
|
|
( match ((e' : Term.t), (f' : Term.t)) with
|
|
|
| (ApN (Concat, ms) as c), a when f c a ->
|
|
|
solve_concat ms (Term.agg_size_exn c) a
|
|
|
| a, (ApN (Concat, ms) as c) when f c a ->
|
|
|
solve_concat ms (Term.agg_size_exn c) a
|
|
|
| (Ap2 (Memory, _, (Var _ as v)) as m), u when f m u ->
|
|
|
Some (Subst.compose1 ~key:v ~data:u subst)
|
|
|
| u, (Ap2 (Memory, _, (Var _ as v)) as m) when f m u ->
|
|
|
Some (Subst.compose1 ~key:v ~data:u subst)
|
|
|
| _ -> None )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} subst' ->
|
|
|
pf "@[%a@]" Subst.pp_diff (subst, Option.value subst' ~default:subst)]
|
|
|
|
|
|
let solve_interp_eq us e' (cls, subst) =
|
|
|
[%Trace.call fun {pf} ->
|
|
|
pf "trm: @[%a@]@ cls: @[%a@]@ subst: @[%a@]" Term.pp e' pp_cls cls
|
|
|
Subst.pp subst]
|
|
|
;
|
|
|
List.find_map cls ~f:(fun f ->
|
|
|
let f' = Subst.norm subst f in
|
|
|
match solve_memory_eq us e' f' subst with
|
|
|
| Some subst -> Some subst
|
|
|
| None -> solve_poly_eq us e' f' subst )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} subst' ->
|
|
|
pf "@[%a@]" Subst.pp_diff (subst, Option.value subst' ~default:subst) ;
|
|
|
Option.iter ~f:(subst_invariant us subst) subst']
|
|
|
|
|
|
(** move equations from [cls] to [subst] which are between interpreted terms
|
|
|
and can be expressed, after normalizing with [subst], as [x ↦ u] where
|
|
|
[us ∪ xs ⊇ fv x ⊈ us] and [fv u ⊆ us] or else
|
|
|
[fv u ⊆ us ∪ xs] *)
|
|
|
let rec solve_interp_eqs us (cls, subst) =
|
|
|
[%Trace.call fun {pf} ->
|
|
|
pf "cls: @[%a@]@ subst: @[%a@]" pp_cls cls Subst.pp subst]
|
|
|
;
|
|
|
let rec solve_interp_eqs_ cls' (cls, subst) =
|
|
|
match cls with
|
|
|
| [] -> (cls', subst)
|
|
|
| trm :: cls ->
|
|
|
let trm' = Subst.norm subst trm in
|
|
|
if interpreted trm' then
|
|
|
match solve_interp_eq us trm' (cls, subst) with
|
|
|
| Some subst -> solve_interp_eqs_ cls' (cls, subst)
|
|
|
| None -> solve_interp_eqs_ (trm' :: cls') (cls, subst)
|
|
|
else solve_interp_eqs_ (trm' :: cls') (cls, subst)
|
|
|
in
|
|
|
let cls', subst' = solve_interp_eqs_ [] (cls, subst) in
|
|
|
( if subst' != subst then solve_interp_eqs us (cls', subst')
|
|
|
else (cls', subst') )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} (cls', subst') ->
|
|
|
pf "cls: @[%a@]@ subst: @[%a@]" pp_diff_cls (cls, cls') Subst.pp_diff
|
|
|
(subst, subst')]
|
|
|
|
|
|
type cls_solve_state =
|
|
|
{ rep_us: Term.t option (** rep, that is ito us, for class *)
|
|
|
; cls_us: Term.t list (** cls that is ito us, or interpreted *)
|
|
|
; rep_xs: Term.t option (** rep, that is *not* ito us, for class *)
|
|
|
; cls_xs: Term.t list (** cls that is *not* ito us *) }
|
|
|
|
|
|
let dom_trm e =
|
|
|
match (e : Term.t) with
|
|
|
| Ap2 (Memory, _, (Var _ as v)) -> Some v
|
|
|
| _ when non_interpreted e -> Some e
|
|
|
| _ -> None
|
|
|
|
|
|
(** move equations from [cls] (which is assumed to be normalized by [subst])
|
|
|
to [subst] which can be expressed as [x ↦ u] where [x] is
|
|
|
non-interpreted [us ∪ xs ⊇ fv x ⊈ us] and [fv u ⊆ us] or else
|
|
|
[fv u ⊆ us ∪ xs] *)
|
|
|
let solve_uninterp_eqs us (cls, subst) =
|
|
|
[%Trace.call fun {pf} ->
|
|
|
pf "cls: @[%a@]@ subst: @[%a@]" pp_cls cls Subst.pp subst]
|
|
|
;
|
|
|
let compare e f =
|
|
|
[%compare: kind * Term.t] (classify e, e) (classify f, f)
|
|
|
in
|
|
|
let {rep_us; cls_us; rep_xs; cls_xs} =
|
|
|
List.fold cls ~init:{rep_us= None; cls_us= []; rep_xs= None; cls_xs= []}
|
|
|
~f:(fun ({rep_us; cls_us; rep_xs; cls_xs} as s) trm ->
|
|
|
if Var.Set.is_subset (Term.fv trm) ~of_:us then
|
|
|
match rep_us with
|
|
|
| Some rep when compare rep trm <= 0 ->
|
|
|
{s with cls_us= trm :: cls_us}
|
|
|
| Some rep -> {s with rep_us= Some trm; cls_us= rep :: cls_us}
|
|
|
| None -> {s with rep_us= Some trm}
|
|
|
else
|
|
|
match rep_xs with
|
|
|
| Some rep -> (
|
|
|
if compare rep trm <= 0 then
|
|
|
match dom_trm trm with
|
|
|
| Some trm -> {s with cls_xs= trm :: cls_xs}
|
|
|
| None -> {s with cls_us= trm :: cls_us}
|
|
|
else
|
|
|
match dom_trm rep with
|
|
|
| Some rep ->
|
|
|
{s with rep_xs= Some trm; cls_xs= rep :: cls_xs}
|
|
|
| None -> {s with rep_xs= Some trm; cls_us= rep :: cls_us} )
|
|
|
| None -> {s with rep_xs= Some trm} )
|
|
|
in
|
|
|
( match rep_us with
|
|
|
| Some rep_us ->
|
|
|
let cls = rep_us :: cls_us in
|
|
|
let cls, cls_xs =
|
|
|
match rep_xs with
|
|
|
| Some rep -> (
|
|
|
match dom_trm rep with
|
|
|
| Some rep -> (cls, rep :: cls_xs)
|
|
|
| None -> (rep :: cls, cls_xs) )
|
|
|
| None -> (cls, cls_xs)
|
|
|
in
|
|
|
let subst =
|
|
|
List.fold cls_xs ~init:subst ~f:(fun subst trm_xs ->
|
|
|
Subst.compose1 ~key:trm_xs ~data:rep_us subst )
|
|
|
in
|
|
|
(cls, subst)
|
|
|
| None -> (
|
|
|
match rep_xs with
|
|
|
| Some rep_xs ->
|
|
|
let cls = rep_xs :: cls_us in
|
|
|
let subst =
|
|
|
List.fold cls_xs ~init:subst ~f:(fun subst trm_xs ->
|
|
|
Subst.compose1 ~key:trm_xs ~data:rep_xs subst )
|
|
|
in
|
|
|
(cls, subst)
|
|
|
| None -> (cls, subst) ) )
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} (cls', subst') ->
|
|
|
pf "cls: @[%a@]@ subst: @[%a@]" pp_diff_cls (cls, cls') Subst.pp_diff
|
|
|
(subst, subst') ;
|
|
|
subst_invariant us subst subst']
|
|
|
|
|
|
(** move equations between terms in [rep]'s class [cls] from [classes] to
|
|
|
[subst] which can be expressed, after normalizing with [subst], as
|
|
|
[x ↦ u] where [us ∪ xs ⊇ fv x ⊈ us] and [fv u ⊆ us] or else
|
|
|
[fv u ⊆ us ∪ xs] *)
|
|
|
let solve_class us us_xs ~key:rep ~data:cls (classes, subst) =
|
|
|
let classes0 = classes in
|
|
|
[%Trace.call fun {pf} ->
|
|
|
pf "rep: @[%a@]@ cls: @[%a@]@ subst: @[%a@]" Term.pp rep pp_cls cls
|
|
|
Subst.pp subst]
|
|
|
;
|
|
|
let cls, cls_not_ito_us_xs =
|
|
|
List.partition_tf
|
|
|
~f:(fun e -> Var.Set.is_subset (Term.fv e) ~of_:us_xs)
|
|
|
(rep :: cls)
|
|
|
in
|
|
|
let cls, subst = solve_interp_eqs us (cls, subst) in
|
|
|
let cls, subst = solve_uninterp_eqs us (cls, subst) in
|
|
|
let cls = List.rev_append cls_not_ito_us_xs cls in
|
|
|
let cls =
|
|
|
List.remove ~equal:Term.equal cls (Subst.norm subst rep)
|
|
|
|> Option.value ~default:cls
|
|
|
in
|
|
|
let classes =
|
|
|
if List.is_empty cls then Term.Map.remove classes rep
|
|
|
else Term.Map.set classes ~key:rep ~data:cls
|
|
|
in
|
|
|
(classes, subst)
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} (classes', subst') ->
|
|
|
pf "subst: @[%a@]@ classes: @[%a@]" Subst.pp_diff (subst, subst')
|
|
|
pp_diff_clss (classes0, classes')]
|
|
|
|
|
|
let solve_concat_extracts_eq r x =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ %a" Term.pp x pp r]
|
|
|
;
|
|
|
let uses =
|
|
|
fold_uses_of r x ~init:[] ~f:(fun uses -> function
|
|
|
| Ap2 (Memory, _, _) as m ->
|
|
|
fold_uses_of r m ~init:uses ~f:(fun uses -> function
|
|
|
| Ap3 (Extract, _, _, _) as e -> e :: uses | _ -> uses )
|
|
|
| _ -> uses )
|
|
|
in
|
|
|
let find_extracts_at_off off =
|
|
|
List.filter uses ~f:(fun use ->
|
|
|
match (use : Term.t) with
|
|
|
| Ap3 (Extract, _, o, _) -> entails_eq r o off
|
|
|
| _ -> false )
|
|
|
in
|
|
|
let rec find_extracts full_rev_extracts rev_prefix off =
|
|
|
List.fold (find_extracts_at_off off) ~init:full_rev_extracts
|
|
|
~f:(fun full_rev_extracts e ->
|
|
|
match e with
|
|
|
| Ap3 (Extract, Ap2 (Memory, n, _), o, l) ->
|
|
|
let o_l = Term.add o l in
|
|
|
if entails_eq r n o_l then
|
|
|
(e :: rev_prefix) :: full_rev_extracts
|
|
|
else find_extracts full_rev_extracts (e :: rev_prefix) o_l
|
|
|
| _ -> full_rev_extracts )
|
|
|
in
|
|
|
find_extracts [] [] Term.zero
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} ->
|
|
|
pf "@[[%a]@]" (List.pp ";@ " (List.pp ",@ " Term.pp))]
|
|
|
|
|
|
let solve_concat_extracts r us x (classes, subst, us_xs) =
|
|
|
match
|
|
|
List.filter_map (solve_concat_extracts_eq r x) ~f:(fun rev_extracts ->
|
|
|
List.fold_option rev_extracts ~init:[] ~f:(fun suffix e ->
|
|
|
let+ rep_ito_us =
|
|
|
List.fold (cls_of r e) ~init:None ~f:(fun rep_ito_us trm ->
|
|
|
match rep_ito_us with
|
|
|
| Some rep when Term.compare rep trm <= 0 -> rep_ito_us
|
|
|
| _ when Var.Set.is_subset (Term.fv trm) ~of_:us ->
|
|
|
Some trm
|
|
|
| _ -> rep_ito_us )
|
|
|
in
|
|
|
Term.memory ~siz:(Term.agg_size_exn e) ~arr:rep_ito_us :: suffix
|
|
|
) )
|
|
|
|> List.min_elt ~compare:[%compare: Term.t list]
|
|
|
with
|
|
|
| Some extracts ->
|
|
|
let concat = Term.concat (Array.of_list extracts) in
|
|
|
let subst = Subst.compose1 ~key:x ~data:concat subst in
|
|
|
(classes, subst, us_xs)
|
|
|
| None -> (classes, subst, us_xs)
|
|
|
|
|
|
let solve_for_xs r us xs (classes, subst, us_xs) =
|
|
|
Var.Set.fold xs ~init:(classes, subst, us_xs)
|
|
|
~f:(fun (classes, subst, us_xs) x ->
|
|
|
let x = Term.var x in
|
|
|
if Subst.mem subst x then (classes, subst, us_xs)
|
|
|
else solve_concat_extracts r us x (classes, subst, us_xs) )
|
|
|
|
|
|
(** move equations from [classes] to [subst] which can be expressed, after
|
|
|
normalizing with [subst], as [x ↦ u] where [us ∪ xs ⊇ fv x ⊈ us]
|
|
|
and [fv u ⊆ us] or else [fv u ⊆ us ∪ xs]. *)
|
|
|
let solve_classes r (classes, subst, us) xs =
|
|
|
[%Trace.call fun {pf} ->
|
|
|
pf "us: {@[%a@]}@ xs: {@[%a@]}" Var.Set.pp us Var.Set.pp xs]
|
|
|
;
|
|
|
let rec solve_classes_ (classes0, subst0, us_xs) =
|
|
|
let classes, subst =
|
|
|
Term.Map.fold ~f:(solve_class us us_xs) classes0
|
|
|
~init:(classes0, subst0)
|
|
|
in
|
|
|
if subst != subst0 then solve_classes_ (classes, subst, us_xs)
|
|
|
else (classes, subst, us_xs)
|
|
|
in
|
|
|
(classes, subst, Var.Set.union us xs)
|
|
|
|> solve_classes_ |> solve_for_xs r us xs
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} (classes', subst', _) ->
|
|
|
pf "subst: @[%a@]@ classes: @[%a@]" Subst.pp_diff (subst, subst')
|
|
|
pp_diff_clss (classes, classes')]
|
|
|
|
|
|
let pp_vss fs vss =
|
|
|
Format.fprintf fs "[@[%a@]]"
|
|
|
(List.pp ";@ " (fun fs vs -> Format.fprintf fs "{@[%a@]}" Var.Set.pp vs))
|
|
|
vss
|
|
|
|
|
|
(** enumerate variable contexts vᵢ in [v₁;…] and accumulate a solution
|
|
|
subst with entries [x ↦ u] where [r] entails [x = u] and
|
|
|
[⋃ⱼ₌₁ⁱ vⱼ ⊇ fv x ⊈ ⋃ⱼ₌₁ⁱ⁻¹ vⱼ] and
|
|
|
[fv u ⊆ ⋃ⱼ₌₁ⁱ⁻¹ vⱼ] if possible and otherwise
|
|
|
[fv u ⊆ ⋃ⱼ₌₁ⁱ vⱼ] *)
|
|
|
let solve_for_vars vss r =
|
|
|
[%Trace.call fun {pf} -> pf "%a@ @[%a@]" pp_vss vss pp_classes r]
|
|
|
;
|
|
|
let us, vss =
|
|
|
match vss with us :: vss -> (us, vss) | [] -> (Var.Set.empty, vss)
|
|
|
in
|
|
|
List.fold ~f:(solve_classes r) ~init:(classes r, Subst.empty, us) vss
|
|
|
|> snd3
|
|
|
|>
|
|
|
[%Trace.retn fun {pf} subst ->
|
|
|
pf "%a" Subst.pp subst ;
|
|
|
Subst.iteri subst ~f:(fun ~key ~data ->
|
|
|
assert (
|
|
|
entails_eq r key data
|
|
|
|| fail "@[%a = %a not entailed by@ %a@]" Term.pp key Term.pp data
|
|
|
pp_classes r () ) ;
|
|
|
assert (
|
|
|
List.fold_until vss ~init:us
|
|
|
~f:(fun us xs ->
|
|
|
let us_xs = Var.Set.union us xs in
|
|
|
let ks = Term.fv key in
|
|
|
let ds = Term.fv data in
|
|
|
if
|
|
|
Var.Set.is_subset ks ~of_:us_xs
|
|
|
&& Var.Set.is_subset ds ~of_:us_xs
|
|
|
&& ( Var.Set.is_subset ds ~of_:us
|
|
|
|| not (Var.Set.is_subset ks ~of_:us) )
|
|
|
then Stop true
|
|
|
else Continue us_xs )
|
|
|
~finish:(fun _ -> false) ) )]
|